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Preface

Welcome to the proceedings of the 2007 International Conference on High Per-
formance Computing and Communications (HPCC 2007), which was held in
Houston, Texas, USA, September 26–28, 2007.

There have been many exciting developments in all aspects of HPC over the
last decade and more exciting developments are on the horizon with, for exam-
ple, the petaflops performance barrier being targeted in the near future. The
rapid expansion in computing and communications technology has stimulated
the growth of powerful parallel and distributed systems with an ever increasing
demand for HPC in many disciplines. This, in turn, has increased the require-
ments for more reliable software, better algorithms, more comprehensive models
and simulations and represents a challenge to the HPC community to produce
better tools, research new areas, etc. Hence conferences, like HPCC 2007, play
an important role in enabling engineers and scientists to come together in order
to address all HPC-related challenges and to present and discuss their ideas,
research results and applications experience.

This year there were 272 paper submissions from all across the world, not only
from Europe, North America and South America but also from Asia and the Pa-
cific. All the papers were reviewed by at least three referees from the conference’s
technical program committee or their colleagues. In order to allocate as many pa-
pers as possible and keep the high quality of the conference, we finally decided to
accept 69 papers for the conference, which represented the acceptance rate of 25%.
We believe that all of these papers and topics not only provide novel ideas, new
results, work in progress and state-of-the-art techniques in this field, but will also
stimulate future research activities in the area of high performance computing and
communications.

This conference is a result of the hard work of very many people such as
the program vice chairs, the external reviewers and the program and technical
committee members. We would like to express our sincere thanks to everyone
involved. Ultimately, however, the success of the conference will be judged by how
well the delegates have participated, learnt, interacted and established contacts
with other researchers. The committees have provided the venue and created the
environment to allow these objectives to be achieved. It is now up to all of us to
ensure that the conference is an outstanding success.

We wish you a successful, stimulating and rewarding conference and look
forward to seeing you again at future HPCC conferences.

August 2007 Ronald Perrott
Barbara Chapman

Jaspal Subhlok
Rodrigo Fernandes de Mello

Laurence Tianruo Yang
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Programming Challenges for Petascale and Multicore
Parallel Systems

Vivek Sarkar

Rice University
vsarkar@cs.rice.edu

Abstract. This decade marks a resurgence for parallel computing with high-end
systems moving to petascale and mainstream systems moving to multi-core pro-
cessors. Unlike previous generations of hardware evolution, this shift will have
a major impact on existing software. For petascale, it is widely recognized by
application experts that past approaches based on domain decomposition will not
scale to exploit the parallelism available in future high-end systems. For mul-
ticore, it is acknowledged by hardware vendors that enablement of mainstream
software for execution on multiple cores is the major open problem that needs to
be solved in support of this hardware trend. These software challenges are further
compounded by an increased adoption of high performance computing in new
application domains that may not fit the patterns of parallelism that have been
studied by the community thus far. In this talk, we compare and contrast the soft-
ware stacks that are being developed for petascale and multicore parallel systems,
and the challenges that they pose to the programmer. We discuss ongoing work
on high productivity languages and tools that can help address these challenges
for petascale applications on high-end systems. We also discuss ongoing work on
concurrency in virtual machines (managed runtimes) to support lightweight con-
currency for mainstream applications on multicore systems. Examples will be
give from research projects under way in these areas including PGAS languages
(UPC, CAF), Eclipse Parallel Tools Platform, Java Concurrency Utilities, and the
X10 language. Finally, we outline a new long-term research project being initi-
ated at Rice University that aims to unify elements of the petascale and multicore
software stacks so as to produce portable software that can run unchanged on
petascale systems as well as a range of homogeneous and heterogeneous multi-
core systems.

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, p. 1, 2007.
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Towards Enhancing OpenMP Expressiveness and
Performance

Haoqiang Jin

NASA Ames Research Center
hjin@nas.nasa.gov

Abstract. Since its introduction in 1997, OpenMP has become the de facto stan-
dard for shared memory parallel programming. The notable advantages of the
model are its global view of memory space that simplifies programming de-
velopment and its incremental approach toward parallelization. However, it is
very challenge to scale OpenMP codes to tens or hundreds of processors. This
problem becomes even more profound with the recent introduction of multi-
core, multi-chip architectures. Several extensions have been introduced to en-
hance OpenMP expressiveness and performance, including thread subteams and
workqueuing. In this talk, we describe applications that expose the limitation of
the current OpenMP and examine the impact of these extensions on application
performance. We focus on exploiting multi-level parallelism and dealing with un-
balanced workload in applications with these extensions and compare with other
programming approaches, such as hybrid. Our experience has demonstrated the
importance of the new language features for OpenMP applications to scale well
on large shared memory parallel systems.

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, p. 2, 2007.
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Bandwidth-Aware Design of Large-Scale Clusters for
Scientific Computations

Mitsuhisa Sato

Center for Computational Sciences, University of Tsukuba
msato@cs.tsukuba.ac.jp

Abstract. The bandwidth of memory access and I/O, network is the most im-
portant issue in designing a large-scale cluster for scientific computations. We
have been developing a large scale PC cluster named PACS-CS (Parallel Array
Computer System for Computational Sciences) at Center for Computational Sci-
ences, University of Tsukuba, for wide variety of computational science appli-
cations such as computational physics, computational material science, etc. For
larger memory access bandwidth, a node is equipped with a single CPU which
is different from ordinary high-end PC clusters. The interconnection network for
parallel processing is configured as a multi-dimensional Hyper-Crossbar Network
based on trunking of GigabitEthernet to support large scale scientific computation
with physical space modeling. Based on the above concept, we are developing an
original mother board to configure a single CPU node with 8 ports of Gigabit
Ethernet, which can be implemented in the half size of 19 inch rack-mountable
1U size platform. PACS-CS started its operation on July 2006 with 2560 CPUs
and 14.3 TFops of peak performance. Recently, we have newly established an
alliance to draw up the specification of a supercomputer, called Open Supercom-
puter Specification. The alliance consists of three Japanese universities: Univer-
sity of Tsukuba, University of Tokyo, and Kyoto University (T2K alliance). The
Open Supercomputer Specification defines fundamental hardware and software
architectures on which each university will specify its own requirement to pro-
cure the next generation of their supercomputer systems in 2008. This specifica-
tion requests the node to be composed of commodity multicore processors with
high aggregated memory bandwidth, and the bandwidth of internode communi-
cation to be 5 GB/s or more in physical link level and 4 GB/s or more in MPI
level with Link aggregation technology using commodity fabric. We expect sev-
eral TFlops in each system. In order to support scalable scientific computations
in a large-scale cluster, the bandwidth-aware design will be important.

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, p. 3, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



OpenMP 3.0 – A Preview of the Upcoming Standard

Larry Meadows

Intel Corporation
lawrence.f.meadows@intel.com

Abstract. The OpenMP 3.0 standard should be released for public comment by
the time of this conference. OpenMP 3.0 is the first major upgrade of the OpenMP
standard since the merger of the C and Fortran standards in OpenMP 2.5. This talk
will give an overview of the new features in the OpenMP standard and show how
they help to extend the range of problems for which OpenMP is suitable.

Even with multi-core, the number of hardware cores in an SMP node is likely
to be relatively small for the next few years. Further, a number of users want to use
OpenMP, but need to scale to more cores than fit in a node, and do not want to mix
OpenMP and MPI. Intel supports a production quality OpenMP implementation
for clusters that provides a way out. This talk will briefly introduce Intel Cluster
OpenMP, provide an overview of the tools available for writing programs, and
show some performance data.

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, p. 4, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Manycores in the Future

Robert Schreiber

HP Labs
rob.schreiber@hp.com

Abstract. The change from single core to multicore processors is expected to
continue, taking us to manycore chips (64 processors) and beyond. Cores are
more numerous, but not faster. They also may be less reliable. Chip-level par-
allelism raises important questions about architecture, software, algorithms, and
applications. I’ll consider the directions in which the architecture may be headed,
and look at the impact on parallel programming and scientific computing.

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, p. 5, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



The Changing Impact of Semiconductor Technology on
Processor Architecture

Ray Simar

Texas Instruments
r-simar@ti.com

Abstract. We stand on the brink of a fundamental discontinuity in silicon process-
technology unlike anything most of us have seen. For almost two decades, a pe-
riod of time spanning the entire education and careers of many engineers, we have
been beneficiaries of a silicon process-technology which would let us build al-
most anything we could imagine. Now, all of that is about to change. For the past
five years, capacitive loading of interconnect has grown to be a significant factor
in logic speed, and has limited the scaling of integrated-circuit performance. To
compound the problem, recently interconnect resistance has also started to limit
circuit speed. These factors can render obsolete current designs and current think-
ing as interconnect-dominated designs and architectures will become increasingly
irrelevant. Given these fundamental interconnect challenges, we must turn to ar-
chitecture, logic design and programming solutions. The background on these dra-
matic changes in semiconductor technology will be discussed in the hopes that the
solutions for the future may very well come from the attendees of HPCC 2007!
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A Windows-Based Parallel File System

Lungpin Yeh, Juei-Ting Sun, Sheng-Kai Hung, and Yarsun Hsu

Department of Electrical Engineering,
National Tsing Hua University HsinChu, 30013, Taiwan

{lungpin,posh,phinex}@hpcc.ee.nthu.edu.tw, yshsu@ee.nthu.edu.tw

Abstract. Parallel file systems are widely used in clusters to provide
high performance I/O. However, most of the existing parallel file sys-
tems are based on UNIX-like operating systems. We use the Microsoft
.NET framework to implement a parallel file system for Windows. We
also implement a file system driver to support existing applications writ-
ten with Win32 APIs. In addition, a preliminary MPI-IO library is also
developed. Applications using MPI-IO could achieve the best perfor-
mance using our parallel file system, while the existing binaries could
benefit from the system driver without any modifications. In this paper,
the design and implementation of our system are described. File system
performance using our preliminary MPI-IO library and system driver is
also evaluated. The results show that the performance is scalable and
limited by the network bandwidth.

1 Introduction

As the speed of CPU becomes faster, we might expect that the performance of a
computer system should benefit from the advancement. However, the improve-
ments of other components in a computer system (i.e. memory system, data
storage system) cannot catch up with that of CPU. Although the capacity of
a disk has grown with time, its mechanical nature limits its read/write perfor-
mance. In this data-intensive world, it is significant to provide a large storage
subsystem with high performance I/O[1]. Using a single disk with a local file sys-
tem to sustain this requirement is impossible nowadays. Disks combined either
tightly or loosely to form a parallel system provide a possible solution to this
problem. The success of a parallel file system comes from the fact that accessing
files through network can have higher throughput than fetching files through lo-
cal disks. This could be attributed to the emergence of high-speed networks such
as Myrinet [2], InfiniBand [3], Gigabit Ethernet, and more recently 10 Gigabit
Ethernet.

A parallel file system can not only provide a large storage space by combining
several storage resources on different nodes but also increase the performance.
It could provide high-speed data access by using several disks at the same time.
With suitable striping size, the workload in the system can be distributed among
these disks instead of being centralized in a single disk. For example, whenever
a write happens, a parallel file system would split these data into a lot of small

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 7–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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chunks, which are then stored on different disks across the network in a round-
robin fashion.

Most of parallel file systems are based on Unix or Linux. As far as we know,
WinPFS[4] is the only parallel file system based on Microsoft Windows. How-
ever, it does not allow users to specify the striping size of a file across nodes.
Furthermore, it does not provide a user level library for high performance par-
allel file access. In this paper, we implement a parallel file system for Microsoft
Windows Server 2003 allowing users the flexibility to specify different striping
size. Users can specify the striping size to satisfy the required distribution or
using the default striping size provided by the system. We have implemented a
file system driver to trap Win32 APIs such that existing binaries can access files
stored on our parallel file system without recompilation. Besides, some MPI-IO
functions (such as noncontiguous accesses) are also provided for MPI jobs to
achieve the best performance. We have successfully used our parallel file system
as a storage system for VOD (Video On Demand) services, which can deliver
the maximum bandwidth and demonstrate the successful implementation of our
parallel file system.

This paper is organized as follows: Section 2 presents some related works.
Design and implementation will be discussed in section 3, with the detailed de-
scription of our system driver. Section 4 depicts the results of performance eval-
uation of our windows-based parallel file system, along with the prototype VOD
system. Finally, we would make some conclusions and provide some directions
in section 5.

2 Related Works

PVFS[5,6] is a parallel file system publicly available in the Linux environment.
It provides both user level library for performance and a kernel module package
that makes existing binaries working without recompiling.

WinPFS [4] is a parallel file system for Windows and integrated within the
Windows kernel components. It uses the existing client and server pairs in the
Windows platform (i.e. NFS [7], CIFS [8], . . . ) and thus no special servers are
needed. It also provides a transparent interface to users, just like what does
when accessing normal files. The disadvantage is that the user can not specify
the striping size of a file across nodes. Besides, its performance is bounded by
the slowest client/server pairs if the load balancing among servers is not optimal.
For example, if it uses NFS as one of the servers, the overall performance may be
gated by NFS. This heterogeneous client/server environment helps but it might
also hurt when encountering unbalanced load.

Microsoft adds the support of dynamic disks starting from Windows 2000.
Dynamic disks are the disk formats in Windows necessary for creating multi-
partition volumes, such as spanned volumes, mirrored volumes, striped volumes,
and RAID-5 volume. The striped volumes contain a series of partitions with one
partition per disk. However, only up to 32 disks can be supported, which is not
very scalable[9].
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3 Design and Implementation

The main task of the parallel file system is to stripe data or split files into
several small pieces. Files are equally distributed among different I/O nodes and
can be accessed directly from applications. Applications can access the same
file or different files in parallel rather than sequentially. The more I/O nodes
in a system, the more bandwidth it could provide (only limited by the network
capacity).

3.1 System Architecture

Generally speaking, our parallel file system consists of four main components:
Metadata server, I/O daemons (Iod), a library and a file system driver. Meta-
data server and I/O daemons set up the basic parallel file system architec-
ture. The library provides high performance APIs for users to develop their
own applications on top of the parallel file system. It communicates with the
metadata server and Iods, and does the tedious work for users. The complex-
ity behind the parallel file system is hidden by the library and users do not
need to concern about how the metadata server and Iods co-operate. With
the help of file system driver, we can trap I/O related Win32 API calls and
provide transparent file accesses. Most of the user mode APIs have the ker-
nel mode equivalent implementation. The overall architecture is shown in
Fig. 1.

Client side

server side server side

User mode

Kernel Mode

User mode

Applications

iod
library

network

mds
library

libwpvfs

iod
library

mds
library

file system
driver

Win32 API

Metadata
Server

local file system

I/O
Servers

local file system

Fig. 1. The overall system architecture
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Metadata Server. Metadata means the information about a file except for the
contents that it stores. In our parallel file system, metadata contains five parts:

– File size: It describes the size of a file.
– File index: It is a 64-bit number, which uniquely identifies the file stored

on the metadata server. Its uniqueness is maintained by the underlying file
system, such as the inode number of the UNIX operating systems. It is used
as the filename of the striped data stored on I/O nodes.

– Striping size: The size that a file is partitioned.
– Node count: The number of I/O nodes that the file is spread across.
– Starting I/O node: The I/O node that the file is first stored on.

The metadata server runs on a single node, managing the metadata of a file
and maintaining the directory hierarchy of our parallel file system. It does not
communicate with I/O daemons or users directly, but only converses with the
library, libwpvfs. Whenever a file is requested, users may call the library to
connect with the metadata server and get the metadata of that file. Before a file
can be accessed, its metadata must be fetched in advance.

I/O Daemons. The I/O daemon is a process running on each of the I/O nodes
responsible for accessing the real data of a file. It can run on a single node or
several nodes, and you can run several I/O daemons on an I/O node if you want.
After users get the metadata of a file, the library could connect to the required
I/O nodes, and the Iods would access the requested file and send stripes back
to the client.

Each of the I/O nodes maintains a flat directory hierarchy. The file index is
used as the filename of the striped data regardless of the file’s real filename.
No matter what the real path of a file is, the striped data is always stored in a
directory whose name is hashed from the file index. In our implementation, we
use modulation as the hash function.

3.2 Library

As mentioned before, a library can hide the complexity of a parallel from users.
In this subsection, we would discuss how the different libraries are implemented.

User Level Library. We provide a class library that contains six most impor-
tant file system methods, including open, create, read, write, seek, and
close. These methods are mostly similar to those of the File class in C# but
with more capabilities support. Users can specify the striping size, starting Iod,
and Iod counts when accessing a file. The library separates the users from the
Iods and the metadata server. All the tedious jobs will be handled by the li-
brary. With the help of the library, users only need to concern how to efficiently
partition and distribute the file.
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Kernel Level File System Driver. In the Windows operating system, NT
I/O Manager, which is a kernel component, is responsible for the I/O subsystem.
To allow I/O Manager and drivers to communicate with other components in the
operating system, a data structure called I/O Request Packet (IRP) is frequently
used. An IRP contains lots of information to describe requests and parameters.
Most import of all is the major function code and the minor function code. These
two integers contained in an IRP precisely indicate the operation that should be
performed. I/O related Win32 APIs will eventually be sent to the I/O Manager,
which then allocates an IRP sent to the responsible driver.

With the help of a virtual disk driver, a file system driver, and a mount pro-
gram, our parallel file system can be mounted as a local file system for Windows.
Fig. 2 illustrates the mounting process of our parallel file system. The virtual
disk driver presents itself as a normal hard disk to Windows when it is loaded
into the system. The mount program invokes the DefineDosDevice function call
to create a new volume on the virtual disk. After the new volume is created, the
mount program tries to create a file on the volume. This request will be routed
to the NT I/O Manager. Upon receiving this request, the I/O Manager finds
that this volume is not handled by any file system driver yet. Thus, it sends
an IRP containing a mount request to each of registered file system drivers in
the system. File system drivers check the on disk information when they receive
such a request to determinate if it recognizes this volume.

We implement a crafted read function in the virtual disk driver. The driver
returns a magic string “-pfs-” without quotes when a file system driver tries

ntfs.sys

I/O Manager

IoAllocateIrp(...);
(setup IRP & I/O stack)
IoCallDriver(...)

mount.exe

DefineDosDevice(...)

    CreateFile(...)

system service dispatcher

Kernel Mode

User Mode

Win32
subsystem

Native API interface

NtCreateFile(...)
{
     ......
    int 2E or SYSENTER
    .....
}

fat32.sys pfs.sys ......

virtual disk driver

IRP_MJ_FILE_SYSTEM_CONTROL
IRP_MN_MOUNT_VOLUME

"-pfs-"
  all
zeros virtual disk

Fig. 2. The process of mounting our parallel file system
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to read 6 bytes from the disk. Otherwise, it returns zeros. In this way, while
any other file system drivers try to check the on disk information, they do not
recognize the volume. “-pfs-” is the magic string that only our parallel file system
driver recognizes. When the mount request is sent to our file system driver,
it reads 6 bytes from the disk, recognizes the magic string, and tells the I/O
Manager that this volume is under our control. The mount operation completes
and all I/O operations targetting at this volume will be routed to our file system
driver hereafter.

On loading the file system driver into the system, persistent connections are
established to all I/O daemons. The connection procedures are performed once
at the loading time, and all operations are made through these sockets. This
eliminates the connection overhead of all I/O operations from user mode appli-
cations. The file system driver effectively does the same thing as the user mode
library when it receives a read or write operation.

MPI-IO Library. MPI-IO[10] is the parallel I/O part of MPI and its objective
is to provide high performance parallel I/O interface for parallel MPI programs.
A great advantage of MPI-IO is the ability to access noncontiguous data with a
single function call, which is known as collective I/O. Our parallel file system is
built on .NET framework using C#.

4 Performance Evaluation

In this section, the local file system performance is measured along with read
and write performance of our parallel file system. The hardware used is IBM
eServer xSeries 335 with five nodes connected through Gigabit Ethernet, each
housing:

– One Intel Xeon processor at 2.8 GHz
– 512 MB DDR memory
– 36.4 G Ultra 320 SCSI disk
– Microsoft Windows Server 2003 SP1

4.1 Local File System Performance

Our parallel file system doesn’t maintain the on disk information itself, but relies
on the underlying file system. The root directory for Iods or the metadata server
is set in an NTFS partition. To test I/O performance of the local file system
and the .NET framework, we write a simple benchmark using C#. The tests
are performed on a single node, running the tests ten times and averaged the
results.

A 64 KB buffer is filled with random data and written to the local file system
continuously until the number of bytes written to the local file system reaches the
file size. Note that the write operations are carried out by the Microsoft .NET
Framework and the NTFS file system driver which has some caching mechanism



A Windows-Based Parallel File System 13

400

300

200

100

50
1.751.5

GB
1.251 GB768512256

MB
128

M
B

/s

file size

Local File System Write Performance

(a) Write Performance

 15

 20

 25

 30

 35

 40

 45

 50

1.751.5
GB

1.251 GB768512256
MB

128

M
B

/s

file size

Local File System Read Performance

(b) Read Performance

Fig. 3. Performance evaluation of local file system

internally. In Fig. 3(a), we observe that write performance of local file system
converges to about 55 MB/s when the file size is larger than 768 MB, but the
performance varies when the file size is smaller than 512 MB. We think this is
the effect of the caching mechanism.

To make sure that the files written are not cached in memory, the system is
rebooted before measuring the read performance. The same file is read from the
disk into a fixed-size buffer and the buffer is used over and over again. The data
read is ignored and overwritten by later reads. As you can see from Fig. 3(b),
read performance converges to about 43 MB/s.

4.2 Performance Evaluation Using User Level Library

The performance of our parallel file system are evaluated on five nodes. One of
them is served both as a metadata server and a client which runs our benchmark
program written with our library. The other four nodes are running I/O daemons,
one for each.

Again, a fixed-size memory buffer is filled with random data. After that, a
create operation is invoked, and the buffer content is written to the parallel file
system continuously until the number of bytes written reaches the file size. The
test program then waits for the acknowledgements sent by the I/O daemons
to make sure all the data sent by the client are received by all I/O daemons.
Note that though the Iods have written received data to their local file systems,
this does not guarantee that the data is really written to their local disks. They
may be cached in the memory by the operating system and written back to the
physical disks later. We ran the tests ten times and averaged the results.

In Fig. 4(a), we measure write performance with various file sizes and various
number of I/O nodes. The striping size is 64 KB. The size of the memory buffer
used equals to the number of I/O nodes multiplied by the striping size. Write
performance converges to about 53 MB/s when only one I/O node is used. We
consider that the write performance is bounded by the local file system in this
case, since this is almost equal to the local file system write performance as
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shown in the previous test. The performance of writing to two I/O nodes is
about twice of writing to only one node when the file size is large enough.

However, write performance reaches a peak of 110 MB/s when writing to three
or four I/O nodes. For these two cases, they almost have the same performance
since the bottleneck is the network bandwidth rather than the physical disks.
Since all the cluster nodes are connected by a Gigabit Ethernet which has the
theoretical peak bandwidth of 125 MB/s, it is conceivable that a client can not
write out faster than 125 MB/s due to protocol overhead. The same behavior
has been observed in PVFS[11] and IBM vesta parallel file system[12]. However,
we expect the write performance to be scalable if a higher bandwidth network
is available in the future.

The size of the memory buffer for read is also the number of I/O nodes
multiplied by the striping size. The data read into the memory buffer is ignored
and overwritten by later data. As you can see in Fig. 4(b) , read performance
is not as good as write performance. But when we increase the number of I/O
nodes, the performance increases too. For four I/O nodes, read performance
reaches a peak of 75 MB/s. With the use of more than two I/O nodes, read
performance of our parallel file system is better than that of a local disk.

We have made some tests to figure out why the read performance can not
fully utilize the theoretical network bandwidth. The Iod program is modified
such that when it receives a read request, it does not read the data from the
local file system, but just sends the contents of a memory buffer to the client
directly. The contents in the memory buffer are non-deterministic. In this process
of measuring read performance, the behavior is exactly the same as previous tests
except that no local file system operations are involved. We run the test several
times. The results show that when only one I/O node is used, the curves are
almost identical and the performance reaches a peak of 90 MB/s. In the case of
two I/O nodes, it has the same behavior but the performance reaches a peak
of 93 MB/s. For three and four I/O nodes, the curves are desultory and the
average performance reaches a peak of around 78 MB/s which is lower than the
performance of using only one or two I/O nodes. We think this is due to network
congestion and packet collision. Whenever multiple I/O nodes try to send large
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amount of data to a client simultaneously, the receiving speed of the client can
not catch up with the overall sending speed of I/O nodes. Therefore some packets
may collide with others and get dropped. The I/O nodes have to back off and
resend packets as required by the protocol design of Ethernet architecture. This
explains why the read performance is not as good as the write performance and
saturated around 75 MB/s when three or four I/O nodes are used. In Fig. 4(b),
the read performance of one I/O node and two I/O nodes are bounded by the
local file system. In the case of three and four I/O nodes, it is bounded by the
network due to network congestion. Again, as in write performance, we expect
the read performance to be improved significantly when a higher performance
network is available in the future.

4.3 Performance Evaluation Using Kernel Driver

To measure the performance of our parallel file system when using the file system
driver, we write a simple benchmark program which has the same functionality
as the one written in C#. But this benchmark uses Win32 APIs directly to
create, read and write files. We also repeat the tests ten times and average the
results.

Fig. 5(a) shows the write performance with various number of I/O nodes. The
striping size is 64 KB and the user supplied memory buffer is 1 MB. When we
increase the number of I/O nodes, the performance increases too, but it is worse
than that of the local file system even when four I/O nodes are used. As observed
from Fig. 5(b), the read performance is much better compared with the write
performance. The performance increases with the number of I/O nodes when
more than two I/O nodes are used, but the performance with only one I/O node
is between that of four I/O nodes and three I/O nodes.

Windows is a commercial product and the source codes are not available.
Therefore, the detail operations are opaque. Furthermore the file system driver
resides in kernel mode and needs a socket library to communicates with daemons
in the parallel file system. Microsoft doesn’t provide a socket library for kernel
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mode programmers. The lack of a sophisticated kernel mode socket library also
makes it difficult to write high performance programs.

The main purpose of implementing a kernel driver is to enable existing bi-
naries to run over this parallel file system. However the parallel file system is
developed mainly for high performance applications. We expect users to write
high performance applications using our new APIs created especially to take
advantage of this parallel file system.

4.4 Performance Evaluation Using MPI-IO

We use the MPI-IO functions that we have implemented to write a benchmark
program. In this case, we set the size of etype[10] to 64 KB which is equal to the
striping size of the previous three cases. This is an obvious selection, since an
etype (elementary datatype) is the basic unit of data access and all file accesses
are performed in units of etype. The visible portion of the filetype is set to an
etype and the stride[10] (i.e. the total length of the filetype) is set to the number
of I/O nodes multiplied by the etype. Finally, the displacement is set to the
rank of the I/O node multiplied by the etype. All the others are set based on
the previous settings.

We measure the performance by varying the number of I/O nodes from one
to four. The buffer size is set to be the number of I/O nodes multiplied by
the etype. Each test is performed ten times and averaged to get the final re-
sult. The write and read performance are shown in Fig. 6(a) and Fig. 6(b)
respectively.

The trends of the write and read performance resemble those which we have
discussed above. Compared with the library of our parallel file system, libwpvfs,
the MPI-IO functions have some added function calls and operations, but they
do not influence the performance deeply. Consequently, the MPI-IO functions
are provided without suffering serious overhead.
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4.5 VOD Prototype System

Besides, we have set up a distributed multimedia server on top of our parallel
file system. Microsoft DirectShow is used to build a simple media player. Using
DirectShow with libwpvfs, we build a media player, which could play multime-
dia files distributed across different I/O nodes. Since DirectShow can only play
media files stored on disks or from a URL, we establish a web server as an agent
to gather striped files from I/O nodes. This web server is inserted between the
media player and our library, libwpvfs, and it is the web server that uses the
library to communicate with the metadata server and I/O nodes.

The data received by the web server from I/O nodes is passed to the media
player. The media player plays a media file coming from the http server through
a URL rather than from the local disk. Both the media player and the web
server run on the local host. The web server is bound with our media player
and transparent to the end user. A user is not aware of the existence of the web
server and could use our media player as a normal one.

Any existing media player programs which support playing media files from
an URL, such as Microsoft Media Player, can take advantage of our parallel file
system by accessing the video file on our web server. In this way, we may provide
a high performance VOD service above our parallel file system.

5 Conclusions and Future Work

PC-based clusters are getting more and more popular these days. Unfortunately
almost all of the parallel file systems are developed in UNIX-based clusters. It
is hard to implement a Windows-based parallel file system because Windows
is a commercial product and the source codes are not available. In this paper,
we have implemented a parallel file system which provides parallel I/O opera-
tions for PC clusters running Windows operating system. A user mode library
using .NET framework is also developed to enable users writing efficient parallel
I/O programs. We have also successfully implemented a simple VOD system to
demonstrate the feasibility and usefulness of our parallel file system. In addition
we have implemented key MPI-IO functions on top of our parallel file system
and found that the overhead of implementing MPI-IO is very minimal. The per-
formance of MPI-IO is very close to the performance provided by the parallel file
system. Furthermore, we have also implemented a file system driver which pro-
vides a transparent interface for accessing files stored on our parallel file system
so that existing programs written with Win32 APIs can still run on our system.

We have found that both write and read performance are scalable and only
limited by the performance of the Ethernet network we use. We plan to further
evaluate the performance of this parallel file system when we can obtain a higher
performance network such as Infiniband under Windows and believe that our
parallel file system can automatically achieve much better performance.

The prototyping VOD system proves the usability of our parallel file system
in the Windows environment. Varying the striping size in the VOD system under
different load conditions may have distinct behavior. The impact of the striping
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size may hurt or help the VOD system under different load conditions. We would
perform some detailed experiments and analysis in the near future. This would
help us develop a more realistic and high performance VOD system that can
benefit from our parallel file system.
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Abstract. This paper presents a publish/subscribe based asynchronous remote 
method invocation framework (PARMI) aiming to improve performance and 
programming flexibility. PARMI enables high-performance communication 
among heterogeneous distributed processors. Based on publish/subscribe 
paradigm, PARMI realizes asynchronous communication and computation by 
decoupling objects in space and time. The design of PARMI is motivated by the 
needs of scientific applications that adopt asynchronous iterative algorithms. An 
example scientific application based on the Jacobi iteration numerical method is 
developed to verify our model and evaluate the system performance. Extensive 
experimental results on up to 60 processors demonstrate the significant 
communication speedup using asynchronous computation and communication 
technique based on the PARMI framework compared to a baseline scheme 
using synchronous iteration and communication. 

1   Introduction 

Large scale distributed computing is complicated and poses a significant challenge 
due to its scale, dynamics, and heterogeneity. Traditional solutions like RPC (remote 
procedure call) gained popularity due to widely available built-in libraries. But RPC 
offers limited capabilities because it supports only C/C++ and Fortran programming 
languages and primitive point-to-point communication. The goal of this study is to 
provide a flexible programming tool based on publish/subscribe paradigm for parallel 
and distributed applications with decoupled communication and asynchronous 
computation. 

Our contributions include: (1) design and develop the PARMI framework to enable 
scalable asynchronous computation and communication; (2) adopt the 
publish/subscribe paradigm to enhance the existing remote method invocation (RMI) 
in Java by enabling asynchronous RMI; (3) make use of the recently introduced 
generics mechanism in Java to enable flexible interfaces to support dynamic 
applications and parameterized classes and objects. 

The rest of this paper is organized as follows. Section 2 presents the motivation 
and related work. Section 3 presents the system architecture of the overall design of 
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the PARMI including main features. Section 4 presents and analyses the experimental 
results and evaluates its performance. Finally, Section 5 concludes this paper. 

2   Related Work 

Java has grown into a main-stream programming language since its inception. With 
the increasing adoption of Java for parallel and distributed computing, the built-in 
remote method invocation (RMI) mechanism is one of the most popular enabling 
solutions for parallel and distributed computing using Java [1]. Building on the 
popularity of RMI, we further enhance it with asynchronous communication, which is 
desirable to decouple sending/receiving objects and facilitate overlapping 
computation and communication. In PARMI, the publish/subscribe paradigm is used 
to decouple communicating parties in both time and space. Following the object-
oriented programming paradigm, PARMI aims to provide a simple platform to 
support complex large-scale scientific applications.  

The challenging issues are as follows: (1) how to overcome a synchronous and 
point-to-point communication nature of RMI, (2) how to provide a scalable 
framework for dynamic applications, and (3) how to maintain a strong decoupling of 
participants in both time and space.  

2.1   Shortcomings of Java RMI 

The RMI system allows an object running in one Java virtual machine (JVM) to 
invoke methods on an object running in another JVM. A user can utilize a remote 
reference in the same manner as a local reference. However, the synchronous nature 
of RMI leads network latency and low-performance. Thus, several implementations 
have been developed that support extended protocols for RMI. These include Manta, 
NinjaRMI, and JavaParty by changing the underlying protocols such as the 
serialization protocols [2]. In 1997, Object System presented a communication system 
called Voyager, providing several communication modes allowing for synchronous 
invocation, asynchronous invocations with no reply (one way), and asynchronous 
invocation with a reply (future/promise) [3-6]. 

 
Asynchronous RMI with a Future Object. The RMI with a future object is the 
latest and most efficient means for providing asynchronous communication between a 
client and a server. A future object allows a client to continue computation after the 
incomplete communication without being blocked. Thanks to built-in classes and 
interfaces for the future object which holds a result of an asynchronous call, we don’t 
need to spend time to implement the future object after Java version 1.5 or later. The 
previous asynchronous RMI studies have manipulated the stub class, which was 
generated automatically by an rmic compiler. Many difficulties in maintenance have 
occurred from this approach. For example, if a method that is invoked remotely by an 
object is modified, the corresponding classes and interfaces should be changed 
accordingly. After a stub class was generated by a RMIC compiler, we must change 
the stub class manually. Therefore, we focus on adding codes to access the 
FutureTask on the client side, not changing the stub class. 
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Fig. 1. Operation of the asynchronous RMI with a future object 

Fig. 1 shows the operations of the asynchronous RMI with a future object. Several 
client-side processes send signals to invoke server-side methods. A_Impl class has all 
business logics for methods of A interface. A interface has all method names available 
for remote invocation. Server program creates an instance of the A_Impl class and 
binds the service with the RMI registry. Now, a client is able to get a remote reference 
from the RMI registry using lookup service. Once the client invokes a method, it 
proceeds with the remaining works without waiting because a future object is returned 
instantly when it is called. 

This model overcomes synchronization but it is still tightly coupled in space and 
time [7]. 

2.2   Publish/Subscribe Communication Model 

In the publish/subscribe model, the information bus requires operating constantly and 
tolerating for dynamic system evolution and legacy system. Providers publish data to 
an information bus and consumers subscribe data they want to receive [8]. Providers 
and consumers are independent to each other and need not even know of their 
existence in advance. In general, the provider is also called the publisher, the 
consumer is the subscriber, and the information bus is the middleware or broker. In 
systems based on the publish/subscribe interaction paradigm, subscribers register their 
interests in an event or pattern of events, and are subsequently asynchronously 
notified of events generated by publishers [7]. 

As distributed systems on wide area networks grow, the demands of flexible, 
efficient, and dynamic communication mechanisms have increased. The 
publish/subscribe communication paradigm provides a many-to-many data 
dissemination. It is an asynchronous messaging paradigm that allows for better 
scalable and more dynamic network topology. The publish/subscribe interaction is an 
asynchronous messaging paradigm, characterized by the strong decoupling of 
participants in both time and space [9]. 

The classical categories of publish/subscribe communications are topic-based and 
content-based systems. In the topic-based system, messages are published to topics or 
named logical channels, which are hosted by a broker. Subscribers obtain all 
messages published to the topics to which they subscribe and all subscribers to the 
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topic will receive the same messages. Each topic is grouped by keywords. In the 
content-based system, messages are only delivered to a subscriber if the attributes or 
content of those messages match constraints defined by one or more of the 
subscriber’s subscriptions. This method is based on tuple-based system. Subscribers 
can get a selective event using filter in form of name-value pairs of properties and 
basic comparison operators (=, >, ≥, ≤, <). However, these classical approaches have 
limited in designing the object-oriented system. They have considered the different 
models for the middleware and the programming language. Consequently, the object-
oriented and message-oriented worlds often claimed to be incompatible [10]. Patrick 
T. Eugster presented a type-based publish/subscribe which can provide type safety 
and encapsulation [11]. 

3   PARMI System Architecture 

3.1   PARMI Framework 

As shown in Fig. 2, PARMI consists of four main components: publishers, 
subscribers, adapter, and items. Publishers and subscribers preserve the stub/skeleton 
and the remote reference layer, because they use the same objects and methods from 
the RMI system. However, the adapter and items are designed particularly for the 
PARMI framework that enable the publish/subscribe communication. 

The adapter is a central entity that keeps a set of all available items for publishers 
and subscribers in a hierarchical manner. The set is represented as a hashtable €€ = {x1… 
xm}, where xi is an item. The set has a unique topic as a key mapping with an item xi for 
a value as hashtable. The adapter collects subscriptions and forwards events to 
subscribers. The adapter executes the same role as a server in the existing RMI system. 

 

 

Fig. 2. PARMI organization 
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An item xi is an element in the adapter holding the mapping information in three 
attributes: a topic as a String type, a value as a generic form <V>, and a collection of 
subscribers’ remote references ₤= {S1 … Sm} interested in the topic. Generics enables 
type-safety and simple interfaces to create automated data objects[12]. <V> can be 
any type of object such as Integer, Boolean, Double, String, Arrays, or even Class. 
Whenever a corresponding event occurs, an item keeps adding or removing three 
attributes. When notifySubscribers method is locally invoked, it notifies all subscribe 
methods of each subscriber registered. And this mechanism was inspired by the 
observer-observable design pattern, which is also available in java.util.* libraries in 
the form of interface Observer and class Observable. 

Fig. 3 shows operations in the PARMI system. If we have a set of processes, Π= 
{p1… pn} that communicate by exchanging information items, then each process pi 
executes three operations: publishi(v,t),registeri(Si,t),and unregisteri(Si,t), where v is a 
value of an information item, t is a topic for publish and subscribe, and S is a 
subscriber itself. 

Each process pi can be either a publisher or a subscriber. If pi is a publisher, then it 
sends the data to the adapter when it is ready. When publishi(v, t) method is invoked 
by process pi, the adapter checks its Hashtable €€  whether it contains the item with the 
key t. If the item x already exists, the adapter updates the item’s value v. If not, the 
adapter creates x with v. After updating with the value, the adapter notifies to all 
subscribers ₤= {S1…Sm} who registered themselves to x.  

On the contrary, pi is a subscriber Si, it registers itself with an item in the adapter to 
receive the data interested in, or releases itself from an item in the adapter if the 
subscriber doesn’t want to subscribe anymore. pi interacts with other processes by 
 

 

Fig. 3. The operations in PARMI 
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subscribing the class of events interested in and by publishing event notification. pi 
receives a value v submitted by other processes by executing an upcall to subscribei(v, 
t). Subscriptions are respectively installed and removed at each process by calling 
registeri(S, t) and unregisteri(S, t) operations. That is pi receives a value v only after 
registering its interest by calling registeri(S, t). After that, if pi carries out unregisteri 
(S, sub), then it is excluded from the subscription list. The adapter checks Hashtable €€  
with a key t for registeri(S, t) method which is invoked by a subscriber Si. If an item x 
with t already exists, the adapter adds Si to x and notifies only to the current added Si 
who wants to receive x at this instant. If not, the adapter creates x with adding Si to 
subscription collection ₤. On the other hand, the adapter removes Si after unregisteri(v, 
t) method is called. In the PARMI, publishers and subscribers carry out the same role 
as clients in the existing RMI system.  

Because all three methods are in the adapter and their return types are void, pi 
invokes each method using RMI with a future object and passes the control to the 
adapter. All reference data are handed over to the adapter, but pi does not need to wait 
until the method finishes its work. 

3.2   Application of PARMI with Jacobi Iteration 

To provide a parallel grid computing with the Jacobi method, we use centralized 
summation algorithm that is composed of a central master and N workers[13]. The 
master partitions a matrix into N number, assigns a unique id to each process, keeps 
the information item which is provided by workers, and collects all convergence rates 
from each worker. The workers are labelled with a unique id which indicates the 
position of the matrix. Each worker calculates interior points of the matrix, exchanges 
boundaries of the matrix, and computes the maximum difference between the old 
matrix and the new matrix. Fig. 4 and 5 show the detailed Jacobi iteration processes 
on the PARMI between the master and workers. 

Fig. 4 shows communications between a master and workers before workers start 
their own calculations. (1) A master registers itself with the RMI registry on its host 
name using a unique name, “Jacobi”. A worker requests the remote reference of the 
master to the RMI registry using lookup service. (2) The master returns the remote 
reference of itself. Now, each worker is ready to invoke methods of the master. (3) 
The master assigns ids to all the workers at the same time. If there is a worker that did 
not request its id, then the rest of the workers wait until the entire workers request 
their ids. As soon as the last worker requests its id, all the workers are notified and 
their ids are simultaneously assigned. (4) After that, the workers can start their jobs. 

Fig. 5 illustrates the remaining communications between a master and workers 
after workers start their own jobs. (1) A worker registers itself with a topic in which is 
interested, i.e. the topic is the boundaries of the assigned matrix. And it calculates two 
different matrix values and computes the maximum difference between them. (2) A 
worker publishes the boundary values of the matrix. (3) If a worker registered its topic 
and the topic’s value was published, then it automatically subscribes the topic’s value 
from the master. Because each worker has a different speed, information items in the 
Hashtable is created by either register or publish method. Each worker repeats its 
process until the maximum difference reaches the convergence rate. Then the worker 
sends its convergence rate to the master. The master notifies the worker to stop its job 
if all the workers have reached the local convergence.  
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Fig. 4. The Jacobi iteration processes between a master and workers: part1 

 

Fig. 5. The Jacobi iteration processes between a master and workers: part2 

Fig. 6 is the schematic diagram of the asynchronous Jacobi implementations. The 
PARMI framework provides the package, s3lab.parmi.*. The things to use PARMI 
are implementing Adapter and Subscriber interface. For the first time user, we 
provided AdapterTask class which already implemented three methods in Adapter 
interface using Item class. For Jacobi iteration, we made three different packages, 
jacobi.master.*, jacobi.commnon.*, and jacobi.worker.* according to the RMI syntax. 
The master implemented Adapter interface and the worker did Subscriber 
respectively. For remote site calls, the jacobi. commnon.* package is located in both 
master and worker sides. A worker in jacobi.worker.* package has the roles: registers 
its interested parts; calculates its own part; publishes the edges of its own matrix; and 
sends its id, value, and iteration time to the master node when it reaches the 
convergence rate. A master in jacobi.master* package plays the following roles: 
divides the whole matrix into the number of workers; allocates the matrix to each 
worker; collects the convergence rate; and send its decision to stop worker if all 
worker reach the convergence rate. 
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Fig. 6. Implementation of Jacobi application using PARMI framework 

4   Performance Results 

All experiments were conducted on a cluster with 60 processors combined with a 
server and 4 racks: The server machine has dual 2.4 GHz processor with 2 GB 
memory; and the racks have one or dual processors and their speeds are from 1.5 to 
3.0 GHz with 0.25 to 1 GB memory. We used the server as a master and the 4 racks 
as workers. All of the machines run Linux 2.6.9 kernel. All experiments were 
conducted using SUN's JDK version 1.5.0. All machines were connected to each other 
by GB interconnection. Measurements were performed using the 
System.currentTimeMillis() method in Java with convergence threshold of 0.03, and 
grid size of 18,000 by 18,000. 

We did not count the initial response time of each worker. All workers wait until 
the last worker requests its id, and complete their connections to the master. We could 
not predict the time between the workers and the master because each machine has a 
different time interval between these processes. Due to this unpredictability, we did 
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not include the time before all processes connected to the master to be assigned ids. 
The synchronous version was implemented using the current existing RMI 
communication with synchronous iterative algorithm, and the asynchronous one was 
done using the PARMI framework with the asynchronous iterative algorithm [14]. 

Fig. 7 (a) shows the execution costs for the synchronous and asynchronous 
versions in the master in order to analyse the overall performance. After the total 
processors for workers reached at a certain point, the asynchronous versions were 
faster than the synchronous one. In our experiments, the number of processors was 
15. Fig. 7 (b) shows, the iteration numbers for asynchronous version has irregular 
because of asynchronous algorithm. 

Fig. 8 shows that asynchronous versions are faster than the synchronous counterparts 
for communication time. In synchronous version, workers become idle until the process 
of a master is completed and they get the data needed for their next iteration. 
Furthermore, the convergence detection is done with a gather-scatter operation at each 
iteration, which takes longer time than a totally asynchronous detection. On the other 
hand, synchronous version has less computation time than asynchronous one because its 
iteration number is always less than the asynchronous one. 

 
   (a)     (b) 

Fig. 7. Experimental results on a master, (a) Total execution cost for sync/async versions,  
(b) Iteration number for sync/async versions 

 
   (a)     (b) 

Fig. 8. Experimental results on workers, (a) Average communication cost for sync/async 
versions, (b) Average computation cost for sync/async version 
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Table 1. Comparisons of speedup, (t): total execution cost, (c): average communication cost, 
Speedup is the time on synchronous versus asynchronous versions 

N 10 15 20 25 36 40 45 50 55 60 

Sync(t) 86 67 61 52 42 40 40 41 42 45 
Async(t) 88 66 51 51 40 35 35 34 34 34 
Speedup(t) 1.0 1.0 1.2 1.0 1.1 1.1 1.1 1.2 1.2 1.3 

Sync(c) 9.3 9.1 10.2 9.7 15.1 16.3 18.3 25.6 25.5 25.1 
Async(c) 0.9 1.2 2.0 1.8 3.2 2.7 3.6 9.0 6.8 11.0 
Speedup(c) 10.3 7.4 5.1 5.5 4.7 6.0 5.0 2.8 3.8 2.3 

PARMI produces a dramatic performance increase and high throughput by the 
improvement of communication time. We desynchronized the communication using 
asynchronous algorithms and asynchronous RMI method invocations. These 
suppressed all the idle time, and so reduced the whole execution times. 

Finally, Table 1 summarizes all the results above. These results demonstrate that 
the speedup of synchronous versus asynchronous communication improves over 2 
times. In these experiments, we can see results that when the ratio of computation 
time to communication time increases, the ratio of synchronous time to asynchronous 
time decreases because computation time takes a majority compared to 
communication times. Hence, for very large problems, it requires more processors  
to both reduce computation times and preserve an efficient ratio of synchronous time 
to asynchronous time. 

5   Conclusion 

We have investigated how RMI can be made asynchronous and suitable for dynamic 
parallel and distributed systems. Our goal was to design a framework that offers 
efficient communication for scientific computing, preferably using communication 
models that integrate cleanly into Java and are easy to use. For this reason, we have 
taken the existing RMI model as a starting point in our work. 

We have given a description of the RMI model and investigated asynchronous 
RMI implementations on their suitability for high performance parallel programming. 
This analysis showed that these existing RMI implementations are not efficient to 
fully utilize a high-performance network because of point-to-point and synchronous 
communication nature. 

To address the communication bottleneck, we designed and implemented PARMI, 
a high-performance RMI framework that is specifically optimized for parallel 
programming in a heterogeneous cluster computing environment. To overcome point-
to-point and asynchronous communication, we adopted a publish/ subscribe 
communication model. We also used Generics to provide a flexible and scalable 
object-oriented platform. 

A scientific application using the Jacobi iteration method has been developed to 
demonstrate the performance gain using PARMI communication framework 
compared to the conventional RMI mechanism. To enhance the performance 
improvement, we chose synchronous and asynchronous iterative algorithms. The 
synchronous version was implemented using the current existing RMI communication 
and synchronous iterative algorithm. The asynchronous version was implemented 
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using PARMI framework following the asynchronous iterative algorithm. We showed 
that the asynchronous application using PARMI significantly improved the 
performance compared to the synchronous one. We have also showed that the 
performance improvement was mainly owing to reduced communication overhead. 
Our ongoing research is to realize asynchronous communication for parallel 
applications in grid environments. 
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Abstract. We present a parallel job scheduling approach for coarse-
grain timesharing which preempts jobs to disk and avoids any additional
memory pressure. The approach provides control regarding the resource
shares allocated to different job classes. We demonstrate that this ap-
proach significantly improves response times for short and medium jobs
and that it permits controlling different desirable resource-shares for dif-
ferent job classes at different times of the day according to site policies.

1 Introduction

User satisfaction in regards to getting jobs run on parallel machines is often
not sufficiently satisfactory because short and medium jobs may under certain
conditions have long wait times. Our goal is to provide an approach which can
provide better service to short and medium jobs, while permitting explicit control
over how much resource share is allocated to medium and short jobs vs. long
jobs at different times of the day.

We address this problem by providing a practically well feasible approach of
time-shared execution. If time sharing is used in parallel-job scheduling, the
typical approach is gang scheduling which creates multiple virtual machines
and switches synchronously between different time slices via central control, ap-
plied to all machine nodes or hierarchically organized to subsets of them. Gang
scheduling provides higher probabilities to get short and medium jobs scheduled
quickly even in the presence of wide long-running jobs because of having mul-
tiple virtual machines available in which to place the jobs. Time slices under
gang scheduling are in the range of millisecond or a few seconds. However, gang
scheduling increases the memory pressure because gang scheduling can be effi-
ciently implemented only by keeping all active jobs in memory, meaning that
the jobs from multiple slices have to share the memory [11][14]. In addition, no
explicit control regarding backfilling is provided.

Another option is to preempt jobs to disk by suspension or checkpointing
and to support coarse-grain time sharing (switching between jobs in long time
intervals like minutes or hours) [11] or take off jobs in special cases only [5].
However, all existing preemptive approaches lack explicit control of scheduling
options for individual jobs.

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 30–43, 2007.
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Our approach (called SCOJO-PECT as an extension of our earlier SCOJO
scheduler by preemption and control) employs coarse-grain time sharing with
explicit control (specifying desirable resource share parameters by the system
administrator), based on suspension of jobs to disk. In detail, our approach

– uses explicitly controlled preemption in certain long-range time slices to im-
prove response times for short and medium jobs,

– applies safe backfilling,
– supports varying resource allocation policies over the day,
– uses a share-based control without priorities to drive the scheduling of jobs.

In [2], we have presented an initial solution and evaluated it in a grid context.
In this paper, we refine our approach for local clusters, experiment with the
possible further optimization of merging medium and long jobs under certain
conditions in the job context, and evaluate our approach for different configura-
tions and with both workloads generated by the Lublin-Feitelson [6] model and
real job traces taken from the Feitelson Workload Archive [3]. We demonstrate
that our approach improves overall response times and bounded slowdown sig-
nificantly, therefore being competitive to gang scheduling without the memory
pressure involved in gang scheduling. We also show that short and medium jobs
are served very well, independent of the other jobs in the system.

2 Related Work

Preemption has been found useful in providing good utilization and response
times, though only if accompanied with migration, i.e. being able to select new
resources when rescheduling the job [9][15]. Migration is only possible with check-
pointing, but checkpointing should be done at suitable application-specific points
in the execution (which may occur in the order of hours based on personal
communication with Sharcnet system administrators). Suspension to swap disk
requires continuing the job on the same resources.

Gang scheduling, which switches between jobs in a coordinated manner via
global time slices, is also a kind of preemption but keeps jobs in memory to reduce
switching costs. Gang scheduling is known to provide better average response
times and bounded slowdowns [8]. Similar benefits as from gang scheduling were
found to be obtainable in [11] [16] via coarse-grain time sharing. The approach in
[1] finds benefits if preempting jobs after a maximum of 1 hour runtime provided
that they are over a certain size limit (this approach ignores preemption cost)
but is combined with migration. These approaches do not provide any fair-
share considerations. The approach in [5], however, demonstrates benefits in
both average and worst-case slowdowns for all job classes with suspension only.
The approach considers the relative slowdown of preemptor and preemptees and
imposes limits on possible slowdown and relative sizes between preemptor and
preemptees to avoid that long-running jobs suffer disadvantages.

Job schedulers normally apply backfilling which permits jobs to move ahead
vs. their normal scheduling position to better utilize space. Conservative back-
filling only permits this to happen if no other job in the queue is delayed. EASY
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backfilling only guarantees the first job in the waiting queue not to be delayed.
Preemption may also be applied in conjunction with backfilling: Jobs may be
backfilled even if their estimated runtimes are longer than the available back-
fill window and be terminated/restarted or preempted if their actual runtimes
create a conflict [10] [13].

Fair share scheduling was first proposed by Maui [4] though now other sched-
ulers like LSF have included fair-share ideas, too. Maui maintains shares per
user or group over time and adjusts them by considering the recent past time
intervals and weighing them exponentially. Maui combines a number of factors
such as political priorities (like group), system priorities, and user priorities and
translates them into priorities. Moab [7] is a commercial extension of Maui with
more differentiated optimization and priority approaches and also support of
preemption, which can optionally be applied upon failure to meet fair share
targets, upon backfilled jobs running into reservations, upon expected response
times becoming too long, or upon jobs with higher priority arriving. However,
the actual algorithms are not revealed.

3 Preemption and Share Control

3.1 Problems in Standard Job Schedulers

There exist a couple of problems in standard job schedulers which lead to prob-
lems which cannot be resolved without preemption or different partitions for
different service requirements:

– a wide long-running job may block a short or medium job from being sched-
uled

– wide short or medium jobs, though occurring infrequently, are hard to serve
well and–as all wide jobs–require the machine to be drained

– the machine may be well utilized by medium and long-running jobs, leaving
no chance for a short job to be filled or backfilled quickly

In addition, prevention of starvation requires some aging of long jobs but then
they may end up being scheduled at an unsuitable time and EASY backfilling
can push jobs unfairly backward.

The above reasons can especially affect maximum response times but also
average response times. Of course, there exists also a dependence on the current
system load—which is unavoidable, i.e. jobs wait longer if there is much work
on the machine and in the waiting queue ahead of them.

3.2 Our Basic SCOJO-PECT Approach

The basic idea of our approach is coarse-grain time sharing with time slices
in the minute (or potentially hour) range. This permits suspension of jobs to
disk, keeping all memory available for the next running job, and making the
overhead tolerable, while accomplishing similar benefits as gang scheduling. The
approach is feasible in most cluster environments: for example, most clusters in
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the Sharcnet project [12], have a local disk per node and 8 Gbyte of memory.
If all memory is used by the application this makes 2 * 8 Gbyte (in and out)
of data to be transferred. Assuming a bandwidth of 150 Mbyte/sec, this results
in 109 sec. With 3 time slices (short, medium, and long-running jobs) per time
interval but short jobs likely to use little memory, this makes a maximum of 4
min swap time per time interval.

The time slices are primarily designated for certain job classes, i.e. each slice
has a specific dominant job type. This permits for example a differentiation into
short-job, medium-job, and long-job time slices. This approach provides a basis
to perform controlled resource allocation for the different job classes.

In addition, we permit definition of certain resources shares (ratios of the
overall resource utilization) to be defined for different job classes in different
time intervals of the day. These shares are mapped to corresponding lengths of
the time slices. Shares express which jobs should run at each time of the day but
also indirectly determine the priority given to a job class. Thus, it makes sense
to allocate higher possible shares to a job class than its average usage is (as we
have done in our experiments for medium jobs). The expected benefits of our
overall approach are

– to make sure that short jobs can be scheduled, independent of the currently
running medium and long jobs and independent of their own size,

– consequently also to be able to serve medium jobs well in the presence of
wide long-running jobs and being able to control how certain job classes are
served over the day, e.g. to provide less share for long jobs at daytime and
more at night time,

– to avoid problems like stranded jobs which may result from preemption of
individual jobs by preempting the whole group of running jobs.

In addition, we have a more explicit handle to control resource allocation
to jobs than using the typical priority approach which keeps the effects hard to
understand and can lead to undesirable cases like a wide long-running job finally
ending up being scheduled during the day.

A potential problem is that the differentiation of job classes into different time
slices leads to fragmentation. However, we permit limited backfilling of other job
classes and merging of slices as described below.

 

Fig. 1. Share allocation in different intervals during different times of the day. S are
short, M medium, and L long-running jobs.
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3.3 Shares and Time Slices

We split the 24 hours of the day into a number of equidistant time intervals and
permit target ratios for different job classes to be defined for every time interval.
This task may be done by system administrators according to site policies, while
incorporating feedback from job traces regarding the overall typical job mixes.

To keep slice handling manageable, we define slices per each interval, i.e. we
keep fixed boundaries for the slices, see Fig. 1. Thus, we may have one short-
job slice, one medium-job time slice, and one long-job time slice per 60 minute
interval. We define the slices at the beginning of the time interval, while deciding
the slice lengths for the different job classes on the basis of the target ratios.
However, short jobs are handled separately and get a slice length according to
the longest waiting short job. Thus, short jobs are not preempted except as a
result of being backfilled into a non-short time slice. The remaining time of the
time interval is split according to the ratios defined among the other job classes.
If no jobs of a certain class are available, the share is attributed to another class
for the corresponding interval. If using short, medium, and long job classes, the
ratio defines how the time is split among medium and long jobs.

Accounting considers all used shares from the different job classes per time
interval, with the sum representing the machine utilization for the time interval.
The accounting considers jobs backfilled into a slice that is basically designated
for a different class. In addition, it can happen that in certain time intervals no
jobs of a specific class are available. Thus, we apply an adjustment of share allo-
cation, based on target shares and past usage, with the latter being considered
for a certain past time window and weights declining exponentially with time
distance. Note that this corresponds to the fair-share idea as introduced by the
Maui job scheduler [4]. We use m different weights, calculated as A ∗ Bm with
0 < B < 1. B determines how quickly the weights decline and A ∗

∑
i=1,m Bi

determines the impact given to the past. Then, the share allocation is adapted
to variations in job submission within the range of the typical job mix.

3.4 Scheduling with Controlled Backfilling into Time Slices

At the beginning of each time interval, time slices of the different types for the
corresponding job classes are obtained, according to the description in Section
3.3. Time slices of different types (designated to a specific job class) are cur-
rently always scheduled in the same order for each time interval, i.e. from short
to long. The initial allocation for each time slice is the set of jobs that were
preempted when the corresponding time slice (of same type) in the previous
time interval ended. This permits jobs to be re-started on the same resources.
Then, the scheduler attempts to allocate jobs of the job class which corresponds
to the slice type from the head of the preemption and waiting queues. The
resource-allocation approach is either first-fit or a smart node-selection heuristic
as described below. Afterwards, the scheduler attempts to backfill as described
below. The scheduling order per job class is FIFO. This is feasible because we
no longer need priorities to give shorter-running jobs better service.
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Our basic backfilling approach is EASY, adjusted to work with different job
classes and our time-slice restrictions. We first try to EASY backfill from the
same job class. Then we backfill from other job classes, while searching the other
job classes in increasing order of their runtime ranges. This step is important
because often jobs of same type cannot be packed well enough or because there
may not be sufficient jobs of each type at a certain time. Note that this backfilling
is safe, i.e. does not create any resource conflicts but rather permits jobs to
start/continue running in the other slice if there are no conflicts. Then, this
backfilling stage applies the following rules:

1. Any preempted jobs from other slices that can fit onto the free resources are
candidates for backfilling (they are handled before any waiting jobs).

2. Any waiting jobs of other classes can be backfilled if not delaying the first
waiting job of their own class.

In both cases, jobs either need to finish before the end of the slice or run on
resources which are not yet allocated in the slice of their own corresponding
type and therefore can continue running in their own slice. The abstract code is
shown in Fig.2.

In addition, we experiment with two further possible optimizations: 1) smart
node selection (hoping to increase the options for backfilling of other-type jobs,
and 2) merging of medium/long type slices to increase utilization. The smart
node-selection heuristic tries to allocate jobs on resources which are not yet
allocated to any job in any of the slices. This makes it more likely that jobs can
backfill. The heuristic counts the jobs allocated per node and then selects the
nodes with the lowest count. This heuristic is less important for highly loaded
systems but can play a role in cases of only sporadic arrival of certain job types.

The idea behind merging of medium/long slices is that keeping different job
classes can potentially provide poor utilization, e.g. if there is only one job of
each class, each using only some of the resources. Thus, the scheduler merges
slices if all of the below conditions apply:

– slices (currently medium and long) are merged if the utilization is poor,
– there are no very wide jobs in any of the slices (which would lead to serious

resource conflicts),
– merging slices does not create too many resource conflicts (two jobs using

fully or partially the same resources).

While running in merged mode, the scheduler attempts to maintain the cur-
rent target shares and predicted target shares for the next interval (within some
tolerance range) when selecting medium and long jobs to schedule. If there are
any resource conflicts under merging, the heuristic to solve this problem is to
schedule the job first which bests meets the target shares. The backfilling is
modified to exclude nodes which are needed to schedule waiting preempted jobs.

Conversely, we need to decide when to split a merged slice again into differ-
ent slices per class. Fortunately, this does not involve any resource problems: the
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// POTENTIAL OPTIMIZATION for merging medium/long slices

// schedule preempted jobs of slice type, avoid collisions if merging

for (all job in preemptionQueue[sliceType])

if (!collision) scheduleJob(job);

else scheduleJob(bestFitTargetShareJob());

// try to schedule waiting jobs (avoid collisions with preempted jobs)

if (scheduledPreemptedJobs)

{ // POTENTIAL OPTIMIZATION for smart node selection

excludedResources = collectResourcesUsedByScheduledPreemptedJobs();

for (job in waitingQueue[sliceType] )

if (jobSchedulableWithExcludedNodes(job,excludedResources))

scheduleJob(job); else break; }

else for (job in waitingQueue[sliceType])

if (jobScheduable(job) scheduleJob(job); else break;

tryEasyBackfill (sliceType);

// try restrictive backfilling with other job types

for (queue in preemptionQueue) // sorted by increasing runtime class

for (job in queue)

if (jobFits() && noCollision(job,excludedResources)

scheduleJob(job);

for (queue in waitingQueue) // sorted by increasing runtime class

{limit = findShortestRemainingRuntime(runningQueue);

for (job in queue)

if (runtime(job) <= limit && jobFits() &&

noCollisionInOwnSlice(job,jobType) scheduleJob(job); }

Fig. 2. Core scheduling algorithm

jobs are simply sorted into their corresponding time slices according to their
type. We use the following criteria for splitting:

– There are wide jobs which otherwise cannot be scheduled.
– The required share cannot be maintained if keeping the slice merged.

3.5 Properties of SCOJO-PECT Scheduler

As long as conservative scheduling is applied, the following property applies for
response times R for a certain job class C, maxR maximum response times, a
time span T under consideration with T (C) being the shares allocated to C;
Prio being the standard priority scheduler, Conly a FCFS schedule for only
the jobs of C (dropping all other jobs from the schedule), and PECT is our
SCOJO-PECT time-sharing scheduler:

R(C, PECT ) ≤ R(C, Conly) ∗ T/T (C) ≤ R(C, Prio) ∗ T/T (C) and
maxR(C, PECT ) ≤ maxR(C, Conly) ∗ T/T (C) ≤ maxR(C, Prio) ∗ T/T (C)
The second part of the inequality is obvious: scheduling only jobs of the same

class must perform better than a mix with other jobs which may delay jobs of
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C. The first part of the inequality considers that our time-sharing scheduler only
allocates certain time intervals to the job class C. The time R(C, PECT ) may
be lower than adjustment by the corresponding factor because we may be able to
safely backfill into the other slices (gaining additional runtime) and better filling
options may arise if stretching the scheduling time by time slices. However, if we
apply EASY scheduling, occasionally new opportunities may arise to push back
jobs which may affect the response times of C negatively.

Larger time intervals for C do not necessarily provide better response times
because few or no jobs of the class may be available at certain times. Better pack-
ing may be accomplished if letting jobs queue up a little (giving more choices).

4 Experimental Evaluation

4.1 Experimental Setup

We have used the Lublin-Feitelson model [6] for the workload generation and
traces from the Feitelson Workload Archive [3]. The Lublin-Feitelson model is
a complex statistical workload description, derived from real traces and con-
sidering job sizes, job runtimes, and job interarrival times. The model includes
correlations between sizes and runtimes, fractions of sequential jobs, fractions
of power-of-two sizes, and differing inter-arrival times according to day/night-
cycles. The model can be adjusted to different machine sizes. For details of the
workload parameters, see Table 1. We have slightly modified the interarrival
times and changed the α parameter from 10.23 to 10.33. This change reduces
the average work creation related to available resources from 91% to 84%. The
reasons are explained below. The selected real traces are SDSC SP2 1998 and
SDSC Blue 2000 (in both cases, the first 10,000 jobs of the cleaned version).
Statistics of the workload as obtained with these settings are included in Table
1. What is interesting to observe from the workload characteristics is that though
the number of short jobs is very high, the work of the short jobs is ≤ 1%. The
different workloads have different characteristics: Lublin-Feitelson has the high-
est percentage of medium-job work. We currently schedule with the knowledge
of actual runtimes.

Table 1. Workload parameters and workload statistics

Lublin-Feitelson SDSC SP2 SDSC Blue

Machine size 128 128 1152
Number of jobs 10,000 10,000 10,000
Nshort 63.7% 40.9% 73.75%
Nmedium 19.3% 35.1% 17.7%
Nlong 17.0% 24.0% 8.5%
Workshort 0.5% 0.2% 1.0%
Workmedium 26.5% 3.7% 15.0%
Worklong 73.5% 96.1% 84.0%
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Table 2. Scheduler parameters

Parameter Value

Interval 30 min and 60 min
Job classes supported short, medium, long
Classification short jobs runtime < 10 min
Classification medium jobs 10 min sec ≤ runtime < 3 hours
Classification long jobs runtime ≥ 3 hours
Classification narrow jobs size ≤ 10% machine size
Classification medium-size jobs 10% machine size < size ≤ 50% machine size
Classification wide jobs size > 50% machine size
Bound 15 min
Switch overhead 6 sec and 60 sec
Medium jobs’ daily shares 28% over night, 44% over day
Weights, past window A = 2, B = 0.81, m = 6, window is 24 hours

→ A ∗
∑

i=0,m Bm = 1

We compared our job scheduler (PECT) to the standard priority schedul-
ing (Prio). In both cases, EASY backfilling was applied. We evaluated response
times, bounded slowdowns (response times relative to runtimes with a bound for
very short jobs), and utilization. For scheduler parameters, see Table 2. We also
tested sensitivity to the scheduling overhead and to the interval time. Further-
more, we explored the effectiveness of different optimizations in the scheduler.
Thus, we tested 30 minute intervals with 6 sec switching overhead and all op-
timizations except merging (PECT 30), 60 min intervals with 60 sec switching
overhead and all optimizations except merging (PECT 60), and 60 minute inter-
vals with 60 sec switching overhead without backfilling on non-type jobs (PECT
60N). Additionally, we checked 60 min intervals with 6 sec overhead and merging
but do not show the corresponding data in detail.

Summing up the work created by the overall workload and considering the
average statistical parameters from the Lublin-Feitelson model regarding the
distribution over different time intervals, we obtained the medium shares as
shown in Fig. 1. These shares would provide optimum resources to the medium
jobs created in this time interval. However, these shares did not provide the
best results as actual creation rates show peaks and significant ups and downs.
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Fig. 3. Shares required to optimally support medium jobs (work created per time
interval and corresponding resource share required to schedule this work with 90%
utilization of the share)
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Fig. 4. Average response times (top) and average slowdowns (bottom) for Lublin-
Feitelson workload. Results are shown for the different job classes short, medium, and
long, for the different sizes narrow (N), medium-size (MZ), wide (W), and all (A), and
for different scheduler configurations.

We have obtained better results with shares set higher than the actual usage
percentages (cf. Table 2).

4.2 Experimental Results

Results for response times and bounded slowdowns are shown in Fig. 4 and
Fig. 5. If applying the non-type backfilling optimization, the PECT scheduler
served medium and short jobs very well regarding overall response times in most
cases and regarding relative response times in all cases. Looking into details for
PECT 60 and the Lublin-Feitelson workload, average response times improved
by 23% vs. priority scheduling and bounded slowdowns by 84%. This is similar to
the results we obtained in [14] for gang scheduling (27% improvement in response
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Fig. 5. Average response times (top) and average slowdowns (bottom) for SDSC SP2
(left) and SDSC Blue (right) workload. Results are shown for the different job classes
short, medium, and long, for the different sizes narrow (N), medium-size (MZ), wide
(W), and all (A)

times and 84% in bounded slowdowns). For the Blue workload, response times
decreased by 33% and relative response times by 77%. The SP2 workload looks
a little worse: response times increased by 15% but the relative response times
again decreased by 78%.

Consistently all results show that short and medium were served very well.
Short jobs were served on average within 1/3 of the time interval, and their
maximum response times were 3h 53min (Lublin-Feitelson), 5h 40min (SP2),
and 2h 13min (Blue). Wallclock runtimes of medium jobs were increased by
about a factor of 2.7 in all size classes (because of the time slicing) but wait
times significantly reduced (all medium wait times are reduced by 80%), with
most reduction for wide medium jobs. However, long jobs currently suffer (due
to overall 1.5 times longer wait times), especially long wide jobs. To some ex-
tent, longer response times for long jobs are expected because long jobs get less
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Fig. 6. Daily utilization (left) and daily slice times (right) as average over the whole
workload execution

machine share over the day. Since in the SP2 workload long jobs dominate, this
explains why the average response times slightly decreased.

For the Lublin-Feitelson workload, we compared using/not using the non-type
backfilling optimization. We find that the non-type backfilling optimization cut
overall average response times 27% and improved especially results for short and
medium jobs. Thus, this is an important optimization. If comparing different
time intervals/overheads, 30 min intervals improved overall average response
times by 11%, mostly due to improvement for short jobs. This is obvious as they
have now a chance every 30 minutes to be scheduled. Otherwise, the difference
was not too significant, i.e. higher overheads worked reasonably well. Checking
the number of switches, we found that about 2/3 of the possible switches took
place. If looking at the response times over the day, PECT gave medium jobs
consistently good service (average response times varied only by 26%), whereas
the priority scheduler showed a variation of 62%.

Tests showed that using smart node selection and merging medium/long slices
(under certain conditions) did not provide any additional benefit (the results
are almost the same). If the utilization is high, there is a low chance that smart
node selection can help; if the utilization is low, apparently there are not many
potential conflicts arising anyway. Regarding merging, backfilling with non-type
jobs apparently mimics merging very effectively. We can keep jobs running over
several slices of different types (our overhead estimation is therefore pessimistic
as on the corresponding nodes, no swapping is necessary), i.e. can say we perform
partial slicing for jobs with node conflicts.

Our scheduling approach was capable of maintaining a high utilization: 85.92%
with our PECT 30 scheduler and 84.1% for our PECT 60 vs. 88.96% with priority
scheduling, i.e. the reduction in utilization was only 3% to 5%. Fig. 6 shows that
utilization is consistently high over the whole day and that the share control is
effective, reducing the utilization of different job classes at different times of the
day, while keeping the machine busy.
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Fig. 7. Average work in waiting queue over makespan, logarithmic scale

Fig. 7 demonstrates that there are ups and downs in the waiting-queues but
that no back logging occurs with the current workload settings, i.e. the scheduler
is able to keep up with the work generated.

Finally, we have run the scheduler (PECT 30) with a different fine-tuning
of the share control. We gave medium jobs the maximum share if the medium
workload is high and compare the past usage to the overall averages rather than
to the shares set by the scheduler. The medium jobs were served significantly
better though at the expense of increasing response times for long jobs. The
utilization was 82.2%, i.e. slightly decreased by 3.7%. This means we have a
tradeoff between serving medium jobs well and keeping decent response times
for long jobs and a good utilization.

5 Summary

We have presented a job-scheduling approach which employs coarse-grain time
slicing by suspension to disk and explicit control over how much time share is
allocated to different job classes over the day. Such time slicing is more feasible
than checkpointing and easier to handle than individual job preemption if the job
allocation situation is complex (many jobs to be preempted with very different
runtimes). The approach improves overall average response times and average
bounded slowdowns, to a similar extent as gang scheduling, and serves especially
short and medium jobs well. In future work, we intend to improve our approach
by special handling of wide long-running jobs and a combination of time slicing
with individual job preemption.
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Abstract. Although common sense says that all nodes of a cluster
should behave identically since they consist of exactly the same hardware
parts and are running the same software, experience tells otherwise.

We present a collection of programs and tools that were gathered over
several years during various cluster installations at different sites with
clusters from various vendors. The collection contains programs to check
for the setup, functionality, and performance of clusters. Components like
CPU, memory, disk, network, MPI and file system are checked. Together
with the short description of the tools we describe our experiences using
them.

1 Introduction

Cluster like systems are in wide use today. This is mainly due to the good
price/performance ratio they offer, but also due to the flexibility achieved by
combining and selecting from a wide range of components of the shelf (COTS).
Since the introduction of the concept in the 90s [1,2] at lot of work has been
published how to create and operate such systems [3,4]. Whole collection of
tools [5] or complete distributions [6] for clusters have been created. Standard
HPC benchmarks can be applied to a cluster if they are suitable for distributed
memory machines. Examples are Linpack [7], the NAS Parallel Benchmarks [8,9]
and the HPC Challenge benchmark [10]. Acceptance tests used in procurements
often comprise micro-benchmarks, standard HPC benchmarks, and different ap-
plications from the end users of the system. Despite the wide use of clusters there
seems to be a lack of a collection of standard methods, software and tools to help
testing a cluster installation from the bottom up. Such a collection would not
only help to demonstrate the functionality and performance of a cluster, but also
help to identify the cause if the cluster does not work as expected. In this paper
we describe the collection of benchmark, programs and tools that we used dur-
ing the installation, acceptance and early production phase of our latest cluster
installation.

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 44–52, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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The next sections briefly describes the cluster that recently was installed at
the Center of Information Services and High Performance Computing in Dres-
den. Although the experiences hold for any larger cluster installation, it should
set the expectations and provide some background information about the used
technology. Section 3 describes the tests that were used to check the correct
configuration of the installed cluster and functionality of various software com-
ponents. The following sections describe test and benchmarks in a bottom-up
approach: First, we describe different component tests, afterwards tests for the
complete node, followed by cluster wide tests.

2 Description of the Cluster Environment

The tests and experiences described within this paper have been collected during
several installations (and most probably will keep growing with future installa-
tions as well). We limit the system description to the most recent and major
installation. It is a cluster with 728 nodes with a total of 2592 cores. The nodes
are a mixtures of single, dual and quad CPU systems with dual core AMD
Opteron 2.6 GHz CPUs. Two Infiniband interconnects (running OFED1.0) are
installed, one for message passing with MPI, the other for I/O. The filesystem is
Lustre (currently in Version 1.4.10). Two MDS and eight OSS act as file servers.
The operating system is SLES 10. For the basic cluster installation, maintenance,
and operation the tools delivered by Linux Networx are used. With a revision
controlled network installation (Clusterworx), remote power management and
serial console access (Icebox, powerman, and conman), OS independent tem-
perature and system monitoring (Icecards), and the BIOS settings and version
control offered by LinuxBios [11] the installation can be considered state of
the art.

3 Functionality Tests

Before more extensive tests can be performed the basic operation and configu-
ration of the system has to be checked. With hundreds of nodes the tests have
to rely on a correctly working batch- and execution environment.

3.1 Execution Environment

With the large number of nodes you need an automated test to check that the
system configuration conforms to the contract. Important items include memory
and disc capacity on all nodes, and CPU speed.

A collection of simple scripts are sufficient to check that the execution envi-
ronment is identical on all nodes. This should hold for the interactive sessions on
the different login nodes, but also for the batch environment. The execution en-
vironment consists of the shell environment and shell limits. A synchronized and
correct time is another aspect. Last but not least, all nodes should have the same
BIOS version and settings. Sources of informations are the output command of
standard unix commands like limit and env as well as the proc file system.
The BIOS settings are gathered with the cmos util command from LinuxBios.
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3.2 MPI Conformance

Since the dominant programming model on a cluster is message passing using
MPI, a working MPI is one of the most important contributions to a cluster.
Most open source implementations like Open MPI [12] or MPICH [13] include a
test suite. However, to extract them for use outside of their suite is cumbersome.
They also tend to check for specific properties of the implementation rather than
MPI standard conformance. We decided to use a test program [14] that is easy
to use, yet provides a good coverage of the MPI standard and also checks for
MPI-2 features.

3.3 OpenMP Conformance

With the introduction of multi-core CPUs the typical number of cores found in
a cluster node is increasing. Therefore OpenMP gains importance, either as a
standalone solution or in combination with MPI. The availability of various com-
pilers for Fortran and C/C++ raises the need to verify the support for OpenMP
in its latest flavor (version 2.5). Since OpenMP has much fewer constructs there
is a freely available test suite that provides good coverage of all language fea-
tures [15].

3.4 Batch System Functionality

Unless a cluster is used only by a small group of users, a batch system environ-
ment is an absolute necessity. The batch system should be capable of dispatching
sequential, OpenMP, and MPI jobs – especially, running MPI jobs so that they
use exactly the nodes and CPU cores they were assigned to. It should be clear
that a fully functional batch system should also take care of job cleanup and ac-
counting. For testing these functions of the batch system the MPI and OpenMP
tests previously mentioned were used. Additionally, a large number of dummy
jobs were used to test maximum submission rates and maximum job throughput.

4 Node Component Tests

With the functionality tests described above it is now guaranteed that it is
possible to compile and execute serial and parallel programs using MPI and/or
OpenMP via the batch system. This is the pre-condition to execute the following
tests on the system.

4.1 Memory

In addition to the correct amount of memory each node should deliver the ex-
pected memory bandwidth. Benchmarks like stream[16] provide well accepted
numbers for the streaming performance of the memory system. In addition, the
memory system must not produce any non-correctable bit errors or an exceeding
number of single bit errors. We wrote a test program that exercises the mem-
ory by writing, reading and verifying random bit patterns to and from memory.
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Together with the error detection and correction (EDAC/bluesmoke) tools from
the Linux kernel it will detect dysfunctional memory. The program takes the
amount of memory and total runtime as an argument and reports any errors
to stderr. On servers with ECC it should not report any errors, because they
should be caught and reported by the kernel. However, in the past we observed
one server where two bit errors were silently produced and thus observed by this
program.

4.2 Disk

The performance of local discs can be measured with programs like bonnie[17].
It is again important to measure the result on each node, Fig. 1 shows the result
on a system that had a problem with slow disks. In this case, the major cause
was vibrations caused by a bad charge of fans and insufficient insulation of the
discs.

Fig. 1. Disk performance across all nodes of a large cluster. The distribution is unusu-
ally wide, ranging from 1 MB/s to 55 MB/s.

5 Node Tests

The best way to test the complete node and not just single components is to
run various applications. The results should be checked for correctness and the
performance of each node should be checked. We decided to use the SPEC.

OMPM2001 benchmarks [18,19]. SPEC OMPM2001 focuses on systems with
less than 16 cores. Since OMPL2001 is based on OpenMP, this benchmark suite
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Fig. 2. Runtime distribution of two application across all nodes of a cluster. The appli-
cation on the top has an almost identical runtime on all nodes, a different application
on the bottom shows huge variation of the execution time.

is very suitable for todays cluster nodes. The suite consists of 11 applications
written in C and Fortran. The result of the program is validated for correctness.
This makes it a perfect candidate to check the build and runtime execution
environment. Again, we submitted the benchmark to all nodes in the system.
Since we had three different node types and 11 application this resulted in 33
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histograms, where each outlier had to be identified and the cause of the problem
isolated.

Fig. 2 shows how important it is to run a range of applications on a cluster.
With one application there is no indication of problems, however, with another
there are nodes that perform significantly worse than others. In this case, it was
an undocumented difference in two BIOS versions that caused some applications
to run slower.

6 Interconnect and Cluster Tests

After the nodes demonstrated to work properly the final tests can focus on the
overall system. Important issues are the interconnect as well as the global file
system. Parallel application tests are not covered here.

6.1 Point to Point Measurements

The two major performance criteria for an interconnect are latency and band-
width between two nodes. Often minimum requirements for these values are fixed
in the contract and measured during acceptance. We used an application where
both values were not simply measured between a pair of nodes, but the result
of every possible pair was measured. Originally designed to visualize hierarchies
of interconnects it demonstrated its value to clean up and debug networks. Po-
tential problems include broken or misplaced cables, host channel adapters that
did not run at full PCI speed or Infiniband connections that did run at 1X speed
instead of 4X. Additionally a test like this produces a very detailed layout of
the interconnection network. Fig. 3 shows a visualization of the output. Having
good point-to-point connection is the key for the parallel tests done later.

Fig. 3. Latency (in ms) and bandwidth (in MB/s) between pairs. The left pictures
shows the expected latency pattern of a system with a hierarchical switch infras-
tructure. On the right the bandwidth is measured. One of the hosts has a very low
bandwidth to all partners, caused by an IB HCA running on 1X instead of 4X.
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6.2 Filesystem

Parallel, distributed file systems are powerful and scalable, but also complex.
Also, today’s systems are often not simple stand alone installations, but em-
bedded in a larger infrastructure. This is also true for the system described in
section 2: It has an NFS gateway consisting of 16 NFS servers. NFS is done
using IP over IB, each NFS server is a CXFS client. The CXFS Filesystem is 68
TB in size and serves an SGI Altix 4700 system with 2048 cores. The nodes on
the cluster can also access a HSM system (SUN STK8500) via the same gateway
using standard DMF commands like dmget. Altogether this resulted in an infras-
tructure were many different hard- and software components had to be checked
for functionality, reliability and performance.

We used various test programs in different settings to test the SAN and file
system infrastructure.

Stress Tests and Content Validation. A basic building block was a program
that wrote pseudo-random bit patterns to disk and verified the content in a
subsequent reading step. To create the bit patterns a pseudo-random number
generator (RNG) was used. Each file contains a small header were the seed of
the RNG is stored. The size and number of files written by the program can be
selected. Instead of fixing the number of files a total runtime can be provided.
This is especially useful during stress tests, when the load on the file system
and, thus, the run time can differ significantly from run to run. An MPI parallel
version of the code can be used for stress testing. Each process writes and reads
a file and acts as an independent client. By choosing small files the required
metadata rate can be increased and scenarios like many file in one file system or
folder can be tested.

A special version of the program was designed to run in an endless loop. All
even processes constantly write files, all odd processes verify the content after the
writer has finished. By placing odd and even processes on different nodes caching
problems are avoided even for small file sizes. Since data is constantly read
or written there is a high likelihood that transient errors or incorrect handled
interrupts in the SAN are detected.

Flexible Benchmark and Test Environment. Lots of tests on the filesys-
tems for the HRSK complex have been done using a flexible I/O benchmark,
designed and developed at ZIH. There have been two main objectives that this
framework should fulfill. First of all, we wanted this benchmark to imitate any
given applications I/O behavior and second, it should be able to perform any
artificial I/O load.

The project is divided into three sections. The main component is an execution
layer that is traversing a list of I/O commands and executing the appropriate
I/O calls. The list of commands is generated from an XML file. Main part of
this file are XML tags that cause the main program to call libc I/O functions.
Around those XML tags other tags are placed that allow to define repetitions
and arbitrary patterns. As applications often read a lot of data from files that
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were already present at the start of the program, we included a concept called
file pools. The file pools allow us to create/read/write/unlink files on different
directory structures.

The last part within this software is the analysis backend. Each I/O call is
reported to the backend and can either be processed or ignored. Processing can
include any action within the backend, as the backend itself is a C++ class.
Ignoring an I/O call within the backend will cause no overhead within the main
code. Evaluations done in the backend can be either on time (during the run)
or after the benchmark.

7 Summary and Conclusion

We described a set of tests that we used to check components like CPU, mem-
ory, disk, network, MPI and filesystem of a cluster. Each test found at least
one issue in at least one cluster installation and contributed to the quality of
this specific installation. Despite the fact that all clusters had the technology to
provide completely identical nodes, it turned out to be extremely important to
run the node component and node tests on all nodes. Histograms of the results
highlighted problems and pointed in the direction of the root cause. For a gen-
eral purpose cluster it was necessary to run a large number of applications, since
sometimes only a small subset of applications had a problem. Techniques like
a revision controlled network installation, remote power management and com-
plete control over BIOS settings were essential to analyze, isolate and remove the
detected problems. Finally we also conclude that a smoothly running cluster is
less a hard- and software issue, but a question of system integration. Integration
is not only needed for the system components, but also into the environment
were the cluster is operated.
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Abstract. RWAPI is a low-level communication interface designed for clusters
of PCs. It has been developed to provide performance to higher applications on
a wide variety of architectures. We implemented RWAPI on top of the modular
software architecture called GRWA. RWAPI supports Ethernet, InfiniBand and
Myrinet network interconnects. This paper introduces RWAPI and the design of
its network component on top of both InfiniBand and Myrinet interconnects. We
obtained a very low latency and high throughput compared to MPI results.

1 Introduction

High-speed network interconnects that offer low latency and high bandwidth have been
one of the main reasons attributed to the success of commodity cluster systems. Some
of the leading high-speed networking interconnects include Gigabit-Ethernet, Infini-
Band [1], Myrinet [2] and Quadrics [3]. Two common features shared by these inter-
connects are User-level networking and Direct Memory Access (DMA). The best suited
communication protocols that use efficiently these new features are one-sided proto-
cols. It means that the completion of a send (resp. receive) operation does not require
the intervention of the receiver (resp. sender) process to take a complementary action.
RDMA should be used to copy data to (from) the remote user space directly. Suppose
that the receiver process has allocated a buffer to hold incoming data and the sender
has allocated a send buffer. Prior to the data transfer, the receiver must have sent its
buffer address to the sender. Once the sender owns the destination address, it initiates
a direct-deposit data sending. This task does not interfere with the receiver process. On
the receiver side, it keeps on doing computation tasks, testing if new messages have
arrived, or blocking until an incoming message event arises.

At the network layer, many manufacturers have built RDMA features that ease the
implementation of one-sided paradigms. For example, the HSL [4] network uses the
PCI-Direct Deposit Component (PCI-DDC) [5] to offer a message-passing multipro-
cessor architecture based on a one-sided protocol. InfiniBand [1] and Quadrics [3] pro-
poses native one-sided communications. Myrinet [2,6] and QNIX [7] do not provide
native one-sided communications. But these features may be added (as for example in
GM [8] with Myrinet since Myrinet NICs are programmable).

In the past, remote-write has been implemented in generic message-passing libraries
like MPI-2 [9] or dedicated message-passing libraries like the PUT interface [10,11]
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for MPC-OS, PAPI [12]. However, these implementations were dedicated to a given
interconnect and no effort has been made to provide a generic or minimalist API to
the remote-write. Gas-Net [13] and MP_Lite [14] provide one-sided communication
primitives but without any associated programming model. In this context, we defined
RWAPI [15] (the Remote-Write API) as a generic and minimalist API for the remote-
write and GRWA (the Global Remote-Write Architecture) which aims at providing a
set of independent modules to implement RWAPI on top of any interconnects, any
CPU models... This articles describes our implementations of RWAPI for both Myrinet
and InfiniBand interconnects and compares performance with other available message-
passing libraries (especially MPI).

The document is organized as follows: first we introduce RWAPI [16]; section 3 de-
velops the implementation of RWAPI for Myrinet and InfiniBand; section 4 describes
the performance benchmark; the last section before the conclusion provides some per-
formance measurements.

2 RWAPI

A previous study [15] of both hardware and software requirements for high-speed
network protocols has led to design the Remote Write protocol. Remote Write is a
one-sided communication protocol based on the remote write primitive. It requires the
sender of a message to provide all the information needed to copy a contiguous memory
area from one node to another node.

RWAPI (which stands for Remote-Write Application Programming Interface) is a
lightweight interface designed to provide a single remote-write primitive. The goal we
are trying to achieve is to provide the smallest set of functions that enables to write any
parallel programs. This way, we expect to achieve the best performance for commu-
nications while requiring as less development as possible to port our interface to new
architectures.

There are two kinds of messages in RWAPI. The first message type requires the
destination node identification, both local and remote addresses and the size of the
message. Messages in this case can be of any length. The second message type just
requires the destination node identification and the message content; the size is limited
to 16 bytes. They may be helpfully used to transfer small amounts of information of any
kind from one node to another. However, even if they are not limited to this specific use,
they are especially useful to exchange addresses before the other message type transfers
can occur.

The API is as follows:

– int rwapi_init ( int, char ** ) must be called before any other RWAPI functions in
order to set up the communication interface.

– int rwapi_finalize ( ) should be called after all RWAPI functions and before exiting
the program. This function ensures that all FIFOs are flushed before leaving.

– int rwapi_rank ( ) returns the rank of the local node in the virtual parallel machine.
– int rwapi_size ( ) returns the number of nodes in the virtual machine.
– void * rwapi_alloc ( size, net * ) allocates a contiguous memory block of the given

size. If the underlying network interface requires the use of contiguous physical
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memory, it is attached to the application transparently. The value returned by this
function is the virtual address in the virtual address space of the process where the
contiguous memory block has been attached. The second parameter is the address
where the “network” address will be stored when returning from the function. This
address is the one that must be used for sending data.

– int rwapi_free ( void * ) deallocates the memory area provided as a parameter.
– int rwapi_send ( node, small ) sends a small message to another node. The value

returned by this function is an error code.
– int rwapi_receive ( node *, small * ) returns information about the oldest incom-

ming message that has not been taken into account yet. The value returned by the
function is 0 if there is no message pending and 1 if a message has been taken into
account. In this case, the node and the small message are stored at the addresses
provided as parameters.

– sid rwapi_write ( node, net, net, size ) sends an arbitrary-long message to another.
Both local and remote “network” addresses must be provided together with the size
of the message. The Send ID (SID) returned by the function can be latter used
in order to determine if the message as been sent or not (this is useful to reuse a
memory area).

– int rwapi_issent ( sid ) checks wether the message identified by the SID has been
sent or not.

Note that, rwapi_write, rwapi_send, rwapi_issent and rwapi_receive are non blocking
functions.

3 Implementation Details

In order to launch application’s processes according to the SPMD model, we use an
SSH-based spawner which creates a master process on the current host and one process
on each host provided as an argument. Then, each process can communicate with the
master to get information such as the process rank, the number of processes, the appli-
cation’s arguments and other control informations. Then, processes perform collective
operations on top of socket-based connections to initialize and finalize the application
transparently to the user.

To maintain the non-blocking semantic of RWAPI operations (rwapi_send, rwapi_
write, rwapi_receive, and rwapi_issent), we used a host memory receive list (HMRL).
Thus, when a receive message event arises while the process is not waiting for mes-
sages, the interface copies the content of the message event in the HMRL. Note that
message events do not contain user data except those corresponding to rwapi_send op-
erations. In this case, the length of the user data is limited to 128 bits and thus a copy
of this message is not expensive.

RWAPI over Myrinet Interconnect: There are many ways to implement the Remote-
Write protocol on top of Myrinet. One solution would be a native implementation which
would consist in developing a new MCP, a new kernel driver and a new user library. This
solution is under development and good performance are expected. However, this would
not be portable since an MCP should be provided for every network card version. To
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overcome this limitation, we developed the Remote-Write protocol on top of GM. This
way, RWAPI is automatically available for all architectures and NIC versions that GM
supports.

In order to associate a process rank to its GM ID, processes perform an exchange of
GM IDs using the exchange operation set up by the spawner’s master process.

The rwapi_send function insures that GM is ready to send messages before call-
ing the gm_send_to_peer_with_callback function. The later function is the fastest send
function provided by GM since it uses the same port number as the sender at the re-
ceiver side. We set up GM to copy the data in the send descriptor to avoid an expensive
DMA operation performed by the MCP to copy data from the host memory to the NIC
memory. We also use Write-Combining feature instead of PIO or DMA to copy the
send descriptor from the host memory to the NIC memory. This feature combines many
PIO operations and is adapted to medium message size.

Similar to the rwapi_send function, the rwapi_write function insures that GM is
ready to send messages before calling the gm_put function. The gm_put function is
suited to the remote-write paradigm since it garantees the minimum number of copies
while transferring the data. Indeed, it copies the data from the host memory directly to
the NIC memory without any system calls.

RWAPI over InfiniBand Interconnect: RWAPI uses the SSH-based spawner to
launch processes in both InfiniBand-based and a Myrinet-based clusters. The first step
of the initialization is the creation of a bidirectional channel between each pair of pro-
cesses. The InfiniBand mechanism that allows the creation of such a channel is the QP
(Queue Pair). Each QP is configured for a particular type of service independent from
the other. These service types provide different levels of service and different error re-
covery characteristics. The available transport service types include: Reliable Connec-
tion (RC), Unreliable Connection (UD), Reliable Datagram (RD), Unreliable Datagram
(UD) and Raw. The transport type used is RC which provides the highest level of reli-
ability and predictability. RC requires for each process an explicit connection with all
other processes. Thus, (N − 1) QPs (N being the number of processes in the parallel
application) are created by each process.

The second step of the initialization sets up the size of the different comunication
queues for each QP, including the send queue (SQ), the receive queue (RQ), the send
completion queue (SCQ), and the receive completion queue (RCQ). This step finishes
by creating a local process ID (LID) and (N − 1) QP IDs. These IDs are broadcasted
to the other processes in order to build the channels between local and remote QP.

4 Performance Benchmark and Testbeds

We compared our implementation with the version of MPI, the other existing library
available for both Myrinet-2000 Technology (developed on top of GM) and InfiniBand
interconnect (developed on top of VAPI [17]). For both MPI and RWAPI we devel-
oped our own benchmarks. We use three separate benchmarks (see figure 1). The first
benchmark (figure 1(a)) is the classic ping-pong in which a message can only be sent
once the previous one has been received. The second one (figure 1(b)) is a bidirectional
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Fig. 1. Performance benchmarks

ping-pong which is used to highlight the capability of a library to take benefits of bidi-
rectional links. The last benchmark (figure 1(c)) is the burst which aims at sending as
many messages as possible regardless they have been received or not by the counter
part.

The measurement protocol is as follows: for each message size, each benchmark is
run ten times. The duration of a run is one minute (this ensures a high consistency in
results and we have determined that all confidence intervals are greater than or equal
to 90%). The system time is registered before the first message is sent (t1) and after
the last message is received on the same node (t2). Let the elapsed time t be the time
difference between both. For a given run, let s be the size of messages and n be the
number of effectively transmitted messages.

Let the end-to-end latency L (in the following we use the term latency) be the ratio
between the elapsed time t and the number of effectively transmitted messages n. And
let the user throughput T (in the following we use the term throughput) be the ratio
between the amount of data (number of effectively transmitted messages times the size
of a message) and the elapsed time.

t = t2 − t1 L =
t

n
T =

n× s

t

Since the performance for both RWAPI and MPI are almost the same for messages
size greater than or equal to 1 MB, we do not include data for larger messages.

Our Myrinet-based cluster is POETS, one of the clusters of the Institut National
des Télécommunications. POETS is composed of eight nodes connected using both
a Myrinet interconnection network for data and a Gigabit Ethernet interconnect as a
control network. Myrinet adaptors are 133-MHz LANai-9 (M3S-PCI64B) with a PCI
connector. The host adaptor is equipped with 2 MB of memory. The firmware used
for testing was GM 2.0.9. Apart from GM, the port of MPICH on top of GM called
MPICH-GM version 1.2.6..14b for Linux x86 was also installed. Each node includes
a 800-MHz Intel Pentium III processor with 1.2 GB of memory. The front-end of the
cluster is an extra node with almost the same characteristics except that it includes no
Myrinet NIC.
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The InfiniBand-based cluster is MUSES. It is composed of 16 nodes connected using
both an InfiniBand 4× interconnection network for data and a Gigabit Ethernet inter-
connection network as a control network. Each node includes a 1.8-GHz AMD Opteron
processor with a 1-MB cache and 2 GB of memory. For mass storage, each node is as-
sociated a 40-GB IDE hard drive, except for the first node (the front-end node) which
is associated a 80-GB IDE hard drive; note that users accounts are stored on the front-
end. We compared our implementation with two other existing libraries on top of the
InfiniBand Technology: VAPI [17], the native interface available on top of InfiniBand,
and MPICH developed on top of VAPI for InfiniBand.

The MPI benchmark uses the send/receive primitives instead of put with both Mpich-
GM and Mpich-VAPI. Send/receive is based on the rendez-vous model which requires
that the receive request should be posted before the send request. Otherwise, a blocking
wait or a message buffering is performed on the receiver side. Moreover, the eager-
message size is kept to the default value. Finally, the RWAPI benchmark and the MPI
benchmark use the same buffer for all the iterations of the communications which al-
lows that the memory pages are pinned only one time.

5 Performance Analysis

Figure 2 presents the latency of RWAPI-GM and MPI-GM for various message sizes.
Note that for readability reasons, a logarithmic scale have been used for latency curves.
All these graphs highlight that, in the general case, performance with RWAPI are usu-
ally better than those with MPI. Exceptions are for the One-Way benchmark for mes-
sages which size ranges from 1 kB to 16 kB and for the Round-Trip benchmark for
messages which size ranges from 4 bytes to 64 bytes. This may be due to the fact that
MPI is using Write-Combining to copy data from the host memory to the NIC memory
for small messages avoiding the overhead of the DMA start-up. Regarding the latency,
an interesting result is that for the Round-Trip benchmark (see figure 2(a)), the mini-
mum latency for RWAPI is as low as 5.1 μs. As a comparison, the minimum latency for
MPI is 7.9 μs and is achieved using the Bidirectional Round-Trip (see figure 2(b)).

Figure 3 shows the throughput of RWAPI and MPI for various message sizes. All
these graphs highlight that, in the general case, performance with RWAPI are usually
better than those with MPI.

These graphs are highlighting three very important results. First, RWAPI is able to
achieve a maximum throughput of up to 1.78 Gb/s for large messages (see figure 3(a)
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and figure 3(b) for Round-Trip and Bidirectional Round-Trip benchmarks respectively).
As a comparison, the maximum throughput provided by MPI is 1.62 Gb/s. This means
that MPI cannot offer more than 91% of the maximum throughput offerred by RWAPI.
In other words, RWAPI is able to deliver large messages 9.8% faster than MPI (in fact,
this is not highlighted with latency graphs on figure 2 as a logarithmic scale is used for
messages larger than 1 kB).

RWAPI provides a larger part of the bandwidth for smaller messages than MPI. Typ-
ically, RWAPI is able to achieve 90% of the maximum throughput for 32-kB messages
as MPI requires messages of 256 kB to do the same.

With InfiniBand libraries, in a general way, figure 5 and figure 4 show that RWAPI-
VAPI performance are always better than MPI-VAPI performance. More specifically,
the maximum ratio between the minimum latency achieved by RWAPI and the mini-
mum latency achieved by MPI is up to 5.5 x for small messages (ie. 1.76 μs for RWAPI
and 9.71 μs for MPI using the one-way benchmark).
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Both RWAPI and MPI are able to achieve the maximum user throughput for long
messages. However, RWAPI is able to provide this maximum user throughput for mes-
sages as short as 4 kB while MPI cannot do the same for messages smaller than few
hundreds kilo-bytes.

Finally, the curves on figure 5 and figure 4 show that there is an important difference
in the management of short and long messages for MPI represented with a knee between
1 and 2 kB.

6 Conclusion

A previous study led us to design our own implementation of the remote write. In this
paper, we have presented the design and implementation of RWAPI over Myrinet-2000
and InfiniBand Interconnects. This design takes full advantages of the network hard-
ware such as OS-Bypass and RDMA, thus eliminating the involvement of the operating
system and the receive process. In addition, it allows the overlap between communica-
tions and computations.

To decrease the latency of small messages, we used the Programmed-IO facility
instead of RDMA to copy data to the network card, removing one long-startup-time
DMA transaction.

RWAPI over Myrinet achieves a low latency of 5.1 μs and a high user through-
put of 2.43 Gb/s even for relatively short messages (2.26 Gb/s is available for 32-kB
messages). On the same platform, the lowest latency provided by MPI is 7.9 μs and
the maximum user throughput provided by MPI represents 90% of the maximum user
throughput provided by RWAPI (this means that message transfer with RWAPI is up to
9.8% faster than with MPI).

RWAPI over InfiniBand design can achieve a low latency (about 1.76 μs) and a high
user throughput (more than 6.3 Gb/s, ie the maximum user bandwidth) even for short
messages. As a comparison, the lowest latency provided by MPI over the same platform
is 4.96 μs and the maximum user throughput cannot be achieved for messages smaller
than several hundreds of kilo-bytes.

Note that the lowest InfiniBand communication layer (VAPI) let the user choose
between producing events for transfer operation completion or not. This does not suit
RWAPI as disabling events does not allow the user to be informed about the completion
of the send and enabling events adds an extra overhead due to the unnecessary receive
completions.

Currently, RWAPI uses RC as the type of service with InfiniBand packet manage-
ment. RC requires a connection between each remote HCA and thus consumes much
HCA memory resources. Consumed memory is mainly used to store data reassembly
informations for each connection. To achieve better scalability, we are working on ap-
plying the RD type of service which bypasses any connection management and main-
tains a reliable communication.

As a short-term, we have planned to optimize the rwapi_write operation by using
either PIO, Write-Combining or DMA to copy user data from the host memory to the
NIC memory; PIO operations for very small messages, Write-combining for medium
messages and DMA for large messages since it involves an expensive start-up overhead.
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As a mid-term, we have planned to implement another version of RWAPI which can
run simultaneously over heterogeneous architectures composed of different network
types and different machine characteristics.
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Abstract. The aggregation of objectives in multiple criteria program-
ming is one of the simplest and widely used approach. But it is well
known that these techniques sometimes fail in different aspects for deter-
mining the Pareto frontier. This paper proposes a new line search based
approach for multicriteria optimization. The objectives are aggregated
and the problem is transformed into a single objective optimization prob-
lem. Then the line search method is applied and an approximate efficient
point is lacated. Once the first Pareto solution is obtained, a simplified
version of the former one is used in the context of Pareto dominance to
obtain a set of efficient points, which will assure a thorough distribution
of solutions on the Pareto frontier. In the current form, the proposed
technique is well suitable for problems having multiple objectives (it is
not limited to bi-objective problems). the functions to be optimized must
be continuous twice differentiable. In order to assess the effectiveness of
this approach, some experiments were performed and compared with
two recent well known population-based metaheuristics ParEGO [8] and
NSGA II [2]. When compared to ParEGO and NSGA II, the proposed
approach not only assures a better convergence to the Pareto frontier but
also illustrates a good distribution of solutions. From a computational
point of view, of the line search converge within a short time (average
about 150 milliseconds) and the generation of well distributed solutions
on the Pareto frontier is also very fast (about 20 milliseconds). Apart
from this, the proposed technique is very simple, easy to implement and
use to solve multiobjective problems.

1 Introduction

The field of multicriteria programming abounds in methods for dealing with dif-
ferent kind of problems. Nevertheless, there is still space for new approaches,
which can better deal with some of the difficulties encountered by the previ-
ous approaches. There are two main classes of approaches suitable for multiob-
jective optimization: scalarization methods and nonscalarizing methods. These

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 62–73, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Hybrid Line Search for Multiobjective Optimization 63

approaches convert the Multiobjective Optimization Problem (MOP) into a Sin-
gle Objective Optimization Problem (SOP), a sequence of SOPs, or into an-
other MOP. There are several scalarization methods reported in the literature:
weighted sum approach, weighted t-th power approach, weighted quadratic ap-
proach, ε-constraint approach, elastic constraint approach, Benson approach,
etc. are some of them [5]. Since the standard weighted sum encounters some
difficulties, several other methods have been proposed to overcome the major
drawbacks of this method. These include: Compromise Programming [4], Phys-
ical Programming [9], Normal Boundary Intersection (NBI) [1], and the Normal
Constraint (NC) [9] methods. There is also a huge amount of work reported on
population-based mataheuristics for MOP [5].

In this paper, we propose a new approach which uses a scalarization of the
objectives in a way similar to the weighted t-th power approach (where t is 2
and the coefficients values are 1).

A line search based technique is used to obtain an efficient solution. Starting
with this solution, a set of efficient points are further generated, which are widely
distributed along the Pareto frontier using again a line search based method but
involving Pareto dominance relationship.

Empirical and graphical results and illustrations obtained by the proposed
approach are compared with two well known population based metaheuristics
namely ParEGO [8] and NSGA II [2].

2 Line Search Generator of Pareto Frontier

The line search [6] is a standard and well established optimization technique.
The standard line search technique is modified so that it is able to generate
the set of non-dominated solutions for a MOP. The approach proposed is called
Line search Generator of Pareto frontier (LGP) and it comprises of two phases:
first, the problem is transformed into a SOP and a solution is found using a
line search based approach. This is called as convergence phase. Second, a set
of Pareto solutions are generated starting with the solution obtained at the end
of convergence phase. This is called as spreading phase. The convergence and
spreading phases are described below.

Consider the MOP formulated as follows:
Let �m and �n be Euclidean vector spaces referred to as the decision space

and the objective space. Let X ⊂ �m be a feasible set and let f be a vector-
valued objective function f : �m → �n composed of n real-valued objective
functions f=(f1, f2,. . . , fn), where fk: �m → �, for k=1,2,. . . , n. A MOP is
given by:

min (f1(x), f2(x),. . . , fn(x)),

subject to x ∈ X .



64 C. Grosan and A. Abraham

2.1 Convergence Phase

The MOP is transformed into a SOP by aggregating the objectives using an
approach similar to the weighted t-th power approach. We consider t= 2 and
the values of weights equal to 1. The obtained SOP is:

min F =
n∑

i=1

f2
i (x)

subject to x ∈ X .
As an important note, we would like to mention that the value 2 for t works

fine if the objective functions are positive (which is the case of our experiments).
But if at least one objective function is negative, then an odd value (for instance
3) must me used for t. Any of these values (2 or 3) works fine for our examples
and will not influence the results.

A modified line search method is used to find the optimum of this problem.
The modification proposed in this paper for the standard line search technique
refers to direction and step setting and also the incorporation of a re-start pro-
cedure. To fine tune the performance, the first partial derivatives of the function
to optimize are also made use of. The proposed modifications refer to:

– the setting of the direction and step
– the re-starting of the line search method

After a given number of iterations, the process is restarted by reconsidering
other arbitrary starting point which is generated by taking into account the
result obtained at the end of previous set of iterations.

Direction and step setting. Initially, several experiments were performed in
order to set an adequate value for the direction. The standard value +1 or -1 was
used and for some functions the value -1 was favorable to obtain good perfor-
mance. Some experiments were also performed by setting the direction value as
being a random number between 0 and 1. It was found that the usage of random
number helped to obtain overall very good performance for the entire considered
test functions. But usage of the value -1 for direction, obtains almost the same
performance similar to that obtained with a random value. So, either of these
values (the random one and the value -1) may be used for better performance.

The step is set as follows:
αk=2+ 3

22k+1
(1)

where k refers to the iteration number.
The modified line search technique is summarized as follows:

Line search()

Set k=1 (Number of iterations)
Repeat

for i=1 to No of variables
pk=random; //or p=-1;



Hybrid Line Search for Multiobjective Optimization 65

αk=2+ 3
22k+1

xk+1
i = xk

i + pk · αk

endfor
if F (xk+1 )>F (xk ) then xk+1=xk .
k=k+1

Until k=Number of iterations (a priori known).

Remarks

(i) The condition:
if F (xk+1 )>F (xk) then xk+1=xk

allows to move to the new generated point only if there is an improvement
in the quality of the function.

(ii) Number of iterations for which line search is applied is apriori known and
is usually a small number. For the experiments reported in this paper, the
number of these iterations was set to 10.

(iii) When restarting the line search method (after the insertion of the re-start
technique) the value of the iterations number starts again from 1 (this
should not be related to the value of α after the first set of iterations (and
after each of the following iterations)).

Several experiments were attempted to set a value for the step, starting with
random values (until a point is reached for which the objective function achieves a
better value); using a starting value for the step and generating random numbers
with Gaussian distribution around this number, etc. As a result of the initial
experiments performed, it was decided to use equation (1) to compute the step
size. But, of course, there are also several other ways to set this.

Incorporation of re-start procedure. In order to restart the algorithm the
result obtained in the previous set of iterations (denote it by x) is taken into
account and the steps given below are followed:

For each dimension iof the point x, the first partial derivative with respect to
this dimension is calculated. This means the gradient of the objective function
is calculated which is denoted by g. Taking this into account, the bounds of the
definition domain for each dimension are re-calculated as follows:

if gi = ∂F
∂xi

> 0 then upper bound =xi;

if gi = ∂F
∂xi

< 0 then lower bound =xi

The search process is re-started by re-initializing a new arbitrary point be-
tween the newly obtained boundaries.

2.2 Spreading Phase

At the end of the convergence phase, a solution is obtained. This solution is
considered as an efficient (or Pareto) solution. During this phase and taking into
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account of the existing solution, more efficient solutions are to be generated so
as to have a thorough distribution of all several good solutions along the Pareto
frontier. In this respect, the line search technique is made use of to generate one
solution at the end of each set of iterations. This procedure is applied several
times in order to obtain a larger set of non-dominated solutions. The following
steps are repeated in order to obtain one non-dominated solution:

Step 1. A set of nondominated solutions found so far is archived. Let us denote
it by NonS. Initially, this set will have the size one and will only contain
the solution obtained at the end of convergence phase.

Step 2. We apply line search for one solution and one dimension of this solution
at one time. For this:

Step 2.1. A random number i between one and |NonS| (|.| denotes the cardi-
nal) is generated. Denote the corresponding solution by nonS i.

Step 2.2. A random number j between one and the number of dimensions (the
number of decision variables) is generated. Denote this by nonS ij .

Step 3. Line search is applied for nonS ij .
Step 3.1. Set p=1 (the random value also works fine).
Step 3.2. Set α (which depends on the problem, on the number of total non-

dominated solutions which are to be generated, etc.).
Step 3.3. The new obtained solution new sol is identical to nonS i in all di-

mensions except dimension j which is:
new sol j= nonS ij+α ·p

Step 3.4. if (new sol j > upper bound) or (new sol j < lower bound)
then new sol j = lower bound + random · (upper bound – lower
bound).

Step 4. if F (new sol) > F (nonS 1)
then discard new sol
else if new sol is nondominated with respect to the set NonS
then add new sol to NonS and increase the size on NonS by 1.
Go to step 2.

Step 5. Stop

These steps are repeated until a set on nondominated solutions of a required
size is obtained. In our experiments the size of this set is 100.

Note that this procedure it very fast and it takes less than 20 milliseconds to
obtain 100 non-dominated solutions.

3 Experiments and Comparisons

In order to assess the performance of LGP, some experiments were performed
using some well known bi-objective and three-objective test functions, which
are adapted from [3], [7]. These test functions were also used by the authors of
ParEGO [8] and NSGA II [2], which are well known in the computational intel-
ligence community as very efficient techniques for multiobjective optimization.
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Table 1. Parameters used in experiments by ParEGO and NSGA II. d denotes the
number of decision parameter dimensions.

ParEGO NSGA II

Parameter Value Parameter Value

Initial population in latin hy-
percube

11d – 1 Population size 20

Total maximum evaluations 250 Maximum generations 13

Number of scalarizing vectors 11 for 2 objec-
tives
15 for 3 objec-
tives

Crossover probability 0.9

Scalarizing function Augmented
Tchebycheff

Real value mutation
probability

1/d

Internal genetic algorithm
evaluations per iteration

200,000 Real value SBX parame-
ter

10

Crossover probability 0.2 Real value mutation pa-
rameter

50

Real value mutation probabil-
ity

1/d

Real value SBX parameter 10

Real value mutation parame-
ter

50

Details about implementation of these two techniques may obtained from [2]
and [8]. Parameters used by ParEGO and NSGA II (given in Table 1) and the
results obtained by these two techniques are adapted from [8].

A set of 100 non-dominated solutions obtained by LGP, ParEGO, NSGA II is
compared in terms of dominance and convergence to the Pareto set. For the first
comparison, two indices were computed for each set of two comparisons: number
of solution obtained by the first technique which dominate solutions obtained
by the second technique and number of solutions obtained by the first technique
which are dominated by the solutions obtained by the second technique.

For two sets of A and B of solutions, which are compared, indices are denoted
by Dominate(A, B) and Dominated(A, B) respectively. Visualization plots are
used to illustrate the distribution of solutions on the Pareto frontier.

LGP uses only three parameters:
number of re-starts: 20;
number of iteration per each re-start: 10;
αfor the spreading phase (which is set independent for each test function).

3.1 Test Function DTLZ1a

The test function DTLZ1a is a two objective test function and has 6 variables
[8]. It is given by:

minimize f1 = 1
2x1(1 + g)

minimize f2 = 1
2 (1 − x1)(1 + g)
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g = 100
[
5 +

6∑
i=2

(
(xi − 0.5)2 − cos (2π (xi − 0.5))

)]
xi ∈[0, 1], i=1, . . . , n, n=6.

The Pareto set for this function consists of all solutions where all by the first
decision variables are equal to 0.5 and the first decision variable may take any
value between 0 and 1.

For this test function, the value of α for the spreading phase is set to 0.01.
The convergence to the Pareto frontier and the distribution of solutions obtained
by LGP, ParEGO and NSGA II for the test function DTLZ1a is depicted in
Figure 1. Different sizes of the objective space are illustrated in order to incor-
porate all solutions obtained by all techniques. It is obvious that LGP assure
a very good convergence and distribution for this function. From the results
presented in Table 2 it can be observed that none of the solutions obtained by
LGP are dominated neither by ParEGO or by NSGA II, while solutions ob-
tained by LGP dominate all 100 solutions obtained by ParEGO and NSGA II.
88 of the solutions obtained by NSGA II are dominated by solutions obtained
by ParEGO while 69 of the solutions obtained by ParEGO are dominated by
solutions obtained by NSGA II.

Table 2. The dominance between solutions obtained by LGP, ParEGO and NSGA II
for test function DTLZ1a

Dominate ParEGO NSGA
II

Dominate LGP NSGA
II

Dominate LGP ParEGO

LGP 100 100 ParEGO 0 69 NSGA II 0 88

Dominated ParEGO NSGA
II

Dominated LGP NSGA
II

Dominated LGP ParEGO

LGP 0 0 ParEGO 100 88 NSGA II 100 69

3.2 Test Function DTLZ4a

Test function DTLZ4a has three objective functions and 8 decision variables and
is given by:

minimize f1 = (1 + g) cos
(

x100
1 π
2

)
cos

(
x100
2 π
2

)
minimize f2 = (1 + g) cos

(
x100
1 π
2

)
sin

(
x100
2 π
2

)
minimize f3 = (1 + g) sin

(
x100
1 π
2

)
g =

8∑
i=3

(xi − 0.5)2

xi ∈[0, 1], i=1, . . . , n, n=8.

The Pareto front is 1/8 of the unit sphere centered in origin. The Pareto
optimal set consist of all solutions but the first two decision variables are equal
to 0.5 and the first two decision variables may take any value between 0 and 1.
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Fig. 1. Distribution of solutions on the Pareto frontier obtained by LGP, ParEGO and
NSGA II for test function DTLZ1a

For test function DTLZ4a the value of α is set to 0.2. The distribution of
solutions on the Pareto frontier and the convergence to the Pareto frontier for
all the three algorithms is depicted in Figure 2. For test function DTLZ4a the
value of α is set to 0.2.

From Figure 2 it can be observed that, compared to ParEGO and NSGA II,
LGP is assuring a very good convergence. The latter two approaches are not
converging very well with the parameters used.

As evident from Table 3 none of the solutions obtained by LGP are dominated
neighter by ParEGO or by NSGA II while solutions obtained by LGP dominate
all 100 solutions obtained by ParEGO and NSGA II. 87 of the solutions obtained
by NSGA II are dominated by solutions obtained by ParEGO while 54 of the so-
lutions obtained by ParEGO are dominated by solutions obtained by NSGA II.

3.3 Test Function DTLZ7a

This test function has 3 objectives and 8 decision variables and it is given by:

minimize f1 = x1

minimize f2 = x2

minimize f3=(1+g)h
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Fig. 2. Convergence to the Pareto frontier and distribution of solutions obtained by
LGP, ParEGO and NSGA II on the Pareto frontier for test function DTLZ4a (view
from different angles)

Table 3. The dominance between solutions obtained by LGP, ParEGO and NSGA II
for test function DTLZ4a

Dominate ParEGO NSGA
II

Dominate LGP NSGA
II

Dominate LGP ParEGO

LGP 100 100 ParEGO 0 87 NSGA II 0 54

Dominated ParEGO NSGA
II

Dominated LGP NSGA
II

Dominated LGP ParEGO

LGP 0 0 ParEGO 100 54 NSGA II 100 87

g = 1 + 9
6

8∑
i=3

xi

h = 3 −
2∑

i=1

[
fi

1+g (1 + sin (3πfi))
]

xi ∈[0, 1], i=1, . . . , n, n=8.

The Pareto front has four discontinuous regions and the Pareto set consists
of all solutions where all by the first two decision variables are equal to 0.

The test function DTLZ7a has 4 discontinuous Pareto regions. LGP is able
to converge very well and it is able to spread into the all four disconnected
Pareto regions from a single starting point. The value of α used is 1, but there
is not much difference between different values of α. As evident from Figure 3,
both ParEGO and NSGA II ar far from the Pareto front in terms of convergence.
Also, none of the solutions obtained by LGP is dominated by neither ParEGO or
NSGA II. 17 solutions obtained by ParEGO are dominated by solutions obtained
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Fig. 3. Convergence to the Pareto frontier and distribution of solutions obtained by
LGP, ParEGO and NSGA II on the Pareto frontier for test function DTLZ7a (view
from different angles)

Table 4. The dominance between solutions obtained by LGP, ParEGO and NSGA II
for test function DTLZ7a

Dominate ParEGO NSGA
II

Dominate LGP NSGA
II

Dominate LGP ParEGO

LGP 100 100 ParEGO 0 80 NSGA II 0 17

Dominated ParEGO NSGA
II

Dominated LGP NSGA
II

Dominated LGP ParEGO

LGP 0 0 ParEGO 100 17 NSGA II 100 80

by NSGA II while 80 of the solutions obtained by NSGA II are dominated by
solutions obtained by ParEGO.

4 Conclusions

The paper proposes a new approach for multiobjective optimization which uses
an aggregation of objectives and transforms the MOP into a SOP. A line search
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based technique is applied in order to obtain one solution. Starting from this
solution a simplified version of the initial line search is used in order to generate
solutions with a well distribution on the Pareto frontier. Numerical experiments
performed show that the proposed approach is able to converge very fast and
provide a very good distribution (even for discontinuous Pareto frontier) while
compared with state of the art population based metaheuristics such as ParEGO
and NSGA II.

Compared to NSGA II and ParEGO, LGP has only few parameters to ad-
just. It is computationally inexpensive, taking less than 200 milliseconds to
generate a set of nondominated solutions well distributed on the Pareto
frontier.

The only inconvenience is that LGP involves first partial derivatives which
makes it be restricted to a class of problems which are continuous twice differ-
entiable. But almost all practical engineering design problems are continuous
differentiable.

One of the further work ideas is to find a better way to set the value of α.
In this paper, we considered different α values until we achieved a satisfactory
distribution. Also, we would like to extend LGP to deal with constraint multi-
objective optimization problems.
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Abstract. In many applications, stream data are too voluminous to be
collected in a central fashion and often transmitted on a distributed net-
work. In this paper, we focus on the outlier detection over distributed
data streams in real time, firstly, we formalize the problem of outlier
detection using the kernel density estimation technique. Then, we adopt
the fading strategy to keep pace with the transient and evolving natures
of stream data, and mico-cluster technique to conquer the data partition
and “one-pass” scan. Furthermore, our extensive experiments with syn-
thetic and real data show that the proposed algorithm is efficient and
effective compared with existing outlier detection algorithms, and more
suitable for data streams.

1 Introduction

Following with the fast improvement of hardware and communication tech-
nologies, many modern data acquisition systems are essentially automatic, dis-
tributed and continuous. For example, networking applications (multiple web/
blog crawlers, intrusion detection, network monitoring), financial services (dis-
tributed fraud detection, financial monitoring, click stream analysis) and mili-
tary application(soldier location streams), etc. In these environments, all stream
data generally have these characters: continuous and unbounded, distributed
and evolvable over time. So, distributed data stream model was provided, which
is suitable for these applications very well.

In this paper we study a quintessential monitoring problem on continuously
changing distributed data sources, namely, outlier detection, which is an impor-
tant part of data mining. And the outliers may point out some surprising and
suspicious activities or observations which appear to be inconsistent with the
remainder data. Formally, we have m + 1 distributed nodes (one leader node
and m child nodes), illustrated in Figure 1. Each child node i has a changing
source of data Si

t at time t, and individual data items in the sources may be
high dimensional including numerical values, text, audio or video. We are more
concerned about monitoring some desirable properties of the union

⋃m
i=1 St

i of
data on all nodes in real time. In order to understand the challenge in monitoring
outliers over distributed nodes, there are two straightforward “solutions”:
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Fig. 1. Continuous Distributed Outlier Detection (red points are local outlers)

1. Each node sends the newly gathered data to the central node. The central
node updates the outliers of

⋃m
i=1 St

i whenever a new point is received.
2. Periodically, each node sends the newly gathered data to the central node,

every τ seconds. The central node updates the outliers every τ seconds.
The first method has communication and central processing bottleneck be-

cause all data are aggregated to central node; The second solution, which is
similar to a batch processing of the first method, will have latency because of
the time τ and also does not overcome the communication problem. Further-
more, the outliers would change radically within the time period. So these two
solutions are not suitable for monitoring applications. Therefore, we develop ef-
ficient online outlier detection techniques. And our contributions are as follows:

1. We propose two novel outlier measures, using kernel density estimation
technique [1] to approximate the stream data distribution, which are compati-
ble with distance-based outlier and density-based outlier (see Definition 2 and
Definition 3).

2. We adopt the fading strategy to keep pace with the transient and evolving
natures of stream data, and mico-cluster technique (commonly used for data
compression or summarization) to deal with the data partition.

3. Finally, extensive experiments including synthetic and real data sets,
demonstrate that our proposed methods are efficient and effective.

The rest of this paper is organized as follows. Section 2 introduces the related
researches of outlier detection. Section 3 presents some preliminaries and the
problem definitions. Section 4 provide the effective algorithm (MOD algorithm).
Section 5 evaluates the effectiveness and efficiency of the algorithm compared
with existing algorithms. Section 6 concludes the paper.

2 Related Work

Methods for outlier detection are drawing increasing attention. The salient ap-
proaches can be classified as either distribution-based, clustering, distance-based,
or density-based.
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The distribution-based approach [2,3] assumes the data following a distri-
bution model (e.g. Normal) and flags as outliers those objects which deviate
from the model. Thus, such approaches do not work well in moderately high-
dimensional (multivariate) spaces, and have difficult to find a right model to
fit the evolving data stream. To overcome these limitations, researchers have
turned to various non-parametric approaches (clustering, distance-based, and
density-based).

Most clustering algorithms (e.g. CLARANS [4], DBSCAN [5], BIRCH [6],
WaveCluster [7], CLIQUE [8]), are to some extent capable of handling excep-
tions. However, since the main objective is to find clusters, they are developed
to optimize clustering, and regard outliers as “by-products”.

Distance based approaches [9,10,11,12,13,14,15], first proposed by E.M. Knorr
and R.T. Ng [9], attempt to overcome limitations of distribution-based approach
and they detect outliers by computing distances among points. A point p in a
data set T is a distance-based outlier (DB(ρ, r)-outlier) if at most a fraction ρ of
the points in T lie within distance r from p. It has an intuitive explanation that
an outlier is an observation that is sufficiently far from most other observations in
the data set. However, it will be no effect when the data points exhibit different
densities in different regions of the data space or across time, because this outlier
definition is based on a single, global criterion determined by the parameters ρ
and r, so more robust density-based techniques were provided.

Density-based approaches proposed originally by M. Breunig, et al. [16] which
defines a local outlier factor (LOF) for each point depending on the local density
of its neighborhood. In general, points with a high LOF are flagged as outliers. It
has attracted considerable attention [17,18,19], and a large number of algorithms
have been developed which concern how to define the density or accelerate the
efficiency, such as, LOCI [17] method.

In the distributed data stream environments, Babcock and Olston presented
an original algorithm for distributed top-k monitoring [20]. Amit Manjhi, et
al. [21] thought of finding recently frequent items. S. Subramaniam, et al. [22]
cared about the outlier over sensor stream data. Graham Cormode, et al. [23]
considered continuous clustering.

3 Preliminaries and Problem Statement

In this section, first, we introduce the two preliminaries: distributed data stream
model and kernel density estimation. Then, we propose two novel outlier mea-
sures which are compatible with distance-based and density-based outlier.

3.1 Distributed Data Stream Model

A data stream consists of an unbounded sequence D1, D2, · · · of numeric values
which Di = (D1

i , D2
i , · · · , Dd

i ) and Dj
i ∈ R for i, j ∈ N, j ∈ [1, d]. Then, dis-

tributed data stream model composes of m + 1 nodes: a central leader node Nc,
and m remote stream monitor nodes N1, N2, · · · , Nm. Each node just monitors
one stream data, illustrated in Figure 1. Except otherwise stated, we assume
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the stream data as independent and identical distributed(iid) observations of an
unknown continuous random variable which is reasonable for most distributed
data stream applications. On the other hand, in many data stream applications,
only the most recent elements are important in data mining, while the old ones
are very little or not. For example, in a stream of stock market data, people are
more concerned about the moving average of the stock price over all observations
made in the last hour. So, we only care about the data in the sliding window
(W ) which contains the most recent N elements of stream.

3.2 Kernel Density Estimation

Kernel density estimation is to reveal the unknown density of a distribution
by selecting a suitable density estimator and has been successfully applied in
diverse application scenarios [1]. Theoretically, kernel density function f̃h(x) is
sure to converge to the real density f(x) function for arbitrary distribution. More
formally, assume that we have a data set D, containing n points whose values are
X1, X2, · · · , Xn. We can approximate the underlying distribution f(x) using the
following kernel function (K(x), kernel function, is a function of random variable
X . h, kernel width, determines the smoothing level of kernel function):

f̃h(x) =
1

nh

n∑
i=1

K
(

x −Xi

h

)
, x, Xi ∈ R,

∫
x∈R

K(x)dx = 1 . (1)

K
(

x −Xi

h

)
=

⎧⎨⎩ 3
4 ·

1
h

(
1 −

(
x−Xi

h

)2
)

,
∣∣∣x−Xi

h

∣∣∣ < 1

0 otherwise
(2)

Common used kernel functions are Epanechnikov, Gaussian, Quartic and Tri-
weight kernel, etc. Since the Gaussian kernel is unbounded (x ∈ (−∞, +∞)),
it exacerbates the cost of computing integral. Quartic and Triweight kernel are
fourth and sixth function each other. So, we choose the Epanechnikov kernel (see
Equation 2) which is a square function, more easy to integrate and has bound.

3.3 Novel Outlier Measures

Intuitively, outliers can be defined as given by Hawkins [24] in Definition 1. There
are several formal definitions of an outlier in Section 2. In our work, combining
the meaning of Definition 1 with kernel density estimation, naturally we can
come to a conclusion — the probability of one point is more close to zero, the
point is more likely to be an outlier. So, we use the following Equation 3 to
measure the outlier degree in this setting. Then, two variations based on the
commonly-used outlier definitions are presented.

Definition 1 (Hawkins-Outlier). An outlier is an observation that deviates
so much from other observations as to arouse suspicion that it was generated by
a different mechanism.
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Φ(p, r) = P [p− r, p + r] =
∫ p+r

p−r

f̂h(x)dx . (3)

Distance-based Kernel Estimation Outlier: It is a variation of Distance-
based Outlier [9]. Naturally, we present the definition of Distance-based Kernel
Estimation Outlier (DisKE-Outlier) (see Definition 2). However, it also has the
same limitations as distance-based methods. So we provide a more robust outlier
measure: DenKE-Outlier in Definition 3.

Definition 2 (DisKE-Outlier). A point is a “DisKE-Outlier” if Φ(p, r) ≤ ρ.

Density-based Kernel Estimation Outlier: It is a variation of Density-based
Outlier [16]. Spiros Papadimitriou, et al. [17] provided an outlier metric — Multi-
Granularity Deviation Factor(MDEF). For any given point, MDEF is a measure
of how the neighborhood count of p (in its counting neighborhood) compares
with that of the points in its sampling neighborhood. A point is flagged as an
outlier, if its MDEF is significantly different from that of the local averages.
r is the sampling neighborhood distance and αr (α ∈ (0, 1)) is the range over
which the neighborhood counts are considered. Correspondingly, we can define
a Density-based Kernel Estimation Outlier(DenKE-Outlier) as follows:

Definition 3 (DenKE-Outlier). A point is defined as a “DenKE-Outlier”
that Φ(p,αr)∑

q∈Ωr
Φ(q,αr)/|Ωr| < ξ, ξ is a real value parameter to define how significant

the point p is to the average of its neighbors. Ωr is a point set that contains all
points which distances are below r to point p. |Ωr| is the count of Ωr.

4 Micro-cluster Based Outlier Detection Algorithm

In this section, firstly, we discuss the selection of kernel width which significantly
affects the accuracy of algorithm. Secondly, the fading strategy is proposed to
conquer the evolving nature of stream data. Thirdly, we provide the approxi-
mate JS-divergence technique to save the traffic between the leader node and
other child nodes. Finally, we use the micro-cluster CF-tree [6] data structure to
condense the stream data and meet the “one-pass” scan.

4.1 Selecting Kernel Width

The kernel density estimation in the Figure 2 indicate that the kernel width sig-
nificantly affects the shape of a kernel function. If the width is chosen too high,
the estimation is over-smoothed and hides important details. Otherwise, the
estimation is under-smoothed and brings illusive details, resulting in heavy com-
putation. A widely used rule for approximating the kernel width is the Scott’s
rule [1] (h in Equation 4). However, these strategies depend on the complete sam-
ple, which is impracticable in data stream scenario. To overcome this problem,
we adopt an approximate solution, only considering the data in sliding window.
The number of sliding window (N) is more large, the approximate kernel width
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Fig. 2. Kernel density estimation, underlying standard normal kernel and kernel width
with h = 0.1 (left) and h = 0.3 (right)

h̃ is more close to h. σ is the standard deviation of whole stream data and σ̃ is
the sample standard deviation of sliding window.

h ≈ 2.345σn−1/5 ≈ h̃ � 2.345σ̃(N)−1/5, ĥ = min
{
2.345σ̃n−1/5, Dk

x

}
. (4)

Definition 4 (k-nearest neighbor set). Dk
p is the distance between point p

and its k-nearest neighbor. Δp, named “ k-nearest neighbor set of point p”, is
defined as a set that contains all points which distance is not larger than Dk

p .
ΔS, named “ k-nearest neighbor set of set S”, is defined as

⋃
p∈S Δp.

The h̃ width will increase very fast following by the σ̃ and n in Equation 4. In
order to balance the quality and efficiency, we consider the distance between the
point and its k-nearest neighbors. So an improved kernel width (ĥ) is listed in
Equation 4. Extensive experiments demonstrate its efficiency.

4.2 Capturing Evolution over Data Stream

Because of the dynamic nature of stream data, it is the inherent obstacle that
must been conquered by an effective and robust stream analysis technique. To
capture the evolution, we are conscious of the problem in Equation 1: each kernel
entry is equally weighted with constant 1

n . So we present a fading strategy that
couple the kernel density estimation with exponential smoothing [25]. The basic
idea of fading strategy is to give older data less weight and to gradually discount
the history data, which is widely used in the area of time series analysis and
forecasting. Then, Equation 1 is adjusted to Equation 5. Notice that the sum
of weights in Equation 5 is

∑N
i=1

ωN−i∑N
j=1 ωj−1 = 1, which is equal to

∑n
i=1

1
n = 1

in Equation 1. When ω = 1, Equation 5 comes back to Equation 1. The fading
factor(ω) determines the rate of fading. The higher the value of ω the lower
importance of the historical data compared to more recent data. The sliding
window becomes an evolving sliding window. And also, we can tune the impact
degree of past and current data through ω to match different applications.
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f̂h(x) =
1
h

N∑
i=1

(
ωN−i∑N
j=1 ωj−1

· K
(

x −Xi

h

))
, x ∈ R, ω ∈ (0, 1] . (5)

4.3 Comparison for Different Distributions

The difference of two distributions can seriously influence the traffic between the
leader node and other child nodes. Intuitively, the less change of distribution in
one node, the less traffic between this node and the leader node. So it is very
important to compare the difference between two distributions. Several methods
have been proposed to quantify the difference between probability density dis-
tributions [1]. One widely used measure is Ali-Silvey divergences, which is more
natural than p norms. p(x) and q(x) are probability distribution functions over
random variable x, Ω is the value set of x. Two most common divergences are
the asymmetric KL-divergence and the symmetric JS-divergence in Equation 6.
However, because kernel density estimation method may assign probability of
zero to some regions, KL-divergence is undefined and meaningless for the ln
function. So, we choose the JS-divergence which is meaningful to any x ∈ Ω.

DJS(p, q) =
n∑

i=1

(
pi ln

2pi

pi + qi
+ qi ln

2qi

pi + qi

)
. (6)

D̂JS(p, q) =
∑

i∈ΔSin
⋃

Sout

(
pi ln

2pi

pi + qi
+ qi ln

2qi

pi + qi

)
. (7)

Theoretically, a new data incoming the sliding window or an old data being
dropped out will change the kernel density for all data points in the whole
sliding window. Obviously, it is too inefficient and unscalable to suit the evolving
data stream over time. The incoming data and dropped data are a very small
proportion to the capacity of sliding window. The points are more close to the
changeable data, the influence is more serious. To balance the accuracy and
complexity, we provide an approximate JS-divergence(D̂JS(p, q) in Equation 7)
which is only concerned about the changeable data (Sin and Sout) and their
k-nearest neighbors set. As the number

∣∣ΔSin
⋃

Sout

∣∣ is much less than n, time
complexity is reduced to O

(
d
(∣∣ΔSin

⋃
Sout

∣∣ + log n
))

which log n is the time
spending to search k-nearest neighbor set. D̂JS(p, q) is non-negative real number
and unbounded. In practical, we can select a parameter λ (divergence threshold)
as the upper-bound of D̂JS(p, q). If D̂JS(p, q) > λ, there is a significant change
and corresponding node transfer its kernel estimation function to the leader
node. Otherwise, no transformation.

4.4 Micro-cluster Definition and MOD Algorithm

In this section, we describe the Micro CF-Tree Based Distributed Outlier
Detection Algorithm (MOD Algorithm) that can deal with the two outlier
categories (DisKE-Outlier and DesKE-Outlier), in a distributed manner. We
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Fig. 3. Extended Micro-Cluster Feather Tree

want to identify outliers in the leader node. By observation of the definition of
DisKE-Outlier, it is easy to find that the leader node need only to examine the
values that have been marked as outliers by its child nodes. All the other data
values can be safely ignored, since they cannot possibly be outliers. However,
DesKE-Outliers are non-decomposable because the neighbors of one point may
be distributed in different child nodes. A feasible solution is that all child nodes
have a copy of the kernel density function of leader node. The child node trans-
fers its kernel estimation function to the leader node when its D̂JS(p, q) > λ,
and the leader node broadcasts its kernel estimation function to its child nodes
when D̂JS(p, q) > λ in Nc. We define the concept of micro-cluster-based outlier
more precisely in Definition 5 which is a CF-Tree [6]. It is very easy to create
and maintain the clusters in a single pass. The whole algorithm is described in
algorithm (1).

Definition 5. An extended micro CF-tree for a set of d-dimensional points
Di1 , Di2 , · · · , Din with time-stamp Ti1 , Ti2 , · · · , Tin and each point Dj = (d1

j ,
d2

j , · · · , dd
j ), is defined as the (4d+1+ |ΔC |+ |OC |)-tuple (ACF1(C), ACF2(C),

MIN(C), MAX(C), ΔC, OC, n(C)). (ACF1(C), ACF2(C), MIN(C), MAX(C)
are four vectors of d entries. The definition of each of these entries is as follows,
Figure 3 is the whole data structure:

• The p-th entry of ACF1(C) is equal to
∑n(C)

j=1 dp
ij
, The p-th entry of ACF2(C)

is equal to
∑n(C)

j=1 (dp
ij

)2;

• The p-th entry of MIN(C) is equal to minn(C)
j=1 dp

ij
, The p-th entry of MAX(C)

is equal to maxn(C)
j=1 dp

ij
;
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Algorithm 1. CF-Tree Based Distributed Outlier Detection Algorithm
Input: m data streams S1, · · · , Sm in N1, · · · , Nm, the divergence threshold λ, ρ is the

outlier proportion in DisKE-Outlier, the distance r, α is the distance proportion
in DesKE-Outlier.

Output: the outlier set Oc

Function OutlierDetetion()

1: BDisKE ⇐;// variable BDisKE = true indicates using DisKE-Outlier detection
method, otherwise using DesKE-Outlier detection method.

2: LeaderProcess(); // initiate the process for the leader node;
3: for(i = 1 to m) do
4: ChildProcess(); // initiate the process for each child node;

Function LeaderProcess()

1: find the closest micro-cluster from the CF-Tree to the point p which a new point
from a child node, assumed the cluster as GC which is a leaf node in the CF-Tree;

2: if(p /∈ OGC) then isOutlier(p, GC);

3: update f̃ĥ(x); // using Equation 1 and kernel width in Equation 4;

4: if(D̂JS(f̂new
ĥ

, f̂old
ĥ

) > λ) then broadcast f̂new
ĥ

to the all child node;
5: if(p ∈ OGC , or is marked as an outlier) then report point p as an outlier;
6: else insert p to micro-cluster GC;

Function ChildProcess()

1: find the closest micro-cluster from the CF-Tree to the new point p, assumed as LC
which is a leaf node in the CF-Tree;

2: if(p /∈ OLC) then isOutlier(p, LC);

3: update f̃ĥ(x); // using Equation 1 and kernel width in Equation 4;

4: if(D̂JS(f̂new
ĥ

, f̂old
ĥ

) > λ) then send the point p and f̂new
ĥ

to the leader node;
5: if(p /∈ OGC , and is not marked as an outlier) then insert p to LC;

Function isOutlier(point p, micro cluster MC)

1: if(BDisKE =)
2: if(Φ(p, r) < ρ) then mark p as an outlier and add to OMC ;
3: else sum up to Ωr =

⋃
q∈MC Δq;

4: if( Φ(p,αr)∑
q∈Ωr

Φ(q,αr)/|Ωr| < ξ) then mark p as an outlier and add to OMC ;

5: update f̃ĥ(x); // using Equation 1 and kernel width in Equation 4;

• The ΔC is defined in Definition 4, OC holds the outliers in cluster C, n(C)
is the count number in Micro-Cluster C.

5 Experiments

In this section, we will present the experimental results for our algorithms com-
paring with two typical algorithms. One is the distanced-based algorithm —
NL algorithm [9] which is proposed by E.M. Knorr and R.T. Ng, and the other
is an density-based algorithm — LOCI algorithm [17] which is presented by
Spiros Papadimitriou, et al. There are three primary purposes: (1) Comparing
the precision and recall ratio in four real data sets. (2) Verifying the algorithm



Continuous Adaptive Outlier Detection on Distributed Data Streams 83

Sliding Window Size
0 2e+4 4e+4 6e+4 8e+4 1e+5

P
re

ci
si

on

86

88

90

92

94

96

98

100

NOD in Forest
MOD in Forest
NOD in Adult
MOD in Adult

(a) σ = 0.2

Sliding Window Size
0 2e+4 4e+4 6e+4 8e+4 1e+5

P
re

ci
si

on

84

86

88

90

92

94

96

98

100

NOD in Forest
MOD in Forest
NOD in Adult
MOD in Adult

(b) σ = 0.4

Child Nodes
0 20 40 60 80 100

P
ro

ce
ss

in
g 

S
ec

on
d/

D
at

a 
ite

m

.10

.12

.14

.16

.18

.20

.22

.24

NOD Algorithm
MOD Algorithm

(c) Child Nodes Scalability

Fig. 4. Precision when varying the sliding window size, and nodes scalability

scalability in high dimensions and large numbers of child nodes. (3) Checking
the efficiency of two kernel widths (h̃ and ĥ in Equation 4).

All experiments were conducted on a 3.2 GHz PentiumIV PC with 1GB mem-
ory, running Microsoft Windows XP. To evaluate the efficiency and scalability
of our two algorithms, both real and synthetic data sets are used. Real data
sets include adult, KDD cup 99, forest and stock price series. The last data set
consists of the price for a single stock taken at frequent intervals over a six year
period. Total count is 330K values. The other three data sets come from the
UCI machine learning repository. All algorithms are implemented by Microsoft
Visual C++ 6.0. The Näıve Outlier Detection Algorithm (NOD Algorithm) use
the h̃ kernel width and C++ STL (NOT the CF-tree), which is to proof the
MOD algorithm scalability.

Selecting the Kernel Width: Kernel width is a virtual parameter in kernel
density estimation. An proper width can save computing time and improve the
accuracy very large. In this experiment, we select two very large data sets (adult
and forest cover). We consider the precision change with the sliding window size.
The sliding window varied from 10000 to 100000. Unless particularly mentioned,
the nearest neighbor k = 8, divergence threshold λ = 0.1 and fading factor
ω = 0.2. In Figure 4 (a) the σ = 0.2 in the real data selected and Figure 4 (b)
is 0.4. The results show the MOD algorithm has more better precision than the
NOD algorithm, especially in Figure 4 (b). The precision in MOD algorithm is
less sensitive than NOD algorithm following with the change of sliding window.
This owes to the kernel width. In MOD algorithm, we considered the influence
of k-nearest neighbors which can prune effectively off the kernel width.

Efficiency of MOD Algorithm: Our first set of experiments focused on the
efficiency of three algorithms. We use two measures, namely precision and recall,
defined as follows. Precision represents the fraction of the values reported by our
algorithms as outliers that are true outliers. Recall represents the fraction of the
true outliers that our algorithms identified correctly. We set the sliding window
size N = 10000. We selected five real value columns in the real data sets (The
stock price series data set only has one column and we constructed five columns
by simply duplicating the column). The experiment results in Fig. 5 (a) and (b)
indicate that our NOD algorithm is better than the corresponding distance-based
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Fig. 5. Precision and Recall in four real datasets, and dimensional scalability

NL algorithm, the MOD algorithm also exceeds the LOCI, although only 0.2 ∼

3.1% improvement. It is not surprising that our NOD and MOD algorithms are
essentially improved from the distance-based and density-based algorithms.

Algorithm Scalability: The scalability is an important criteria to judge
whether an algorithm is suitable for distributed environment or not. Our syn-
thetic data were random sample columns from adult data sets.we used ten PCs
to simulate the 100 child nodes (each node simulate ten child nodes at most) and
one PC as the leader node in Figure 1. each In Figure 4(c) and Figure 5(c), we
change the dimension(d) and child nodes(N) to check the precision of NOD and
MOD algorithms. The results show that: NOD algorithm is exponential propor-
tional to the dimension, but the MOD is linear to it. This phenomenon is more
obvious in Figure 5(c). The processing time per data item of MOD algorithm in
Figure 5(c) only varied range of 0.12 ∼ 0.16 second, but 0.14 ∼ 0.25 second in
NOD algorithm. The ratio of fluctuation difference (0.25−0.14

0.16−0.12 ≈ 3) approximate
to three. So, the MOD algorithm has more scalability than NOD algorithm,
mainly because of the micro-cluster compressed data structure.

6 Conclusions and Future Work

In this paper, we study the problem of continuous adaptive outlier detection
on distributed data streams. We propose two novel outlier measures and an
algorithm which can deal with the distributed and evolving natures of stream
data. The mathematical analysis and extensive experiments show that the pro-
posed methods are both efficient and effective comparing with existing outlier
detection algorithms. In the future, we will study cluster over distributed data
streams.
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Abstract. Data missing is a common problem in database query processing, 
which can cause bias or lead to inefficient analyses, and this problem happens 
more often in sensor databases. The reasons include power outage at the sensor 
node, sensors time synchronization, occurrences of local interferences, unstable 
wireless network communication, etc. Therefore, in sensor database applica-
tions, there is a need for data imputation, especially for those applications in 
which the query response time is tight, and the accuracy of the query results is 
important. In this paper, we present a data imputation application based on 
association rule mining of closed frequent itemsets. They are subsets of all 
frequent patterns but provide complete and condensed information since they 
do not include redundant patterns. Experimental results compared with the 
existing techniques using real-life sensor data show that our proposed technique 
effectively imputes missing sensor data as well as achieves time and space 
efficiency. 

1   Introduction 

A wireless sensor network (WSN) is a wireless network consisting of spatially 
distributed autonomous devices using sensors to cooperatively monitor physical or 
environmental conditions, such as temperature, sound, vibration, pressure, motion or 
pollutants, at different locations [15]. Recent advances in sensor technology have 
made possible the development of relatively low cost and low-energy-consumption 
micro sensors which can be integrated in a wireless sensor network. These devices - 
Wireless Integrated Network Sensors (WINS) - will enable fundamental changes in 
applications spanning the home, office, clinic, factory, vehicle, metropolitan area, and 
the global environment [3]. 

Many researches have been conducted by different organizations regarding 
wireless sensor networks to address many different issues such as power awareness, 
security, routing protocol, heterogeneous sensor networking and so on, but few of 
them discuss how to impute the missing data when data is lost or corrupted. In this 
paper we present a data imputation model to impute data tuples in a sensor database 
using a data mining technique based on closed pattern mining for association rules. Its 
goal is to derive imputed values that are not only accurate but also timely. This is 
significant to many applications where exact data may not be necessary and certain 
approximate data is acceptable, such as traffic management, intrusion detection, and 
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network routing. This research also reduces the chance that real-time applications 
would miss their deadlines due to lack of data.  

The data imputation model using association rule mining on stream data based on 
closed frequent itemsets (CARM) [11] discovers relationships between sensors and 
use them to compensate for missing and corrupted data. The derived association rules 
provide complete and non-redundant information, since closed pattern mining 
provides complete and condensed information and thus they do not include redundant 
patterns [21]. Experimental results compared with the existing techniques using real-
life sensor data show that our proposed model effectively imputes missing sensor data 
as well as achieves time and space efficiency. 

The remainder of this paper is organized as follows. We review the existing data 
imputation solutions in Section 2. We discuss the definitions of terms used in the 
paper in Section 3. In Section 4, we present our proposed online data imputation 
application based on the closed pattern mining. Section 5 depicts the performance 
evaluation of the proposed data imputation model comparing with the existing 
techniques using real-life traffic data. Finally, Section 6 concludes the paper. 

2   Related Works 

Many articles have been published to deal with the missing data problem, and a lot of 
software has been developed based on these methods. Some of the methods totally 
delete the missing data before analyzing them, like listwise and pairwise deletion [21] 
while some other methods focus on imputing the missing data based on the available 
information. The most popular statistical imputation methods include mean 
substitution, imputation by regression [4], hot deck imputation [9], cold deck 
imputation, expectation maximization (EM) [13], maximum likelihood [2, 12], 
multiple imputations [16, 18], and bayesian analysis [6]. 

Also, there are some mathematical approaches to perform the imputation, like 
SVDimpute, which is a singular value decomposition based method, called 
SVDimpute. This method is applied for imputing missing values in DNA microarrays. 
A DNA microarray is a matrix m rows of which are expression levels of genes and n 
columns are different experimental conditions. The missing values occur for diverse 
reasons, including insufficient resolution, image corruption, or simply due to dust or 
scratches on the slide [20].  

But none of these approaches is specially suited for wireless sensor network 
environments, where streams of data constantly sent from the sensors to the servers, 
due to several reasons. First, how much old information should be based on to get the 
associated information for the missing data imputation? Using all of the old readings 
to perform the imputation is unreasonable, especially when using an iteration 
procedure until convergence to get the imputation like in the EM algorithm. On the 
other hand, using only the previous round of sensor readings to perform the 
imputation is also not a good choice since data streams often have a changing data 
distribution. Some of the statistical methods use all of the available data points in a 
database to construct the best possible results, like the Maximum Likelihood. In the 
wireless sensor networks, the missing sensor data may or may not be related to all of 
the available information, thus using all of the available information to process the 



88 N. Jiang 

result is not an optimal choice and would use more time and memory space than 
necessary when it comes to the implementation stage. 

Second, which information should be used to perform the missing data imputation? 
In a wireless sensor network, data is collected within certain scopes and reported to 
the servers during a certain period of time. Different sensors have different readings at 
different time periods, and the current readings of one sensor may relate not only to its 
previous readings, but also to other sensors’ previous or current readings. Therefore, 
replacement of missing values with randomly selected values present in a pool of 
similar complete cases or by a value which is independent of the data set like in the 
hot/cold deck imputation is difficult to implement. This is because even though we 
may get the complete set of information of a certain wireless sensor network, it is not 
easy to decide which information is similar to the current round of missing sensor’s 
information. In other words, it is hard to draw the pool for a certain sensor’s certain 
round of readings when the application needs to perform the data imputation. 

Third, the missing data may or may not miss at random (MAR), while most of the 
statistical techniques, such as maximum likelihood [2, 12] and multiple imputations 
[16, 18], are based on the MAR assumption. According to the definition in [12], Data 
on Y are Missing At Random (MAR) if the probability that Y is missing does not 
depend on the value of Y after controlling other observed variables X. For example, 
we are modeling weight (Y) as a function of gender (X). One gender may be less 
likely to disclose its weight, that is, the probability that Y is missing depends only on 
the value of X. Such data are MAR. 

As there are more and more stream data applications emerge, proper data 
estimation algorithms for stream data are needed. In the prediction model of both 
TinyDB and BBQ, multivariate data modeling techniques are used [6]. Such models 
can be learned from historical data using standard algorithms. For a specific model, 
training data needs to be collected for some period of time before predicting values. 
These models need to be updated over time to reflect the most recent changes. 
Choosing the best model for the given query workload and environment is an 
important issue in this case. While our proposed technique catches the relationship 
among sensors using association rule mining, this can be applied to a broad 
applications without model updating. 

In [14], the authors propose using pattern discovery in multiple time-series to 
estimate missing data, but it’s not well suited for sensor networks, where the 
relationships between sensors decided not only by the time trends, but also some other 
factors, like locations and so on.  

In [8], the authors proposed the WARM (Window Association Rule Mining) 
algorithm for imputing missing sensor data. WARM uses association rule mining to 
identify sensors that report the same data for a number of times in a sliding window, 
called related sensors, and then imputes the missing data from a sensor by using the 
data reported by its related sensors. WARM has been reported to perform better than 
the average approach where the average value reported by all sensors in the window is 
used for imputation. However, there exist some limitations in WARM. First, it is 
based on 2-frequent itemsets association rule mining, which means it can discover 
relationships only between two sensors and ignore the cases where missing values are 
related with multiple sensors. Second, it finds those relationships only when both 
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sensors report the same value and ignores the cases where missing values can be 
imputed by the relationships between sensors that report different values.  

In view of the above challenges, in this paper we present a data imputation model 
using CARM (Closed Itemsets based Association Rule Mining) [11],  which can 
derive the most recent association rules between sensors based on the closed itemsets 
in the current sliding window. The definition of closed itemsets is given in Section 3.  

3   Definitions 

In this section, we describe the notations and definitions that are used throughout this 
paper. 

Let D = {d1, d2,…, dn} be a set of n item ids, and V = {v1, v2,…, vm} be a set of m 
item values. An item I is a combination of D and V, denoted as I = D.V. For example, 
dn.vm means that an item with id dn has the value vm. A subset X ⊆ I is called an 
itemset. A k-subset is called a k-itemset. Each transaction t is a set of items in I. Given 
a set of transactions T, the support of an itemset X is the percentage of transactions 
that contain X. A frequent itemset is an itemset the support of which is above or equal 
to a user-defined support threshold. 

Let T and X be subsets of all the transactions and items appearing in a data stream 
D, respectively. The concept of closed itemset is based on the two following 
functions, f and g: f(T) = {i ∈ I | ∀ t ∈ T, i ∈ t} and g(X) = {t ∈ D  | ∀ i ∈ X, i ∈ t}. 
Function f returns the set of itemsets included in all the transactions belonging to T, 
while function g returns the set of transactions containing a given itemset X. An 
itemset X is said to be closed if and only if C(X) = f(g(X)) = f•g(X) = X where the 
composite function C = f•g is called Galois operator or closure operator [19].  

For example, let I = {A, B, C, D} be a set of 4 items, and T = {CD, AB, ABC, 
ABC} be a set of transactions in data streams, then the closed itemsets and their 
support counts are {(C, 3), (AB, 3), (CD, 1), (ABC, 2)}. Each of the closed itemsets X 
satisfies C(X) = f(g(X)) = f•g(X) = X. Take AB as an example, g(AB) = {AB, ABC, 
ABC}, f•g(AB) = AB, so C(AB) = f(g(AB)) = f•g(AB) = AB. Closed frequent 
itemsets are those closed itemsets that have support equal to or greater than the user-
defined minimum support. If the user defined the absolute support to be 2, then the 
closed frequent itemsets are {(C, 3), (AB, 3), (ABC, 2)}. The frequent itemsets are 
{(A, 3), (B, 3), (C, 3), (AB, 3), (AC, 2), (BC, 2), (ABC, 2)}, from which we can see 
that closed frequent itemsets are smaller subsets of frequent itemsets and contain all 
itemsets and support information in the frequent itemsets. 

From the above discussion, we can see that a closed itemset X is an itemset the 
closure C(X) of which is equal to itself (C(X) = X). The closure checking is to check 
the closure of an itemset X to see whether or not it is equal to itself, ie., whether or not 
it is a closed itemset. 

An association rule X  Y (s, c) is said to hold if both s and c are above or equal 
to a user-specified minimum support and confidence, respectively, where X and Y are 
sensor readings from different sensors, s is the percentage of records that contain both 
X and Y in the data stream, called support of the rule, and c is the percentage of 
records containing X that also contain Y, called the confidence of the rule. The task of 
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mining association rules then is to find all the association rules among the sensors 
which satisfy both the user-specified minimum support and minimum confidence.  

4   Data Imputation Model Based on Closed Pattern Mining 

The data imputation model uses association rule mining [1] on stream data to 
compensate for missing and corrupted data. An association rule is an implication of 
the form X => Y (s, c), where X and Y are frequent itemsets in a database and X ∩Y 
= ∅, s is the percentage of records that contain both X and Y in the database, called 
support of the rule, and c is the percentage of records containing X that also contain 
Y, called the confidence of the rule. An association rule is said to hold if both s and c 
are above or equal to a user-specified minimum support and confidence. An itemset is 
frequent if its support is above or equal to a user-defined support threshold. A k-
frequent itemset is a frequent itemset with k items. Our goal is to find the 
relationships between sensors, and later use these relationships (or association rules) 
to impute the values of missing sensor readings. 

When a transaction arrives or leaves the current data stream sliding window, the 
CFI-Stream algorithm [10] checks each itemset in the transaction on the fly and 
updates the associated closed itemsets’ supports. The current closed itemsets are 
maintained and updated in real time in the DIU tree. The closed frequent itemsets can 
be output at any time at users’ specified thresholds by browsing the DIU tree. 

A lexicographical ordered direct update tree is used to maintain the current closed 
itemsets. Each node in the DIU tree represents a closed itemset. There are k levels in 
the DIU tree, where each level i stores the closed i-itemsets. The parameter k is the 
maximum length of the current closed itemsets. Each node in the DIU tree stores a 
closed itemset, its current support information, and the links to its immediate parent 
and children nodes. Figure 1 illustrates the DIU tree after the first four transactions 
arrive. The support of each node is labeled in the upper right corner of the node itself. 
The figure shows that currently there are 4 closed itemsets, C, AB, CD, and ABC, in 
the DIU tree, and their associated supports are 3, 3, 1, and 2. 

We assume in this paper that all current closed itemsets are already derived, and 
based on these closed itemsets, we generate association rules for data imputation. 
Please refer to [10] for the detailed discussion of the update of the DIU tree and the 
closure checking procedure for addition and deletion operations. 
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Fig. 1. The lexicographical ordered direct update tree 
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Based on the current closed itemsets in the DIU tree, instead of generating all 
possible association rules, we generate the rules that have strong relationships with 
the current round of sensor readings where one or more readings are missing. We 
achieve this through browsing the DIU tree, which stores all of the closed itemsets. 
Based on the users’ specified support and confidence thresholds, we find out rules 
through paths (links) of closed itemsets that suit the users’ needs, i.e., satisfy the 
users’ specified support and confidence thresholds. For example, if the user’s 
specified support and confidence threshold is 0.3 and 0.6 respectively, it means that 
we find out all the closed itemsets whose appearances are equal or greater than 30% 
of all transaction sets, and we find out all the association rules that related with the 
specified closed itemset whose possibilities to happen are equal or greater than 60%. 
The mining process is online and incremental, which is especially beneficial when 
users have different specified thresholds in their online queries. Please refer to [11] 
for a detailed discussion of the procedures of the CARM algorithm. 

The data imputation model provides the following functionalities as shown in 
figure 2. It first preprocesses the data received from the input module, then judges if it 
contains missing or corrupted value. If yes, it performs data imputation, outputs the 
imputed value and stores it in the database; otherwise, it stores the value in the 
database directly. The users can thus query the database and get the query results in 
real time. 

Below is an example of data imputation using closed itemsets based association rule 
mining. Assume a wireless sensor network consists of four sensors S1, S2, S3, and S4 that 
send their readings to a server in a certain time interval. Each sensor detects the 
temperature of a room during a certain period of time. The different values of the 
observed temperature from each sensor are represented as follows: S1.value1, S2.value2, 
S3.value3, S4.value4 and so on, where the value of each sensor may or may not be the 
same. The sensor node sends the generated tuple to the server using its radio unit. 
 

 

Fig. 2. Data imputation model 
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Assume the sensors have reported the following values as shown in figure 3 for the 
last 4 rounds of sensor readings, where round number 1 is the oldest round and round 
number 4 is the newest one. Assume minimum support = 50%, and minimum 
confidence = 50%. From the figure we can see all closed frequent itemsets from the 
current readings are {S1.70, S3.72, S4.60} = 2, {S1.70, S4.60} = 3, {S2.60, S4.60} = 2, 
and {S4.60} = 4. Based on the non-redundant association rules derived from the 
closed frequent itemsets, we can derive {S1.70, S4.60}  S3.72, support = 1/2, 
confidence = 2/3 and S4.60  S2.60, support = 1/2, confidence = 1/2, we can impute 
the missing value S3.72 and S4.60. Compared with WARM, CARM can find out the 
relationship between multiple sensors instead of pairs of sensors; it can also derive the 
relationship among sensors with different values instead of only same value S4.60  
S2.60, therefore it increases the number of missing values that can be imputed. 
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Fig. 3. An example of data imputation using closed itemsets mining 

5   Experimental Evaluations 

The performance of our proposed data imputation model is studied by means of 
simulation. Several different simulation experiments are conducted in order to 
evaluate the proposed technique and compare it with four existing statistical 
techniques: the Average Window Size (AWS) approach, the Simple Linear 
Regression (SLR) approach, the Curve Regression (CE) approach, and the Multiple 
Regression (MR) approach, and with the WARM approach, the current state-of-the-
art data imputation algorithm in sensor database [8]. 

The simulation model consists of 108 sensor nodes. All sensor nodes report to a 
single server. The sensors are deployed on city streets, collect and store the number of 
the vehicles detected for a given time interval. The actual vehicle counts taken as 
sensor readings that are used as input for our simulation experiments are traffic data 
provided by [1]. The data was collected in year 2000 at various locations throughout 
the city of Austin, Texas. The data represents the current location, the time interval, 
and the number of vehicles detected during this interval. From this set we generated 
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four different input data sets corresponding to the different numbers of the possible 
sensor states used for the simulation experiments. 

The evaluation of the achieved accuracy of an imputation of the missing values is 
done by using the average Root Mean Square Error (RMSE):
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where Xai and Xei are the actual value and the imputed value, respectively; 
#imputations is the number of imputations performed in a simulation run; and 
numStates is the number of subsets, in which the actual readings are distributed. The 
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standard deviation under the assumption that the errors in the imputed values (i.e. Xai 
- Xei) are normally distributed. Thus, the RMSE allows the construction of confidence 
intervals describing the performance of different candidate missing value estimators. 
The smaller the RMSE (the standard deviation), the better the estimator. The 
calculated RMSE for each different set of input data (e.g. Set10 means that the sensor 
readings are split into 10 subsets) is divided by the number of subsets and the result is 
the average standard deviation in each case. This is done to keep the measure 
comparable across experiments. 

From figure 4 we can see that CARM gives the best result of the above approaches 
regarding to the accuracy, follows by the WARM and AWS approaches. The 
regression approaches performs no better than WARM, CARM and AWS approaches, 
the main reason might be that it  only considers the relationship between the neighbor 
nodes, while CARM and WARM find out all of the relationship between the existing 
sensors. Also from figure 4, we can see that the proposed CARM approach provides 
better imputation accuracy than the WARM approach does. This is because CARM 
performs the imputation based on the association rules derived by a compact and 
complete set of information, while WARM performs the imputation based on the 
association rules derived only by 2-frequent itemsets in the current sliding window. 

Figure 5 illustrates the Total Main Memory Access Time per round (TMMAT) in 
milliseconds of AWS, SLR, CE, MR, WARM and CARM approaches. The TMMAT 
is defined as the time for performing all main memory accesses required for updating 
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Fig. 4. RMSE for AWS, SLR, CE, MR, WARM and CARM approaches 
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the associated data structures and impute missing values per round of sensor readings. 
The experimental results show that in terms of TMMAT, the proposed CARM 
approach is outperformed by all other four statistical approaches, but it’s still very fast 
comparing with the resend cases. The CARM approach is faster than the WARM 
technique. As shown in this figure, the TMMAT of WARM increases slightly when 
the window size increases since the information in WARM stores in the cube data 
structures, and the time needs to process this information increases when the size of 
the cube increases. For the CARM approach, the TMMAT first increases as the 
number of transactions increases since the number of closed itemsets that newly 
discovered increases; however, the average processing time decreases after the 
number of newly discovered closed itemsets reaches a threshold. This is because the 
number of closed itemsets which exist in the DIU tree increases, and they do not need 
to be processed; only their supports need to be updated incrementally. 

Figure 6 illustrates Memory Space (in Kbytes) of AWS, SLR, CE, MR, WARM 
and CARM approaches. The experimental results show that in terms of Memory 
Space, the proposed CARM approach is outperformed by all other four statistical 
approaches, but it’s still requires far less than the main memory provided in a 
contemporary computer. The results of the simulation experiments show that for 108 
sensors, using WARM, the needed memory space is much higher than that using 
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Fig. 5. TMMAT for AWS, SLR, CE, MR, WARM and CARM approaches 

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120

Window Size

M
em

o
ry

 N
ee

d
ed

 (
M

B
)

W ARM

CARM

AW S, ALR, CE, MR

 

Fig. 6. Memory Needed for AWS, SLR, CE, MR, WARM and CARM approaches 



 A Data Imputation Model in Sensor Databases 95 

CARM. This is because the DIU tree data structure uses much less memory space 
than the cube data structures, and it only stores the condensed closed itemsets 
information.  

There is a possibility that the imputation algorithm alone will not be able to impute 
a missing value. The reasons for that are the following: no association rules between 
the sensor with the missing value (MS) and other sensors can be derived based on the 
current information. The percentage of cases in which a missing value cannot be 
imputed by the imputation algorithm alone (PCE) is computed for each simulation run 
using the following formula: 

%100*
#

ImputesTorOfAttempttotalNumbe

ImputedCannotBecasesValue
PCE =  where 

#casesValueCannotBeImputed is the number of cases in which a missing value cannot 
be imputed using the imputation algorithm alone, and 
totalNumberOfAttemptsToImpute is the total number of attempts to impute a missing 
value in a given simulation run. From figure 7 we can see the CARM algorithm 
greatly reduces the number of cases that can not be imputed directly by the 
association rules derived. This is because, compared with WARM, it considers the 
relationships between multiple sensors and enables us to find more associations 
between multiple sensors even when they have different values. 
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Fig. 7. PCE for WARM and CARM approaches 

6   Conclusions 

In this paper we present a novel data imputation model in sensor network databases 
based on closed pattern mining. This model integrates an incremental method to 
perform data imputation from the derived association rules based on closed pattern 
mining. Our performance study shows that it is able to impute missing sensor data 
online with both time and space efficiency, greatly improves the imputation accuracy 
and reduces the number of cases that cannot be imputed. 
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Abstract. Clustering of data has numerous applications and has been studied 
extensively. It is very important in Bioinformatics and data mining. Though 
many parallel algorithms have been designed, most of algorithms use the 
CRCW-PRAM or CREW-PRAM models of computing. This paper proposed a 
parallel EREW deterministic algorithm for hierarchical clustering. Based on 
algorithms of complete graph and Euclidean minimum spanning tree, the 
proposed algorithms can cluster n objects with O(p) processors in O(n2/p) time 
where

n

n
p

log
1 ≤≤ . Performance comparisons show that our algorithm is the 

first algorithm that is both without memory conflicts and adaptive. 

1   Introduction 

Hierarchical clustering[2,3] techniques are widely applied in diversified areas such as 
gene categorization in biology, image processing, and network intrusion detection. 
Cluster analysis [1] is the process of classifying objects into subsets that have 
meaning in the context of a particular problem.  

The basic principle behind hierarchical clustering is as follows: if there are n input 
points or data items, we start with n clusters where each cluster has a single point. 
From there on, the “closest” two clusters are identified. The two closest clusters are 
merged, resulting in a reduction in the number of remaining clusters is q where q is 
the target number of clusters and could be a part of the input. 

The distance between two clusters can be defined in many ways. The commonly 
employed metric is the single link metric, as others did [2-4], and we also employ the 
single link metric as well. 

Efficient sequential and parallel clustering algorithms have been studied 
extensively from researchers. By far the runtime of O(n2) is the lowest to reach the 
goal of clustering n points under the single link metric [2,3]. Rasmussen and Willett 
[5] discuss the parallel hierarchical clustering using the single link metric and the 
minimum variance metric on a SIMD array processor. Although a significant constant 
factor speedup is achieved, their parallel algorithm can not decrease the O(n2) time 
required by the serial implementation. Li and Fang [6] describe the parallel algorithms 
for hierachical clustering using the single link metric on an n-node SIMD supercube 

                                                           
* Corresponding author. 
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and an n-node butterfly respectively. They affirmed that their algorithms run in 

O( nn log ) time on the hypercube and O( nn 2log ) on the butterfly. But in fact it was 

pointed out that the times required by their algorithms must be O(n2) [2]. Olson has 

presented O( nn log )-time 
n

n

log
-processor algorithms on the Concurrent-Read-

Concurrent-Write (CRCW) Parallel Random Access Machine (PRAM), butterfly, and 

tree models [2]. An O( 2n )-time n -processor SIMD shuffle-exchange network 
algorithm has also been given by Li [7]. E. Dahlhaus [3] develop an efficient parallel 
algorithm for single linkage clustering in O( nlog ) time with O(n) processors on a 

Concurrent-Read-Exclusive-Write (CREW) PRAM, given that a Minimum Spanning 
Tree (MST) is known. More recently, Rajasekaran [4] has presented a SIMD 

algorithm that runs in O( nlog )-time using 
n

n

log

2

 CRCW PRAM processors, and a 

Random algorithm that run in an expected O( n2log ) cycles on a  n×1 AROB. 

However, as pointed out in literature [9,10,11], most of the parallel algorithms for 
hierarchical clustering presented so far have an obvious drawback: they are all 
impractical, and thus are of only theoretic importance. For example, if a large 
database has 10000 objects (this is possible in such cases as in bioinformics and in 
intrusion detection), to perform the algorithms in [2] and [4], then at least 1000 and 
107 processors which shared a common memory must be needed respectively. 
However, it is very difficult to build such a shared memory machine by the present 
techniques [9,10]. Another drawback of these algorithms resides in the parallel 
models they used. Since concurrent read or write are required in these algorithms, it is 
not applicable for the EREW (Exclusive-Read-Exclusive-Write) PRAM. 

To overcome these two drawbacks, we propose an adaptive parallel hierarchical 
algorithm based on EREW. The contribution of our algorithm is as follows: 

 Using p processors where p can be adjustable in the range from 1 to 

n

n
p

log
1 ≤≤ , our proposed algorithm run in O(n2/p) time, according to the 

definition in [9,10,12], our algorithm is adaptive. 
 An improvement from CRCW to EREW is made in this algorithm. Although 

any CRCW or CREW algorithm can be converted into EREW algorithm in a 
straightforward way [10], the time needed must increase by O( nlog ) times. 

The rest of this paper is organized as follows. Section 2 introduces our algorithm , 
in Section 3, the performance comparisons follow. Finally, some concluding remarks 
are given in Section 4 as well as some future research directions in this field.  

2   The Proposed Algorithm 

As we know[2,3,4], Hierarchical clustering may be represented by a dendrogram that 
can be easily constructed from a Euclidean minimum spanning tree of the n input  
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points [2]. So the main wok for hierarchical clustering is to finding EMST and 
identifying the connected components of a graph[2,3,4]. However, before the EMST 
can be constructed for n given points, one auxiliary thing have to be done is to obtain 
the distance of every pair of points and save them (i.e. to construct a completed graph 
for n points). Now we at first describe the parallel algorithms for this step. 

Suppose that in SIMD-PRAM model we have p processors where 
n

n
p

log
1 ≤≤  and 

O(n2) shared memory units, while each processors have O(1) local memory. 

2.1   A Complete Graph Constructed in Parallel 

Let the initial input points have m dimensions. At first we have to obtain all distances 
dij for all pairs of points Vi and Vj where nji ≤≤ ,1 . There are many methods to 

denote a completed graph G(V, E) [10]. Here, for the convenience of the following 
process, adjoin matrix M is used. To construct an adjoin matrix for a given graph G, 
there are several parallel algorithms [11], but they are all based on SIMD-CRCW or 
SIMD-CREW models. Thus we use the elegant ideas[9,13] to design parallel EREW 
algorithm for constructing an adjoin matrix M for completed graph G.  

Algorithm 1. Parallel algorithm for computing all distances dij of edges eij, 
nji ≤≤ ,1  

The n input points V1(x11, x12,…,x1m), V2(x21, x22,…,x2m),…, Vn(xn1, xn2,…,xnm) are 
given 

begin 
for  l = p to 1 step by – 1  do  

for  all processors Pi where 1 li ≤≤  do 

    for  k = 1)1( +−+−⎥
⎦

⎤
⎢
⎣

⎡
lpi

p

n
 to )( lpi

p

n −+×⎥
⎦

⎤
⎢
⎣

⎡
 do 

      for  j = ( 1) 1
n

i
p

⎡ ⎤
− +⎢ ⎥

⎢ ⎥
 to i

p

n ×⎥
⎦

⎤
⎢
⎣

⎡
 do 

begin 

compute the Euclidean distance dkj where ∑
=

−=
m

s
jskskj xxd

1

2)(  

write dkj to the shared memory 
end 

end 

Here, as figure 2 shows, when np , algorithm 1 must perform well. However, it is 

trivial to process similarly in algorithm 1 when np  is not the case. 

Lemma 1. Algorithm 1 can be efficiently executed on SIMD-PRAM without memory 

conflicts in )(
2

p

n
O  time and O(n2) work. 
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Proof. Assume that the time for computing the Euclidean distance for each PRAM 
processor is O(1) (in fact it must be O(m), in this paper we let m be a constant), the 

conclusion can be shown from the figure 2. (i) if np . As the algorithm 1 shows, 

there are 3 for cycle to perform in order to execute algorithm. The time needed in the 

proposed parallel algorithm is 
p

n

p

n

p

n
p

2

=×× , and the total work (cost) is thus 

equal to 2
2

n
p

n
p =× . When any processor has obtained the Euclidean distance dij, it 

write it to the different location of the shared memory. Because every dij which 
different processors write are different from each other, there are no write conflicts 
among different processor. As figure 1 shows, in any time for different processors Pi 
and Pj, if i < j, then the subscripts of d computed by processor i will be totally 
different with that read by processor j, which means that the memory units processor i 
and j read are also different in any time. Thus there are no read conflicts among 
different processors, either. And algorithm 1 can be executed on EREW computation 

model. (ii) if np  does not hold. In this case, except the final processor and in final 

cycle for l, the situations for other processors and other cycle are as same as that in 
case 1, and the time and work bound will not change. 

n…

…

 
                        a. when l = p                     b. when l = p – 1                       c. when l = 1 

Fig. 1. The data allocation in different processor as algorithm 1 executes 

2.2   Generation of MST 

Now we have known all distances dij from points Vi and Vj, 1 nji ≤≤ , , which make 

up a symmetry adjoin matrix. Based on this matrix, the next task for clustering is to 
generate a MST of completed graph G. parallel algorithms for generating MST have 
been extensively researched in past twenty years, and there are many different parallel 
algorithms to get a MST from a known graph [12,14]. However, because of our 
objective is to cluster n input points (items), which require pruning some edges 
(section 2.3) after getting a MST, we use the parallel algorithms proposed by Akl, 
etc[12]. This parallel algorithm is an adaptive and cost-optimal parallel algorithm for 
MST, and is without memory conflicts.  
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Algorithm 2. The parallel algorithm for producing MST[12] 

Limited by the space, for more details on the parallel algorithms, one can refer to 
[10,12]. 

Lemma 2. Algorithm 2 can be execute in PRAM-EREW, and the total time and work 

for execute the algorithm 2 is (n2/p), and O(n2), respectively, if 
n

n
p

log
1 ≤≤ . 

Proof. Because the number of processors in the proposed algorithm is p where 

n

n
p

log
1 ≤≤ , the conclusions are validated [12]. 

2.3   Pruning Edges and Finding Connected Components 

Now we have obtained the MST of the n input points. The q clusters from the n input 
points are in need, so q – 1 longest edges must be pruned from the MST T. if this is 
done, then the left q subtrees (components) are the q clusters of interest. Thus there is 
still two parts of work to do, one is pruning edges from T, and the other is finding the 
needed connected components or subtrees. 

At first, we introduce the parallel pruning edges algorithm on EREW-PRAM. 

Algorithm 3. Pruning edges algorithm 

begin 
for k = 1 to q – 1 do 

for all processor Pi where 1 pi ≤≤  do 

find the longest edges from the edges set of TREE[ ]
1

)[1(
p

n
i

−−  + 1] to 

TREE[ ])
1

[(
p

n
i

−
] do  

call Procedure MAXIMUM  
delete the longest edge  
call Procedure BROADCAST in [10,12]  

end  
Procedure MAXIMUM( ],,1[ pA L )  

begin 

for all ip  where ⎥⎦
⎤

⎢⎣
⎡≤≤

2
1

p
i  do 

for j = 1 to [ ]nlog  do 

    if (i mod 2j – 1) = 0 and 2i + 2j – 1 ≤ p +1 then 

      if A[2i – 1] < A[2i–1+2j – 1] then A[2i – 1] = A[2i–1+2j – 1] end if 

  end if 

end 
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Lemma 3. Algorithm 3 can be executed on EREW-PRAM in 

O( )1()log2( −×+ qp
p

n
) time. 

 

Proof. It is known that finding the maximum can be finished in linear time with the 
number of items. In our algorithm, each processor takes O([(n-1)/p]) time to find the 
longest edge from its [(n-1)/p] edges. The time needed for running subprocedure 
BROADCAST [12] and MAXIMUM are both O( plog ). To obtain q clusters from 

the n input points, the circle will have to be run for q – 1 times. Thus the total time for 

running the algorithm 3 is O( )1()log2( −×+ qp
p

n
). Obviously, as we almost 

evenly divide the array TREE[n – 1] into p blocks, and the subprocedure MAXIMUM 
is designed to perform on EREW, there is no memory conflicts in algorithm 3. 

After pruning edges from the MST, the final step to cluster n objects is to decide 
which points are in the same cluster. In fact, there left q connectivity components or 
subtrees after performing pruning procedure. So the task of this step is finding the q 
connectivity components. Parallel connectivity algorithms had once been extensively 
researched in past years, and there are many such parallel algorithms [15,16]. For 
more details on the parallel algorithms for this problem, one can refer to [15,16]. 

However, none of these algorithms are of our need in the case that the graph has 
become a forest which is saved as an array TREE[n – 1], either for their not having 
adaptivity, or for their time complexity. Therefore, we designed a new parallel 
connectivity algorithm to our need, which is both adaptive and without memory 
conflicts. 

In our algorithm for finding the q connectivity components or clusters, an array 
D(n) is defined, which is used to store the number of the connectivity components, 
and at first it is initialized as D(i) = i. After the algorithm is performed, if node i and j 
are in the same cluster k, then D(i) = D(j) = k. for the convenience of describing the 
algorithm, assume that all edges of the forest are saved in array TREE[n – 1] from 
TREE[0] to TREE[n – q – 1]. If this condition is not satisfied, one can easily do this 
with O(n) time. 

Algorithm 4. Algorithm for finding the q connected components of graph G 

begin  
for all processor Pi where 1 pi ≤≤  do 

for  u = )1( −×⎥
⎦

⎤
⎢
⎣

⎡
i

p

n +1 to i
p

n ×⎥
⎦

⎤
⎢
⎣

⎡   do              

       D(u) = u 
    for  i = 0 to n – q – 1  do                     
    vl = TREE[i][1] and vm = TREE[i][2] 

if  l > m  then  D(l) = D(m) 
else  D(m) = D(l) 
end if 
call Procedure FIND 

end 
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Procedure FIND(j, k )  
for all processor Pi where 1 pi ≤≤  do 

find all D(t) from D[n/p× i] to D[n/p × i + n/p× (i + 1) – 1] where D(t) = j  
D(t) = k 

In algorithm 4, after the first cyclic is performed, the array D(n) is initialized, and 
the corresponding relation of array D(n) with the vertexes of the graph G(V, E) is 
depicted in Figure 2. 

 

Fig. 2. The corresponding relation of the initialized array D(n) with all vertexes 

While in the second cyclic, if two vertexes connected by the current input edge are 
xi-1 and xi (ie., TREE[k][1] = xi-1, and TREE[k][2] = xi), then the value of ith element 
of array D, D(i) will change into i – 1, as Figure 3 shows. 

 

Fig. 3. If an edge (xi-1, xi) appears in the forest, the value of array D will be altered 

If this is the case happened, the Procedure FIND is called to alter the values of all 
array elements whose value is being i to i – 1, for it is possible that one edge in the 
forest connecting vi and vj (j > i) is processed before edge (xi-1, xi). There are only n – 
q edges in forest, so after these codes are performed for n – q times, the label number 
stored in array D(n) is the number of cluster. While for certain cluster, all sequence 
number of array D(n) having same array element are the corresponding vertexes of 
this cluster. 

Lemma 4. Algorithm 4 can be performed in O(n2/p) time with p processors on 
PRAM-EREW where p ≤ n. 
 
Proof. The first cyclic can be finished in O(n/p) time. Since the subprocedure FIND 
takes at most O(n/p) time, the second cyclic will take O((n – q)× n/p) time. Thus the 
total time to perform algorithm 4 is O(n/p) + O((n – q)× n/p) = O(n2/p). As in the 
whole performing stage, all processor only read data from its memory units, and at the 
same time there are no different processors write into the same memory units. It is 
obvious that the algorithm can be performed on PRAM-EREW model. 
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2.4   The Proposed Parallel Hierarchical Clustering Algorithm 

So far, we have finished the three steps of hierarchical clustering. Now combined the 
above four algorithms, one can obtain the parallel hierarchical cluster algorithm, 
which is based on the EREW model, and totally without memory conflicts. 

Algorithm 5. Parallel algorithm for hierarchical cluster based on EREW 

Step 1. perform the parallel algorithm for computing the adjoin matrix. 
Step 2. perform the algorithm for producing the MST. 
Step 3. perform the parallel pruning edge algorithm. 
Step 4. perform the algorithm for recognizing connected components. 

Theorem 1. Clustering n input points can be finished in O(n2/p) time with p 
processors on EREW-PRAM model. 

 
Proof. Following the lemmas 1 to 4, the total time needed to perform the proposed 

parallel cluster algorithm is T = n2/p + n2/p + ( )1()log2( −×+ qp
p

n
) + n2/p. Notice 

that in algorithm 2 and 4, the number of processors are limited in the range of 

n

n
p

log
1 ≤≤  and np ≤≤1  respectively. At the same time, the number of the needed 

clusters q satisfies that q ≤ n. Thus the total time to perform the parallel clustering 
algorithm is bounded by O(n2/p). Since algorithms 1 to 4 are all based on SIMD-
EREW model, it is obvious that the proposed parallel algorithm can be performed on 
EREW-PRAM. And it is also shown that in this algorithm, all memory conflicts 
which may happen among different processors are avoided. 

3   Performance Comparisons 

For the past years, hierarchical clustering has been extensively researched, and there 
are many parallel algorithms for it on different models, for example the algorithms in 
literature [2,3], [7-8,17]. These algorithms are mainly based on SIMD parallel 
computation models. Following the previous researches, the performance comparison 
will be described in terms of time-processor tradeoff, i.e., the cost of the parallel 
algorithm[9,10]. Rasmussen and Willett [5] were the first to discuss parallel 
implementations of clustering using the single link metric on a SIMD array processor. 
But they can not decrease the O(n2) time required by the best serial implementation. 
Li and Fang [6] also presented parallel algorithms for hierarchical clustering using the 
single link metric on an n-node hypercube and an n-node butterfly. However, The 

time needed in their parallel algorithm is O(n2), too [6]. Later, an O( 2n )-time n -
processor SIMD shuffle-exchange network algorithm has been given by Li [7]. Olson 
[2] showed that parallelism could accelerate to solve larger instances of this problem. 

Their algorithm runs in O( nn log ) time by allowing 
n

n

log
 processors to currently 
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access O(n2) units in shared memory. E. Dahlhaus’s efficient parallel algorithm [3] for 
single linkage clustering runs in O( nlog ) time with O(n) processors on CREW-

PRAM under condition that the a Minimum Spanning Tree of the n input points is 
given. Another PRAM algorithm recently presented by Rajasekaran [4] runs in 

O( nlog )-time using 
n

n

log

2

 CRCW processors, resulting to an O(n2) computation 

cost.  
The common characteristic of most of the above algorithms is that they are all 

based on the CRCW or CREW models, and thus there exist memory conflicts among 
different processors when they access the same memory units concurrently. Although 
It has been shown that every CREW or CRCW algorithms that require T(L) time 
using P(L) processors (where L denotes the size of input or output data) can be 
transformed into an EREW algorithm which requires time O(T(L) Llog ) still using 

P(L) processors [10]. Since our proposed algorithm is designed for EREW model, 
hence. In practical, in according to the definition of cost for parallel computation [10], 
the cost of our algorithm is only )/(log1 n  of the algorithms in [2,3,4]. Secondly, like 

the algorithms in [9,12,13], the number of processors in our algorithm can be adjusted 
from 1 to )/(log1 n in accordance to the scale of the problem and actual computation 

condition, while keeping the computation cost unchanged. It can provide the 
probability for clustering very large datasets. Therefore, according to the definition in 
[9,10,12], our algorithm is adaptive or scalable. 

For the purpose of clarity, the comparisons of the mentioned parallel algorithms 
which are based on SIMD model for hierarchical clustering are depicted in Table 1. It 
is obvious that our parallel algorithm outtakes undoubtedly other parallel algorithms 
in the overall performance. 

Recently, M. Dash etc [17] present a parallel algorithm for hierarchical clustering, 
and this algorithm has good theoretical and experimental performance as compared 
with the relevant algorithms, but that algorithm is not based on SIMD models and 
 

Table 1. Comparisons of the parallel algorithms for Hierarchical Clustering 

algorithms Model Time Processor Adaptability Cost 

Sequential [2] sequential O (n2) 1 no O (n2) 

Rasmussen and 

Willett[5] 
CRCW O (n2) n / nlog  no O (n2) 

S.Rajasekaran[4] CRCW O ( nlog ) 
O (n2 

/ nlog ) 
no O (n2) 

Li and Fang[6] 
SIMD 

hypercube 
O(n nlog ) n no 

O 

(n2 nlog ) 

Li[7] 
SIMD 

shuffle-exchang
O(n2) n no O(n3) 

Olson[2] CRCW O (n nlog ) n / nlog  no O (n2) 

Dahlhaus[3] CREW O( n) n no O(n2) 

Ours EREW O(n2/p) p yes O(n2) 
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their metrics for distance are centroid method. Although their method is valuable on 
improving the practical performance of clustering algorithms, theoretically, it is not 
comparable with our proposed algorithm. 

4   Conclusions 

Based on the EREW-SIMD machine with shared memory model, a new parallel 
algorithm for hierarchical clustering is proposed. The proposed algorithm use p, 

n

n
p

log
1 ≤≤ , processors to clustering n objects in O(n2/p) time, resulting to O(n2) 

computation work which is by far the lowest in serial way. Since the number of 
processors in our algorithm can be adjusted in the range from 1 to n / nlog according 

to the available computation resources and the scale of the problem to be processed, 
our algorithm is adaptive[9,10]. To our knowledge, it is the first parallel algorithm in 
the sense of both without memory conflicts and adaptive for the hierarchical 
clustering on PRAM model. 

On the other hand, although the number of processors in the proposed algorithm 
can be adjusted, we still can’t rely on this kind of algorithms to solve the large scale 
clustering instances, for it is not possible to construct such shared memory computers 
with a large number of computers. Although presently M. Dash etc s’ algorithm are 
also performed in shared memory multiprocessor system (MIMD) [17], the number of 
processors is not large enough to clustering large scale datasets, especially to cluster 
gene data clustering. Since the supercomputer systems are mainly based on cluster 
technology now, it is a worthwhile work to investigate on feasible parallel algorithms 
based on present main distributed memory system. 
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Abstract. Efficient exploitation of the aggregate resources available to
a researcher is a challenging and real problem. The challenge becomes all
the greater when researchers who collaborate across functional or admin-
istrative domains need to pool their disjoint heterogeneous resources to
achieve their objectives. Support tools are becoming available for these
ad hoc resource integration and sharing scenarios. The focus of this pa-
per is the identification of suitable deployment and usage strategies when
using the workflow approach with these tools. In particular, we present
a novel two-level peer-to-peer model for dynamic resource aggregation
that operates entirely at the user level. This sidesteps the need for sys-
tem level middleware and administrative support. This paper presents
our strategy, the underlying framework and the workflow expression and
evaluation semantics.

1 Introduction

Much research is conducted in environments where there exist multiple indepen-
dent resources and multiple dynamic groups of occasionally collaborating users
with varying levels of access to subsets of those resources. Resources may be widely
distributed and have very different architectures and administrative policies. Such
environments evolve naturally within and among academic and industrial research
facilities. These sites are typically funded departmentally yet collaborations may
span departmental or other administrative or functional borders.

Without a large-scale, ongoing and predictable pattern of collaboration there is
little motivation to implement and maintain a computational grid [1] solution to
the problem of resource aggregation. Even if such a solution were provided it may
not be optimal for many classes of problem; the grid model of distributed comput-
ing is largely focused on high throughput batch processing and not easily tuned
to support other priorities such as deadline or interactive (steered) processing.

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 108–119, 2007.
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In such scenarios there is a need for lightweight user-level tools that facilitate
dynamic resource aggregation while ensuring the efficient use of resources. Such
tools are emerging, yet the availability of tools that facilitate resource aggrega-
tion is not in itself enough to guarantee efficient resource usage and sharing.

This report presents our use of the Webcom system [2], [3], [4] to aggregate
and abstract distributed heterogeneous resource sets. These resources are typi-
cally under the control of different administrators and in active use by different
research groups for a diverse range of application types. We demonstrate our use
of Webcom as a tool for resource aggregation using a novel two-level peer-to-peer
Overlay Metacomputer model.

This paper makes the following contributions,

1. We propose a methodology for the dynamic aggregation of disjoint indepen-
dent resources. The aggregate resource set behaves as a distributed virtual
machine that interprets a common workflow expression format on all plat-
forms, thereby abstracting site differences. Our model provides a locality-
aware peer based system for load balanced workflow execution. This ap-
proach relies solely on user-level access to resources and does not depend on
any particular middleware or uncommon site policies.

2. We present our workflow expression and execution tools built on top of
the Webcom graph evaluation engine. With these tools we can make use
of Webcom’s unique semantics and task distribution capabilities to achieve
efficient workflow evaluation.

3. We present results of tests of our model, using both synthetic and real appli-
cation examples in a real and very heterogeneous environment consisting of
distinct and independently administered resources of different architectures
with only partially overlapping user communities.

The rest of this paper is organised as follows. In section 2 some background
details are presented to put our current report in context. The approach taken
is detailed in section 3. A motivating example is presented and discussed in
section 4. Initial results of experimental evaluations are presented in section 5.
Related work is discussed in 6. We close this report by presenting conclusions
and outlining future work targets in section 7.

2 Background

Webcom is based on the Condensed Graph (CG) model of computing [5]. A
CG is a directed acyclic graph (DAG) with enhanced semantics. Each node in
a CG is an executable entity. A node may represent a single instruction or an
entire graph that has been condensed (abstracted) to node form. Certain nodes
affect the flow of control (e.g., the conditional node) and, used in conjunction
with CG edge semantics, direct the order of graph evaluation. The CG model
is intended to give the programmer the benefits of both the control flow and
data flow models of computing in a single system. Webcom is implemented as a
peer-based CG evaluation engine; a distributed virtual machine that interprets
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the CG language. A detailed description of Webcom is presented in [4]. Webcom
is implemented entirely in Java to increase its portability. Our work focuses on
implementing workflow via Webcom, and analysing suitable deployment strate-
gies for different application and environment types, to support the development
of real applications with Webcom.

3 Approach

This section presents the runtime organisation and workflow expression strate-
gies of our model. These have been designed to leverage the capabilities of the
Webcom framework and the features of the CG model to support application
deployment in heterogeneous computing environments.

3.1 Runtime Topologies

Our approach to resource aggregation consists of constructing a two level over-
lay network across the available independent resources. When combining mixed
resources including stand-alone machines, Condor pools [6], [7], and clusters con-
trolled in space sharing mode, a top level ring links the sites. This is in keeping
with the work presented in [8] where it was shown that a peer-to-peer ring of
Condor pools proved an efficient, scalable and fault tolerant method to connect
sites. This top level ring is set up by starting the Webcom service at each site
using the site’s task submission interface. These Webcom instances connect to
each other forming the top level Webcom world.

Systems have been reported in the literature that use Ring (e.g., Chord [9] and
Tapestry [10]), and Balanced Tree [11] based topologies. The Webcom system is
in this sense ‘model free’; machines can be connected in any of these structures
or combinations thereof. We exploit this fact to group peers in the topology best
suited to their characteristics. Overlay strategies for connection management
are well established, with many efficient and robust solutions reported in the
literature [12], [11], [13], so new topologies are not a strong focus of our current
research. Hence, our illustrative example uses a ring at the top level, rather than
any more sophisticated connection management structure.

Similarly, a site-internal Webcom world is set up at each location using the
processors allocated by the local resource manager as appropriate. The topology
chosen at each site depends on the nature of the site and the number of proces-
sors to be used. In a mixed and widely disbursed or very heterogeneous Condor
pool, a tree topology is suitable as this means less traffic over the network and
less impact to the Webcom world when an individual Webcom is preempted by
Condor [14], [11]. At a dedicated space sharing site where preemption is not a
factor and all processors are connected to the same switch, a star topology is
more efficient. There remains the risk of losing connection with the entire clus-
ter, but the loss of an individual node is far less likely than at a cycle scavenging
site. Webcom can also be used to group any number of independent workstations
as it does not rely on the existence of a batch job manager for resource access.



Resource Aggregation and Workflow with Webcom 111

Fig. 1. An example of a Webcom overlay metacomputer. This example scenario shows
the aggregation of resource from three sites: a Condor pool shown on the left, a PBS
queue on the right, and an SMP machine at the bottom. A top level ring is formed with
these and a stand-alone workstation (at the top of the circle). The latter may act as the
point of submission for the user’s workflow and also contribute to task execution. With
this overlay in place, workflow graphs can be evaluated across the aggregate resource
set, with Webcom providing load balancing across the individual sites and abstracting
underlying differences in platform and topology.

A schematic of the approach is presented in figure 1. This shows a scenario
wherein three sites form a top level Webcom world. Each site hosts an indepen-
dent Webcom world.

3.2 Workflow and Job Description Languages

Expression languages for scientific workflow have been presented in a range of
projects for various systems [15], [16], [17]. Our workflow and job description
languages make use of the Condor DAGMan syntax and offer the potential to
go beyond its semantics. DAGMan workflows and CGs are both DAG based,
therefore every DAGMan workflow has an equivalent CG representation. The
workflow structure, expressed in the DAGMan language as a collection of jobs in
a parent/child hierarchy maps to an equivalent shape CG. As Webcom facilitates
flow control with conditional execution, iteration, and explicit recursion, it can be
seen as a superset of the DAGMan language. Mapping the semantic concepts of
Condor/DAGMan to the Webcom equivalent, as the two systems have radically
different deployment architectures, requires the use of specific Webcom nodes
designed to handle particular Condor job types. Figure 2 shows a synthetic
example application.

Our Webcom based workflow strategy uses three layers of condensation in
each workflow. The top layer is the workflow shape; the middle layer provides
exception handling. This is built into the graph expression making exception
handling a fully distributed part of workflow execution. The lowest layer shows
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Fig. 2. Workflows are implemented as a set of graphs with this pattern of condensation.
The top level graph expresses the logical sequence of tasks in the workflow. The middle
layer provides exception handling using Webcom’s flow control operators and lazy
evaluation semantics. The lowest level graph uses Webcom’s ability to add nodes to a
graph at runtime, using an enumeration node, dynamically creating a cluster of one or
more jobs.

the mapping from workflow task expression (attribute/value pairs) to graph.
When one of these graphs is executed on a Webcom worker, the “Parse” node
downloads the job definition from the submission site and generates a set of
parametrised job entities. These are passed to the “Gen” node who generates a
set of work execution nodes (instances of “Exec”), feeding each its own version
of the job description. This allows for site specific and task specific information
to be calculated when and where appropriate. This deferred approach to task
interpretation means that task definitions can change after submission of the
initial workflow. In the event of a task’s failure, its children must not attempt to
execute and the workflow should be aborted. In the absence of a central point
of control (fully decentralised workflow execution), where the tasks have been
submitted to the workflow system and are pooled for execution, conditional
execution of child nodes is used. The condition for execution of a child node
is the successful completion of all parents. Failure of a parent results in the
propagation of trace data through the graph that facilitates fault detection and
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re-running of the outstanding tasks. This behaviour is guaranteed by the lazy
evaluation semantics of the CG model. The nodes containing the task execution
logic are only evaluated when needed. If all parents are not fully successful, the
child task is not needed and so needless resource consumption is minimised.

4 Example Application

As part of the Webcom project we are collaborating with the Medical Physics
department of the University College Hospital Galway (UCHG) in an ongoing
effort to develop a distributed Radiation Treatment Planning (RTP) workflow
solution based around the use of a Monte Carlo (MC) radiation transport sim-
ulation package.

The use of the MC technique in medical physics has become increasingly
common. In radiotherapy, it is widely accepted that MC is the most accurate and
general calculation method available [18]. A number of review articles exist on
this topic [19], [20], [21]. The main drawback of this method is the time involved.
The more traditional, but less accurate [22], solutions such as the pencil beam
[23] or collapsed cone [24] calculation will take minutes to perform on a standard
desktop. A MC calculation can take days to complete. Our objective is to provide
MC based results in a time-frame that makes MC a viable option for clinical use.

The full workflow for this application involves data transport, the acquisition
and generation of simulation model input data, preparation of executables for dis-
tribution based on currently available resources, the simulation itself, result accu-
mulation and verification, format translation, and visualisation. This application
and our approach to it are described fully in a forthcoming paper. The purpose of
this overview is to demonstrate the applicability of our resource aggregation ap-
proach and workflow model to very real and computationally intensive problems.

4.1 Application Requirements

The main computational step in the RTP workflow is the MC phase. However,
there are significant data input and output issues. An accurate run of the sim-
ulation results in the transport, analysis and visualisation of approximately 20
GB of data. Runtimes are dependent on a number of user specified parameters;
a usable result can be generated in 70 to 100 CPU hours. A clinical time-frame is
in the order of one to three hours. Providing medical rather than computational
science experts with the necessary computational power in a flexible, reliable
and accessible manner is the central challenge of this application. Our approach
answers that challenge by facilitating the harnessing of disjoint resources on-
demand, and ensuring the efficient use of those resources.

4.2 Application Environment

Due to the interdepartmental nature of our research group, a mixed collection
of resources are accessible for use. These include a 64 processor cluster (32 dual
Intel Xeon 2.4 GHz processor machines with two GB of RAM per machine)
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managed by Torque [25] [26] and Maui [27] in space sharing mode, a very het-
erogeneous Condor pool featuring high end graphics workstations (two dual-core
AMD Opteron processors with 16GB of RAM), more modest Linux worksta-
tions, and general purpose laboratory machines (Intel Pentium III and Pentium
IV based machines with between 128MB and 384MB of RAM running Windows
2000 or Windows XP). Added to this there is a 16 CPU AMD Opteron SMP
machine with 32GB of RAM, partially managed by Torque/Maui and donat-
ing spare cycles to the Condor pool. Other independent (typically midrange)
workstations are managed directly as Webcom clients.

4.3 Discussion

None of these resources alone can provide the computational needs of the ap-
plication due to queue lengths, policy restrictions, or a combination of these
and other factors at individual sites. The benefit of our approach is the ease
and consistency with which the available resource subsets at each site can be
harnessed into an efficient and powerful metacomputer suitable for the process-
ing of the application workflow. Users can drive the application from a portal
that supports parametrisation of the workflow and the upload of patient- and
treatment plan-specific inputs. Progress can then be steered based on the expert
user’s interpretation of intermediate results.

Fig. 3. A sequence of decompositions for a parallel application. The ‘Java’ timings
show the basic performance of a 16 way parallel application. The ‘1x16’ arrangement
refers to a one node workflow version of the application. The ‘2x8’ arrangement uses
two nodes, each of which executes eight threads at the application level. The ‘16x1’
set of timings show the performance when the parallelism of the application is entirely
exposed at the workflow level. In all cases, for all task durations, the cost of workflow
expression is approximately two or three seconds.



Resource Aggregation and Workflow with Webcom 115

5 Evaluation

The basic performance of Webcom as an efficient resource manager and graph
execution engine is shown in figure 3. This experiment shows Webcom’s perfor-
mance when executing different workflow expressions of a parallel application.
The test application simulates a scalable job capable of being decomposed into
different arrangements. As the decomposition becomes increasingly fine grained
with more of the parallelism exposed at the workflow level (rather than the
application logic level), the overhead of graph management remains reasonably
constant, with execution times as short as 15 seconds.

The RTP application is scalable and can be tuned dynamically to the available
resources such that each node in the MC phase has approximately the same run-
time. Figure 4 shows the results of executing the MC phase of the RTP workflow
over a dynamically aggregated collection of 165 processors from different sites.

Fig. 4. A plot of start times to finish times for different decompositions of the radiother-
apy workflow executed over a collection of 165 machines using our resource aggregation
strategy to combine resources controlled by different managers including Condor and
PBS, in conjunction with stand-alone machines running the Webcom service. The ar-
rangement of 800 jobs shows the best performance as it is capable of making use of all
available resources. The smaller decompositions expose less parallelism at the workflow
level and consequently fewer machines are used, leading to longer execution times for
each job and consequently longer workflow execution times.
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This shows that the more fine grained decompositions of the task, which equate
to a larger number of shorter jobs, results in better completion times. One rea-
son for this is that the overall impact of jobs that are delayed on non-dedicated
machines is greatly reduced as each individual job represents a smaller fraction
of the overall workflow. The efficient handling of large parallel workflows over
mixed machines, demonstrates the utility of our approach.

6 Related Work

This work builds on investigations conducted in many areas related to task and
resource management. Pinchak [28] describes an approach to building a load
balancing meta-queue over a set of independent batch processing sites using the
concept of a placeholder task, inserted into each site’s queue, whose purpose is
to pull down instructions from a work server and execute tasks using the queue’s
resources. Our work is conceptually similar in that we use multiple independent
sites to form a metacomputing platform by overlay. However, the work in [28]
and [29] (the latter presents a DAG oriented extension to server) achieves load
balancing via self-scheduling workers that pull tasks from a single master site
following a fixed eager strategy. The Master/Worker (MS) model of work distri-
bution, as used in [28], is popular and well suited to certain classes of problems.
However it is not necessarily the most scalable model as the master’s ability
to dispatch work and collect results can prove a bottleneck [30]. The use of hi-
erarchical MS topologies has been studied as a step towards dealing with the
scalability issue [31]. A fundamental difference between [28] and this project is
our use of the peer-to-peer model [32] to achieve greater scalability.

Other systems offer a single package solution for resource aggregationand work-
flow execution, e.g., the Java CoG kit [33] offers the ability to use a suite of resource
access protocols including Globus [34], SSH [35], and web services, for workflowex-
ecution. Java CoG kit is built on the client/server model with pre-packaged com-
ponents for interacting with various resource managers. Workflow is defined and
managed using graphical or script languages that are translated to an XML-based
intermediate representation. Our work differs as we use a multi-level P2P over-
lay abstraction for resource aggregation to increase scalability and robustness. In
addition, as our approach is based on a graph-oriented model of computing that
provides a strong theoretical basis from which to reason about the execution of
workflow graphs. This model also provides conditional and iterative execution,
recursive graph definitions, and combinations of lazy and eager evaluation strate-
gies, which we leveraged to achieve decentralised exception handling.

The use of heterogeneous resources introduces the problem of platform de-
pendence; we have tackled this problem using concepts developed within the
Condor project [6], [7]. Condor supports cycle harvesting across heterogeneous
non-dedicated resources to implement a distributed batch system focused on
high throughput computing [36], [37]. Our technique uses the job and workflow
description languages developed in Condor and incorporates ClassAd [38] match-
ing with novel worker filtering techniques to achieve task to resource matching.
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Support for the expression and correctly ordered submission of dependency con-
strained job collections, or workflows, is implemented in Condor via the DAG-
Man tool [39]. DAGMan is a user level tool whose purpose is to ensure that jobs
are submitted in dependency-preserving order; it exerts no influence on Condor’s
placement and scheduling behaviour. Condor is batch-oriented and assumes that
jobs are independent of each other; DAGMan proceeds as a Condor client, work-
ing on behalf of a user, submitting jobs when all their dependencies have been
satisfied. Blythe et al. [40] discuss the impact of this lack of workflow awareness
at the scheduler or task allocation level; excessive or redundant input and output
transfer is identified as an issue with the Condor/DAGMan approach. Our ap-
proach is built on the Webcom graph evaluation engine and so the scheduler has
access to all the inter-task dependency information in the workflow expression.

7 Conclusions and Future Work

In this paper we have described our approach and methodology for resource
aggregation and collaboration support. The problem of integrating the diverse
and distributed heterogeneous resources available to researchers has been tackled
with a user-level overlay metacomputer. In addition, we have described the usage
of our tools designed to support workflow execution in a dynamic peer-to-peer
context. Initial results from both simulation and real applications have been
presented to illustrate the efficiency of our model.

The purpose of this work is to support the development of solutions to real
problems; these problems exhibit significant data and computational require-
ments. The solutions proposed herein are capable of exploiting the aggregate
computing power of disjoint resource sets. Our future work will involve further
optimisation of the tools discussed and support for dynamic task priority man-
agement, as well as enhancements to the automation of topological structuring
and restructuring of Webcom overlays.
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Abstract. View-Oriented Parallel Programming(VOPP) is a novel pro-
gramming style based on Distributed Shared Memory, which is friendly
and easy for programmers to use. In this paper we compare VOPP with
two other systems for parallel programming on clusters: LAM/MPI, a
message passing system, and TreadMarks, a software distributed shared
memory system. We present results for ten applications implemented
and optimized using all the three systems. Experimental results demon-
strate that VOPP is almost as efficient as Message Passing Interface
when running on up to 32 processors, which means there is significant
performance improvement compared with TreadMarks. The factors con-
tributing to the performance of VOPP are discussed and analyzed. VOPP
is still slower than MPI when the number of processes is large because
of extra messages for separate synchronization and lack of bulk transfer
mechanisms.

1 Introduction

Software distributed shared memory systems provide a shared memory abstrac-
tion on top of the native message passing facilities. It leaves the chore of message
passing to the underlying DSM systems so that it is easier to program. How-
ever, DSM systems tend to generate more communication and therefore be less
efficient than message passing systems [14].

View-Oriented Parallel Programming(VOPP) [3] is a programming style based
on distributed shared memory. Traditional DSM systems like TreadMarks [1]
are far from efficient compared with Message Passing Interface [7]. The reason
is that programs written in MPI can be finely tuned by reducing unnecessary
message passing. As we know, message passing is a significant cost for parallel
applications, which is also true for DSM programs. Programmers cannot help
reduce messages with traditional DSM systems as consistency maintenance of
the underlying systems deals with the whole shared memory space.

We propose a novel VOPP programming style for DSM applications which op-
timizes DSM performance by introducing a new consistency maintenance protocol
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VOUPID [4] and allows programmers to participate in performance tuning by wise
optimization of data allocation. VOPP programs perform much more efficiently
than TreadMarks. The performance gain is two-fold. First, the consistency main-
tenance for views reduces unnecessarymessages and unnecessary data. The consis-
tency maintenance protocol VOUPID solves the diff accumulation problem which
limits the performance of TreadMarks. Second, VOPP enables programmers to
tune the performance by wisely partitioning views.

Our ultimate goal is to make VOPP performs as efficiently as MPI. So far, the
performance of VOPP is comparable with MPI and they are almost as efficient
as each other while running on less than 32 processors. In this paper, we are
going to compare VOPP with TreadMarks and MPI in terms of performance
and investigate the factors contributing to the performance of VOPP.

Contributions of this paper include:
1) We use 10 applications for performance evaluation. The result presented

in this paper is more convincible than the previous research which only used 4
applications.[6]

2) We perform a detailed performance analysis between VOPP, MPI and
TreadMarks and reveals that VOPP could achieve comparable performance with
MPI when the number of processes is up to 32. The performance of VOPP is
not as good as MPI when the number of processes is larger than 32. Then main
reasons are extra messages for separate synchronization and lack of bulk transfer
mechanisms.

The rest of the paper is organized as following. In section 2 we briefly de-
scribe the VOPP programming style. In section 3 we evaluate the performance
of VOPP by comparing it with TreadMarks and MPI. The reasons of the results
are also discussed and analyzed. Finally, we conclude our work and summarize
the usability and programmability of VOPP.

2 View-Oriented Parallel Programming

In the View-Oriented Parallel Programming(VOPP) style, programmers should
divide shared data into views according to the memory access pattern of the
parallel algorithm. A view [3] consists of data objects that require consistency
maintenance as a whole body. Views are indicated through primitives such as
acquire view and release view. Acquire view means acquiring exclusive access to
a view, while release view means finishing the access. In addition, acquire Rview
and release Rview are provided for read-only accesses. The read-only access
primitives can be called in a nested style while other access primitives can-
not. By using these primitives, programmers are now focusing on the access of
shared data rather than synchronization and mutual exclusion.

Views are defined implicitly by programmers in their mind. Therefore, it is
convenient for programmers to use the shared data and optimize the programs
by wisely partitioning views. Views cannot overlap each other and they are un-
changeable once they’re defined. A view can only be accessed when the primitives
are used.
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Programming in VOPP style, programmers can enjoy the convenience of ac-
cessing shared data with almost ordinary read and write operations. Program-
mers don’t have to determine what to communicate as the message passing is
left to the underlying system. Furthermore, by dividing shared data into views,
VOPP allows programmers to participate in performance optimization.

Much work has been done in the previous papers [3,5,4] to introduce optimiza-
tions in VOPP compared with traditional distributed shared memory systems.
In the following section, we will describe our recent work on VOPP.

3 Performance Comparison

In this section, we present our experimental results of 10 applications. All appli-
cations in our experiment are coded in VOPP, TreadMarks and MPI respectively.
Our DSM system, optimized VODCA[15], is used to run the VOPP programs,
Traditional DSM system, TreadMarks, is used to run the TreadMarks programs
and LAM/MPI V7.1 is used to run the MPI programs.

The applications used in our experiment include Gauss, Integer Sort(IS), Suc-
cessive Over-Relaxation(SOR), Neural network(NN), Water, Traveling Salesman
Problem(TSP), Barnes-Hut, BT, CG and MG, which are mostly chosen from
SPLASH-2 benchmark suite [12] and NAS Parallel Benchmarks(NPB) [13].

Our experiments were carried out on a cluster with Infiniband interconnec-
tions, running Linux 2.6. Each node has two 1.6GHz processors and 4 Gbytes
memory. The page size of the virtual memory is 32 KB.

3.1 Improvement on VODCA

As we know, barriers incur many messages, especially when the number of pro-
cesses increases. Furthermore, every process often waits for the slowest process
as there is synchronization when barrier is called. It significantly slows down the
parallel program if barriers are frequently called.

The source files of VODCA V1.0.1 can be downloaded from the web site
http://vodca.otago.ac.nz/. Barriers in this VODCA totally rely on the work of
the Vdc barrier manager, which is running on proc 0. When a barrier function is
called, every process sends a barrier requirement to proc 0 and then waits for an
end-of-barrier reply from Proc 0. We therefore could conclude that the barrier
manager has too much burden that it is the bottleneck of the whole barrier
process.

We implement the barrier with the binomial-tree model[11] whose complexity
is just O(logN) instead of the O(N) of the original linear model. As a result
the barrier time on 64 processes in the cluster we mentioned above is 623.8
microseconds, which is 17% faster than the original implementation. When the
number processes increases, it is expected that our new barrier implementation
could outperform the original VODCA implementation more significantly due
to the complexity difference.
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3.2 Performance Overview

Gauss implements the gauss elimination algorithm in parallel. The matrix size
of Gauss is 8000*8000 and the number of iterations is 1024 in our tests. The
TreadMarks Gauss program has the false sharing effect. The VOPP version has
significantly improved the performance by removing the false sharing effect with
local buffers. The speedup of Gauss is shown in Figure 1.

Fig. 1. Speedup of Gauss

Fig. 2. Speedup of IS

IS ranks an unsorted sequence of N keys using bucket sort and the problem
size in our tests is (227*217,40). The speedup of IS is shown in Figure 2.

SOR uses a simple iterative relaxation algorithm with a two-dimensional grid
as input. Every element is updated to a function of its neighbors’ values in
each iteration. We use local buffers for those infrequently-shared data in our
VOPP programs. In contrast, we use shared memory (a set of views) for those
frequently-shared data such as the border elements. In our tests SOR processes
a matrix with size of 8192*1024 in 100 iterations. The speedup of SOR is shown
in Figure 3.

NN trains a back-propagation neural network in parallel using a training data
set. The VOPP version of NN uses local buffers for infrequently-shared data
and acquire Rview for read-only data. The acquire Rview for read-only data is
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Fig. 3. Speedup of SOR

Fig. 4. Speedup of NN

Fig. 5. Speedup of Water

very important for the VOPP program. The size of the neural network in NN is
9*40*1 and the number of epochs taken for the training is 1024. The speedup of
NN is shown in Figure 4.

Water from the SPLASH-2 benchmark suite is a molecular dynamics simu-
lation program. The bulk of the inter-processor communication happens during
the force computation phase. Each processor computes and updates the inter-
molecular force between each of its molecules and each of n/2 molecules following
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Fig. 6. Speedup of TSP

Fig. 7. Speedup of Barnes-Hut

it in the array in wrap-around fashion. The data set we used is 1728 molecules
and 5 steps. The speedup of Water is shown in Figure 5.

TSP solves the traveling salesman problem using a branch and bound algo-
rithm. We solve a 19-city problem with a recursive-solve threshold of 12. The
speedup of TSP is shown in Figure 6.

Barnes-Hut from the SPLASH-2 benchmark suite is an N-body simulation us-
ing the hierarchical Barnes-Hut Method. We run Barnes-Hut with 32768 bodies
in our experiment. The speedup of Barnes-Hut is shown in Figure 7.

BT creates a binary tree with a depth of 9. It keeps all those unexpanded
nodes by using a task queue. The speedup of BT is shown in Figure 8.

CG from NAS Parallel Benchmarks implements conjugate gradient algorithm.
The data set we used in the experiment is 15 niter and 11 nonzer and 14000 nn,
which is defined as LARGE problem size. The speedup of CG is shown in Figure 9.

MG, which comes from NAS Parallel Benchmarks, solves a poisson problem
on a 128 by 128 by 128 grid, using 20 multigrid iterations. The speedup of MG is
shown in Figure 10. Speedup results for these applications are shown in Figure1
- Figure10. These figures show the relative speedup of the 10 applications written
in different styles running in the same hardware environment while the number
of processes increases. Programs of TreadMarks slow down significantly when
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Fig. 8. Speedup of BT

Fig. 9. Speedup of CG

Fig. 10. Speedup of MG

running on more than 8 processors. Comparing the speedup of TreadMarks,
VOPP and MPI on 32 processors, we can find that the performance of VOPP
is much better than TreadMarks and it is nearly the same efficient as MPI.
However, when running on more than 32 processors, some of VOPP programs
including Gauss, NN and CG slow down and there are obvious performance gaps
between VOPP and MPI. In contrast, SOR and Barnes-Hut of VOPP perform
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better. For the rest five programs, there are very small performance gaps between
VOPP and MPI.

3.3 Factors Contributing to the Performance of VOPP

Most of the differences in speedup and communication requirement between
TreadMarks and MPI are a result of TreadMarks’ lack of bulk transfer, extra
messages for separate synchronization(barriers), false sharing and diff accumu-
lation [9,10,14]. Contrastively, there is no false sharing in VOPP programs, as
the views access are not nested and VOPP has succeeded in solving the problem
of diff accumulation by introducing the new consistency maintenance protocol
VOUPID [4,8].

Table 1. 32-Processor Total Messages for TreadMarks, VOPP and MPI

program TreadMarks VOPP MPI

Gauss 2138734 1849612 247969

IS 239082 247682 39680

SOR 57850 49380 12400

NN 717741 696551 37355

Water 72800 65200 3760

TSP 74269 52276 5736

Barnes-Hut 604004 579006 1040

BT 52700 48200 7800

CG 84468 74849 12480

MG 125782 117601 21920

Table 1 and Table 2 provide figures for the number of messages and the
amount of data exchanged when the programs are running on 32 processors. For
TreadMarks and VOPP programs, we count the total number of messages and
the total amount of data transferred. While for the MPI programs, we count the
number of user-level messages and the amount of the user data sent in each run.

Table 2. 32-Processor Data Transferred(KB) for TreadMarks, VOPP and MPI

program TreadMarks VOPP MPI

Gauss 23853491 7994304 7936991

IS 4012643 1318835 1300234

SOR 179728 52890 50840

NN 1603279 500457 282970

Water 91476 36942 36758

TSP 13925 171 168

Barnes-Hut 296320 208843 202560

BT 2383 816 761

CG 2884 1153 982

MG 12460 3752 3740
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In Table 1, the two DSM systems, TreadMarks and VOPP require compara-
ble amount of messages in ten different applications. They do not support bulk
transfer either. In TreadMarks and VOPP systems, messages are incurred when
updating shared data which is based on page fault. The messages occur in MPI
programs are not comparable. In table 2, we can easily find the reason VOPP
programs perform more efficiently than those of TreadMarks. By reducing false
sharing and solving diff accumulation problem [3], VOPP programs send signif-
icantly less data when running on parallel systems. There are few unnecessary
data transferred in VOPP programs, compared with those of MPI.

Although performance of VOPP has significantly improved and it is as efficient
as MPI when running on less than 32 processors, we can find some programs of
VOPP slowdown when running on more processors.The main factors contributing
to the performance slowdown are overheads of barriers and lack of bulk transfer.

As we point out in 3.1, barriers incur large amount of messages, especially
when the number of processors increases. However, if we compare the VOPP
programs with the MPI programs, we find there are much more barriers in the
VOPP programs [7]. Gauss calls 15998 barriers; IS calls 120 barriers; SOR calls
200 barriers; NN calls 2410 barriers; Water calls 72 barriers; TSP calls 3 barriers;
Barnes-Hut calls 19 barriers; BT calls 2 barriers; CG calls 1186 barriers and MG
calls 484 barriers. In contrast, there are almost no barriers in MPI programs.
Accordingly the performance gaps for Gauss, NN and CG are larger, while for
other programs they are much smaller.

The reason why there have to be more barriers in VOPP programs has been
explained in [5]. Barriers have to be used to make sure the sequential consistency.
In contrast, in the MPI code, there is no need to use a barrier for synchronization,
since the receive primitive is synchronized with the send primitive and is always
finished after the send primitive. To verify the overhead of barriers is a significant
contributor, we run our VOPP programs on two versions of VODCA and compare
them with the MPI version programs. As the largest performance gap occurs in
Gauss program, we choose Gauss for our verification. Firstly, we run Gauss on our
optimized VODCA system with improved barrier in our previous tests, relatively,
we now run Gauss again on original VODCA without improved barrier. Secondly,
we intentionally make the number of barriers in VOPP Gauss the same as that
in MPI version. We run the new Gauss on LAM/MPI, optimized VODCA with
improved barrier and original VODCA without improved barrier.

In Figure 11, VOPP ori representsVOPP programrunning on original VODCA
without improved barrier. We find the performance gap is obviously larger be-
tween VOPP ori and MPI when running on 64 processors. Compared with the
performance gap between optimized VODCA and MPI, we can find that there is
obvious performance gain by optimization of barrier.

In Figure 12, the performance gaps of the modified Gauss become very small.
The MPI curve represents the MPI Gauss with unnecessary barriers. The VOPP
curve represents the Gauss program with less barriers running on optimized
VODCA with improved barrier, of which the execution result is wrong. The
VOPP ori represents the modified Gauss running on original VODCA without
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Fig. 11. Speedup of Gauss with/without improved barrier

Fig. 12. Speedup of Gauss with same number of barriers

improved barrier. The numbers of barriers in each of them are nearly the same. For
64 processors, the speedup gap between VOPP and MPI is reduced from
15 to 3 and the gap between VOPP and VOPP ori is also reduced, from 7 to
about 3.

From the two figures above, we can conclude that the performance slowdown
of VOPP programs is a result of the overheads from barriers. Although our op-
timized barrier performs more efficiently, the overheads of barriers are still the
source contributing to the performance slowdown when the number of processors
increases. We are considering replace barriers with some light weight synchro-
nization primitives.

Like TreadMarks, VOPP does not support bulk transfer. The update of views
is based on pages, which means for large amount of data to be updated, there will
be extra messages to handle access misses. In contrast, MPI is able to aggregate
large amounts of data in a single message. To simulate the effect of bulk transfer,
we define the VOPP page size as a multiple of the hardware page size. By
increasing the VOPP page size, a view is likely to be updated with less page
faults, which means there will be less messages for handling the access miss.

As shown in Table 3, by increasing the VOPP page size, the total number
of messages has been reduced greatly. And the speedup gap of Gauss between
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Table 3. 64-processor messages, data transferred and speedup of Gauss

Gauss VOPP 32KB VOPP 64KB MPI

messages 3921256 2248807 531362

data transferred 17149791 17144611 17026841

speedup 7.376 10.218 22.343

VOPP and MPI becomes smaller. The extra messages incurred by lack of bulk
transfer is another source contributing to the performance of VOPP.

In summary, by reducing false sharing and solving the problem of diff accu-
mulation, VOPP performs much more efficiently than TreadMarks. There are
significantly less data to be transferred. However, the extra messages incurred
by separate synchronization and lack of bulk transfer limit the performance of
VOPP when the number of processors increases.

4 Conclusions

This paper evaluates a novel DSM programming style VOPP for cluster com-
puters. Ten applications of all kinds are converted and optimized under three
different parallel systems, VOPP, TreadMarks and LAM/MPI. Our experimen-
tal results demonstrate that, on a large variety of programs, there is significant
performance advantage of VOPP against TreadMarks and VOPP is now compa-
rable with MPI. The performance of VOPP is nearly as efficient as MPI on less
than 32 processors. We also analyze the factors contributing to the performance
gap between VOPP and MPI. VOPP is still slower than MPI when the number
of processes is large because of extra messages for separate synchronization and
lack of bulk transfer mechanisms.

As a software distributed shared memory system, VOPP is convenient for
programmers to use and it is easy to achieve correctness and efficiency. It only
requires programmers to insert primitives when a view is accessed. Programmers
do not have to determine what to communicate but focus on the implementa-
tion of the parallel algorithm. Besides, programmers are allowed to participate
the performance optimization by wisely partitioning views. For programs with
complicated communication patterns, especially for those with complicated or ir-
regular array accesses or with data structures accessed through pointers, VOPP
shows better programmability than MPI. Our experience indicates that it is
convenient to port traditional DSM programs to VOPP and it is easier to imple-
ment parallel algorithm using VOPP than MPI. Furthermore, the performance
of VOPP is as efficient as MPI for 32 processors and we therefore have another
choice for parallel programming on cluster of computers.
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Abstract. In mobile-AdHoc networks (MANETs), many applications need the 
support of layer-structure. Clustering solution is the most widely used layer-
structure and the choosing of clusterheads is the key problem of all. Traditional 
ways of clustering lack of instructions of trust mechanisms. This paper presents 
a maximum-objective-trust-based clustering solution (MOTBCS), which aims 
at the opinion of maximum stable links and energy viewpoint and gives nodes 
their objective trust estimation. This solution can be better suitable for the real-
istic working environments for MANETs. We make necessary simulations for 
our design and results show that MOTBCS can generate more stable clustering 
groups. It also has less communication costs and better efficiency than other 
clustering algorithms. 

1   Introduction 

Mobile ad hoc networks (MANETs) are self-organized wireless networks that are 
formed by mobile nodes through distributed protocols. MANETs can work without 
the support of communication infrastructure and such networks are being widely used 
in more and more fields. The features of dynamic topology and non-existence of cen-
tral facilities ensure widespread application prospects of them, but at the same time 
these features bring about many new problems and challenges. Among them cluster-
ing of nodes is one of the biggest challenges that MANETs are facing with and it is 
also a hot spot in the research areas nowadays. Suited clustering solutions can greatly 
enhance the practicability and performance of  MANETs[1]. 

Till now, researchers have raised a lot of clustering algorithms and some of them 
have been practically used, such as the Lowest-ID Algorithm[2,3], the Highest Con-
nectivity Degree Algorithm[4], Distributed Clustering Algorithm(DCA)[5], Weighted 
Clustering Algorithm(WCA)[6,7] and k-hop Clustering Algorithm[8,9]. These algo-
rithms each have different peculiarities and working environments. 
                                                           
* This research was supported by the National Grand Fundamental Research 973 Program of 

China under Grant No. 2003CB314802 and the National 863 Development Plan of China  
under Grant No. 2006AA01Z401. 
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2   Clustering  

2.1   Definition of Clustering 

MANETs nodes and links can be shown as an undirected graph G(V,E). V denotes 
the set of nodes and E denotes the set of links. If there is a link (u, v) �E, that means 
node u and v are 1-hop neighbors and they can communicate with each other directly. 
What we want to do is to choose a group of cluster-head nodes. They and their 1-hop 
nodes make up of the whole network. 
 
Definition 1. The number of node Vi´s 1-hop neighbors is called Vi´s degree, and it is 
denoted by D (Vi). 
 
Definition 2. If there is a node u∈V and u is in the range of Vi´s communication 
ability, and (u,Vi) ∈E, then we called them neighbors. We use N(Vi) to denote node 
Vi´s neighbor set, and u∈N (Vi). 
 
Definition 3. There are three node states in MANETs. They are pending nodes, mem-
ber nodes and cluster-head nodes. 

2.2   Stability of Clustering 

In wireless networks, the signal intensity that nodes receive is tightly correlative with 

the distance between nodes. In the pure Friis free space model, xT P (signal sending 

power) and xR P (signal receiving power) have the following relation: (d is the dis-

tance between nodes) 

2

1

dPT

PR

x

x ∝  

While in actual environments, the expression 
x x

c
R P T P

dα= is more accurate. But 

the value of α is not easy to set exactly. 

Although it is not applicable to judge nodes´ distance directly, we can estimate 
nodes´ relative mobility with the consecutive message packets such as periodic 
“HELLO” packets. Assume that node u has received three periodic “HELLO” packets 

from node v, and the power is respective shown as )1(
uvRxP → , 

)2(
uvRxP → and )3(
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then we can define node v´s relative mobility degree as: 
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This way is somewhat like the definition of MOBIC[10]. If )2(
uvx PR →  < )1(

uvx PR → , 

then lg
)1(

)2(

uvx

uvx

PR

PR

→

→  < 0. That means node v is leaving away from node u. If )2(
uvx PR →  > 

)1(
uvx PR → , then lg

)1(

)2(

uvx

uvx

PR

PR

→

→  > 0. That means node v is moving towards node u. 

Link Stability Estimation Rules 

If node u and v meet the following demands, then we regard the link between them 
stable[13]: 

1. The times that node u and v continuously send HELLO packets to each other 
equals or is more than 3; 

2. If )(vM rel
u < 0, then | )(vM rel

u | < ThresholdM min ; 

3. If )(vM rel
u  > 0, then )(vM rel

u < ThresholdM max  

Here ThresholdM min and ThresholdM max  are thresholds of relative mobility. Of course, 
ThresholdM min  < ThresholdM max , and their actual values can be set according to the actual 

network environments. 

3   Objective Trust 

We mentioned the notion of node stability ahead, now we introduce the definition of 
objective trust. 
 
Definition 4. Objective trust is more extensive than the notion of node stability. The 
decay of objective trust is a time-associated function[11]. We will combine it with  
the evaluation of node stability. 
 
Definition 5. We mark the original objective trust with 

0T , and 
tT  after a period of 

time t. 
 
Definition 6. ( )tθ denotes the decay factor of objective trust. Then 

0( )tT t Tθ=     ( 0t ≥ )                                                    (2) 

 
Definition 7. We use λ  to denote the “suspicion parameter” of objective trust. 
 
Definition 8. Function of ( )f t  can be denoted as: 

0( ) {
tef t

λλ −

=  
0t >

≤
 ，when 

， when t 0                                (3) 
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Fig. 1. Function of ( )f t  

Definition 9. We use ( )TSF t  to denote the cumulation of decayed objective trust.  

1
0( ) ( ') ' {

tt eTSF t f t dt
λ−−

−∞
= =∫ 0t≥

<
 ，
，t 0                          (4) 

Then ( ) 1 ( )t TSF tθ = −  

           ( ) tt e λθ −= ( 0)t ≥                                                (5) 

The proofs of expression (3) and (5) are shown in Appendix I. 
The objective trust and stability of nodes are relational with the ability of nodes in 

some degree, such as energy remains, computing speed and memory size. We use 

uCap  to denote the integrative ability of node u. It is a discrete value after modifying. 
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According to the upper objective trust model, the parameter  uλ can be set as fol-

lows. We first calculate the value of stable links slink
uN and we set a quite big 

upperλ beforehand.  

( )
1

slink
u u

upper

N Cap

u λλ
⎧⎪= ⎨
⎪⎩

i

  

0

0

slink
u

slink
u

N

N

≠
=                               (6) 

Assume that node u has k neighbors, and their relative mobility values to u are 

)( 1nM rel
u ， )( 2nM rel

u ，…， )( k
rel
u nM , then we define uM  as node u´s integra-

tive relative mobility. 

uM  = 
1

( )relk
u i

i

M n

M=
∑                                                     (7) 

In the upper formula, when )( i
rel
u nM < 0， then M equals ThresholdM min ; when 

)( i
rel
u nM ≥ 0，M = ThresholdM max . Of course, the less uM  is, the more believable 

node u is. 

4   Reconstruction of HELLO Message 

The realization of MOTBCS is executed by reconstructing the message of HELLO. 
Since MANETs nodes send out HELLO packets periodically and they need brief 
computing, we can draw the following assumptions. 

1. We can only consider λ  (objective trust suspicion parameter) instead of com-
plicated value of objective trust. 

2. If no signal is received after a period of waiting time Tw (generally is twice lar-
ger than the cycle of HELLO packets), we can regard the link disabled refer-
ring to the tendency in Fig 2. 

The new HELLO message with trust information can be shown as: 

HELLOi = (IDi | Status| ntable |
rel

iM | iM  | iCap | timestamp | ski(hash)) 

Where IDi : The ID number of node i ; 
 

Status:  This field has two choices of ClusterID and NULL. If it is NULL, that 
means the status of node is “Pending”. If it is the ID of some node else, that means the 
node is node i´s clusterhead. If it is the ID number of node i itself, that means node i is 
a clusterhead.  
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ntable: the table of 1-hop neighbors to node i. Nodes can set up 2-hop topology by 
acquiring neighbors´ 1-hop neighbors. 

rel

iM : The relative mobility vector of node i . The components of 
rel

iM can be 
stored in the table of ntable .  

iM : Nodes´ integrative relative mobility and it is computed from 
rel

iM  

iCap : The integrative ability of node i, including its energy remains, computing 

speed and memory size. In this paper, we mainly concern nodes´ energy. 
timestamp: Current time. 
ski(hash): The abstract information[12] to sign the message using the private key 

ski of node i. 

We can divide the HELLO packets into three types for the difference of node ID 
and Status [13]: 

  Neighbor-search-message:    its Status= NULL; 
  Clusterhead message:    its Status = IDi ≠ NULL; 
  Cluster-join-message:    its Status = IDj ≠ NULL and  i ≠ j 

Each node sets up a neighbor table and a 2-hop topology table. By using the table 
information and the periodic HELLO packages, we can work out the variables 

rel

iM , iM , slink
iN  and iCap . After that, the objective trust “suspicion parameter” 

iλ  can be computed, then the solution of MOTBCS showed below will select out the 

clusterhead of the group.  

5   MOTBCS Algorithm 

A pending node u(Status = NULL) chooses its clusterhead with the following algo-
rithm MOTBCS. 

ClusterHead(u) 

    IF (!initialized(G(V,E)))  initialize(G(V,E)) 

    IF (!assign(u.ID))  assign(ID) to u 

    IF (u.Status !=NULL)  return ERROR; 

      N’(u)= N(u)∪{u}  // N(u): neighbor of node u 

    FOREACH node j (j∈N’(u)) DO 

         computer 
rel

iM  , iM  , slink
iN and jλ ;  // slink

iN : number of stable links of i 

    ENDFOR 
    FOREACH neighbor node j(j∈N’(u)) DO 

       select node with minimum jλ ; 
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ENDFOR 

IF nodes with minimum jλ  is only THEN 

node j becomes Clusterhead; 
u.Status= j; 
return; 

ELSE 

FOREACH node j with minimum jλ DO 

 select node with minimum jM ; 

    ENDFOR 

   IF node j with minimum jM  is only THEN 

node j becomes Clusterhead; 
u.Status= j; 
return; 

ELSE 

FOREACH node k with minimum kM DO 
 select node with minimum ID; 

 node k with minimum ID becomes Clusterhead; 
u.Status= k; 

ENDFOR 
    return; 
ENDIF 
ENDIF 

6   Simulation and Experiments 

We use network simulator ns-2 to do our experiments. Two widely used models are 
simulated in our tests. They are Random Waypoint Mobility Model(RWMM) and 
Reference Point Group Mobility model(RPGM). The behaviors and setting of the 
experiments are similar with that of [13]. 

6.1   Estimation Criterions 

     1. Clusterhead-Changing Frequency(CCF) 
The status changing times of clusterheads in one second. A small CCF means a 

good clustering solution and a stable mobile adhoc network. 
2. Node-Changing Frequency(NCF) 
The status changing times of nodes in one second. A small NCF always means a 

stable mobile adhoc network. 
3. Number of Clusterheads(NC) 
The number of clusterheads changes when nodes move around in the network.  

Fewer clusterheads mean that a node can communicate with another node through 
fewer hops. 
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4. Communication Costs(CC) 
The number of communication packages in one second. For simplification, we 

don’t take the package encrypting into account. 

6.2   Simulation Setting and Figures 

We simulate the Lowest-ID Algorithm,  Max-Degree Algorithm, Weighted Clustering 
Algorithm(WCA) and MOTBCS. The simulation parameters are shown in the follow-
ing table. 

Table1. Simulation Parameter Setting 

Parameter Description Default Value
Th Cluster Message Cycle 2 s
Tw Link Max-valid-time 4.2 s
Tc Clusterhead Competing Interval 5s

Node number Number of Mobile Nodes 60
Sim-time Simulation time 600 s

Pause time Pause Time When Moving in
the Waypoint Model

4 s

Max-speed Max Moving Speed 20 m/s
Tx-range Range of Radio Transmission 30 to 180 m

Head-Energy-Use Clusterhead Energy Use 0.03%/s
Member-Energy-

Use
Normal Node Energy Use 0.01%/s

Length Area Length Sqrt (Num*3.14*150*150/8)
Width Area Width Sqrt (Num*3.14*150*150/8)  

Simulation 1: Node-Changing-Frequency(NCF) vs. Communication Range(CR) 

 

Fig. 3. NCF vs. CR 
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Simulation 2: Clusterhead-Changing-Frequency(CCF) vs. CR 

 

Fig. 4. CCF vs. CR 

Simulation 3: Node-Changing- Frequency(NCF) vs. Node Speed(NS) 

 

Fig. 5. NCF vs. NS 

Simulation 4: Communication Costs(CC) vs. Communication Range(CR) 

 

Fig. 6. CC vs. CR 
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Simulation 5: Communication Costs(CC) vs. Node Speed(NS) 

 

Fig. 7. CC vs. NS 

Simulation 6: Number of Clusterheads in Experiments 

 

Fig. 8. Number of  Clusterheads 

6.3   Experiment Analysis 

Fig.3 shows that NCF increases gradually when CR gets large. The reason is that 
when CR increases, the number of nodes in a cluster also increases. The performance 
of MOTBCS is better than the other three especially when r > 100m. That is because 
MOTBCS chooses the best objective trust nodes as clusterheads. 

Fig.4 shows that when CR is about 50-70m, CCF is comparatively large. For at 
that time, the number of clusterheads is rather big and nodes are easy to compete to 
act as clusterheads. 

We know from Fig.5 that NCF increases greatly when Node Speed gets large. But 
apparently, MOTBCS is more steady than the other solutions. 

Fig.6 and Fig.7 compare MOTBCS’s communication and control costs with the 
other three algorithms. Generally speaking, MOTBCS has better performance because 
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MOTBCS extends “HELLO” message to choose clusterheads instead of constructing 
new package, which reduces extra costs greatly. 

Fig.8 shows that the average clusterhead number of MOTBCS is obviously less 
than that of WCA. That means nodes in MOTBCS need fewer hops to communicate 
with their copartners than in WCA. 

7   Conclusion and Future Work 

Mobile ad hoc networks (MANETs) are self-organized wireless networks that are 
formed by mobile nodes through distributed protocols. Clustering problem is one of 
the biggest challenges that MANETs are facing with and it is also one of the hottest 
spots in the research areas. This paper presents a maximum-objective-trust-based 
clustering solution(MOTBCS). It well takes into account objective trust and the rela-
tive mobility of nodes on the criteria for clusterhead selection. In this way, it over-
comes the drawbacks of over-idealization assumptions about node behavior models in 
similar research, and thus is more applicable to realistic environments. Simulation 
results show that the MOTBCS solution can generate more stable clustering structure 
and has lower communication overheads, compared with other homologous algo-
rithms. So MOTBCS can be a valuable solution for clustering with further realization 
in the future. 
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Appendix I   Proof of Expression (3) and (5) 

Since λ  is an objective trust suspicion constant, according to the mathematic flux-
ional way, we can conclude that:  

0,t∀ >    
0

[ ( ) ( )]
lim conditional

t

TSF t t TSF t

t
λ

→

+ −
=
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According to the conditional probability, the formula just equals to 

0,t∀ >    
0
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Then we get the formula      '( )
(1 ( ))

TSF t
TSF t λ=−  

So we can get   ( ) 1 tTSF t Ce λ−= −    ( 0 )t ≥  

We consider that ( )TSF t =0 when 0t ≤ , according to the formula (0)TSF =0, 

then we can know that 1C =  , so we can conclude ( ) 1 tTSF t e λ−= −   ( 0 )t ≥ . And 

as ( )f t  is the probability density function of ( )TSF t , so formula(3) can be proved 

subsequently. 

As ( ) 1 tTSF t e λ−= −   ( 0 )t ≥ is proved, and ( ) 1 ( )t TSF tθ = − , so expression 

(5) of  ( ) tt e λθ −= ( 0)t ≥  is also proved. 
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Abstract. In wireless sensor networks with many-to-one transmission
mode, a multi-objective TDMA (Time Division Multiple Access) schedul-
ing model is presented, which concerns about the packet delay and the
energy consumed on node state transition. To realize the scheme, a map-
ping between the problem and evolutionary algorithm is reasonably set
up. A multi-objective particle swarm optimization based on Pareto opti-
mality (PAPSO) is then proposed to solve such multi-objective optimiza-
tion problem and find a better tradeoff between time delay and energy
consumption. The simulation results validate the effectivity of PAPSO
algorithm and also show that PAPSO outperforms other techniques in
the literature.

1 Introduction

Large-scale networks of wireless sensors are becoming a hot topic of research due
to their potential usage in defense, pervasive commercial and scientific applica-
tions. In such networks, sensors are units with sensing, processing, and wireless
networking capability. They can automatically collect information and report the
results to an access point. However, as the sensors are usually battery-powered,
saving energy becomes an essential problem in sensor networks.

The medium access control (MAC) method is a major consumer of sensor
energy [2]. Different medium access methods result in different time and energy
efficiencies. Among those proposed MAC protocols, including contention based
access and contention free access, TDMA is a suitable access method for wireless
sensor networks. First, TDMA can save energy by eliminating collisions, avoid-
ing idle listening, or entering inactive states until being allocated time slots.
Secondly, as a collision-free access method, TDMA can bound the delays of
packets and guarantee reliable communication.

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 144–155, 2007.
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However, allocating time slots to each sensor to finish a couple of data col-
lection tasks is an NP-complete problem [3]. Additionally the energy constraint
makes the problem more difficult to solve. Therefore, in sensor networks, the
main challenge of TDMA is how to allocate time slots to each node to minimize
the energy consumption and time delay.

As to the aspect of TDMA scheduling against time performance, some refer-
ences have studied how to minimize packet delay [4], how to improve fairness
[5], how to maximize parallel operation [6], and how to shorten the total slot
cost to finish a set of transmission tasks [7]. By setting up a convex optimization
model, Cui et al. [4] adopted relaxation methods to solve the problem, and got a
pareto optimal energy-delay curves, where the power consumption on switching
was neglected. Sridharan et al. [4] developed a linear programming formulation
and presented a distributed solution, which outperformed than random MAC in
terms of fairness and delay etc. To minimize the overall transaction time, which
was modeled as a graph partitioning problem, Gandham et al. [5] proposed a
distributed edge-coloring algorithm. In order to save time for data collection,
Ergen et al. [6] proposed three algorithms based on coloring method in graph
theory. However, these two references did not consider the energy saving problem
in sensor networks.

In this paper a practical hierarchical solution approach is proposed to solve
the multi-objective TDMA scheduling problem. Given the strong search ability
in combinatorial optimization, particle swarm optimization (PSO) is introduced.
And to reach multi-objective optimality, Pareto optimization serves as evaluation
criterion of candidate solutions during the evolutionary process of PSO, by means
of which we can get Pareto optimal solutions to TDMA scheduling problem. In
this sense, the whole framework of the method can deal with several constraints
flexibly and reach a multi-objective optimal slot-allocation scheme.

The remainder of the paper is organized as follows: the problem statement
is introduced in section 2; the part of optimization algorithm, including coding
method and evaluation system of PSO solutions, is expatiated in section 3; and
the computational results are given in section 4; and section 5 gives some final
conclusions.

2 Problem Statement

2.1 Network and Scheduling Model

From a viewpoint of network, a sensor network can be represented by an undi-
rected graph G = (V, E), where V represents the set of all sensors in the net-
work and E ⊂ V × V represents the set of communication links between a pair
of nodes. There is one access point (AP) in V . All traffic generated at sensors are
destined for AP, composing a routing tree. Such a network is called many-to-one
sensor network.

The distance d(i, j) between nodes i and j is defined as the minimum number
of edges to go from one to the other. From this definition, the topology of sensor
network can be described by an N ×N symmetric connectivity matrix C, which
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is defined as Cij = 1, if d(i, j) = 1; else Cij = 0. In addition, the conflict
relationship in the network can be described by an interference matrix IN×N ,
where if d(i, j) ≤ 2, Iij = 1; else Iij = 0. As a result, node i and j can transmit
data at the same time if the communication distance d(i, j) is larger than 2.

In TDMA scheduling problem, time is splitted into equal intervals called time
slots. Each time slot is designed to accommodate a single packet to be trans-
mitted and received between pairs of nodes in the network. And once the routes
are established, the allocation of time slots directly influences the performance
of transmission in network. Moreover, TDMA also ensures collision-free commu-
nication when several transmission tasks run simultaneously. So what we need
to do is to find a schedule of time slots to reach our requirements of network
transmission performances, such as energy consumption and time delay.

In many-to-one sensor networks, as the sensor data flows toward AP from
respective source nodes, the TDMA scheduling problem can be formulated as
follows. There are a set of sensor data packets, forwarding to AP, over the routing
trees, which are established using GPSR [7]. Each data-collection process that
a packet flows to AP from its source node is called a task. On the established
routes, each task consists of a sequence of transmission actions called subtasks,
where one subtask needs one slot occupation. The aim of the problem is to deter-
mine a slot-allocation sequence of subtasks so that collision would not happen,
and some optimization criteria could be satisfied.

2.2 Description of Optimization Objectives

In this paper, two optimization objectives are considered : the average energy
consumption and the average time delay of data packets of sensor nodes.

To save energy, a common idea is just to switch off the radio when it is neither
transmitting nor receiving. However, frequently turning on/off the radio also
consumes large amounts of power, especially when the packet is small. Hence, we
take into account this part of energy, which is ignored in many TDMA researches.
According to Ref. [3], the formula of average consumed energy of sensor nodes
is as follows:

AvgEngy =
1
N

N∑
i=1

[P tx
i · (ttxi + ts−tx

i ) + P rx
i · (trx

i + ts−rx
i )

where N denotes the number of nodes in the network, P tx
i (P rx

i ) is the power
consumption of transmitter (receiver) at node i. ttxi (trx

i ) is the total work time
of the transmitter (receiver) at node i . ts−tx

i (ts−rx
i ) is the total transition time

consumed between the sleep and active states.
As a performance index, the average time delay of data packets should be as

small as possible, which can help those sensor nodes to increase their sampling
rate to the maximum possible level. In other words, the smaller the average time
delay of data packets is, the more data those nodes can collect in every unit time
and more efficiently they can communicate with each other.



A New Method for Multi-objective TDMA Scheduling 147

3 PSO-Based Energy-Delay Pareto Optimization

3.1 Standard PSO

Particle swarm optimization (PSO) is a new swarm intelligence technique pro-
posed by Eberhart and Kennedy [8], inspired by social behavior of bird flocking
or fish schooling.

The main idea of PSO is as follows. There is a population of random solu-
tions. Each potential solution, called particle, flies through the problem space by
following the current optimal particle. Flying in the search space, each particle
has a velocity which is dynamically adjusted according to the experiences of its
own and its colleagues. This makes the swarm have an intelligent ability of flying
towards the optimal position.

The global model equations of PSO are:

Vid(t + 1) = W · Vid(t) + C1 · rand1() · (pid(t) −Xid(t)) +
+C2 · rand2() · (pgd(t) −Xid(t)) (1)

Xid(t + 1) = Xid(t) + Vid(t) (2)
|Vid| ≤ Vmax (3)

where Vid and Xid are respectively the velocity and position of particle. pid

and pgd respectively represent the best position of ith particle and the swarm.
W called inertia weight, is a user-specified parameter. A large inertia weight
pressures towards global exploration while a smaller inertia weight pressures
towards fine-tuning the current search area. Proper selection of the inertia weight
and acceleration coefficients can provide a balance between the global and the
local search. C1 and C2 are acceleration factors, which are usually set to 2 .
rand1 and rand2 are random numbers between (0,1). And during the recursive
process, the selections of pid and pgd depend on the evaluation system, which
will be expatiated later.

According to our TDMA problem, some parameters in PSO are defined as
follows. There are N tasks and each task i includes Mi hops. The dimension of
particles is set to M , the number of the total subtasks, i.e.,

∑N−1
i=0 Mi. The border

of the searching space is defined by Xmax, which is set to N−1. Parameter Vmax
determines the maximum change one particle can take during one iteration,
which is set as N − 1. Under this setting, Vid is a value in the range [−(N −
1), N − 1], thus the positions of the flying particles are under control.

3.2 Pareto-Based Evaluation System of PSO Solutions

In PSO, there are concepts of individual and population. During the process of
iterations of the algorithm, the flying direction of particle derives from its own
optimal position pid and global optimal position pgd of population. Consequently,
the selection of pid and pgd directly influences the searching performance of
PSO. Thus, the evaluation system of candidate solutions is critical to the whole
optimization algorithm.
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However, there exists confliction between time delay and energy consumption
in TDMA scheduling, i.e., pursuing the optimization of power consumption on
switching inextricably damages the performance of time delay index. It is mainly
because to lessen state transitions and thus save energy, the good working conti-
nuity of nodes is required, which means that after collecting data from its child
nodes, the sensor node better wait to transmit data packets to its own parent
node instead of switching off. As a result, the performance of time delay would
be damaged, and vice versa. Consequently, as to such multi-objective optimiza-
tion problem in which the objectives cannot be optimized simultaneously, the
concept of Pareto optimality was introduced into the evaluation system.
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Fig. 1. Pareto frontier of candidate scheduling solutions

3.3 Pareto Optimality

In general, the multi-objective optimization problem is described as follows:

min f(x) =
(
f1(x), f2(x), · · · , fk(x)

)
s.t. gi(x) ≤ 0, i = 1, 2, . . . , m

Where x ∈ Rn is the decision vector belonging to the feasible region S, which is
described as follows: S = {x ∈ Rn|gi(x) ≤ 0, i = 1, 2, . . . , m}

A decision vector x1 ∈ S is said to dominate a decision vector x2 ∈ S (denoted
x1 ≺ x2) iff:

- The decision vector x1 is not worse than x2 in all objectives, or fi(x1) ≤
fi(x2) ∀i = 1, 2, . . . , q.

- The decision vector x1 is strictly better than x2 in at least one objective, or
fi(x1) < fi(x2) for at least one i = 1, 2, . . . , q.

If any of above conditions is not met, then x1 does not dominate x2. All the solu-
tions that do not dominate each other compose nondominated solution set. If the



A New Method for Multi-objective TDMA Scheduling 149

comparative space of picked solutions is the global space, then the nondominated
solution set is called Pareto-optimal set.

In this paper, the objective functions of our TDMA scheduling algorithm are:

f1 = AvgEngy, f2 = AvgDelay (4)

which are used in the Pareto dominance comparison as Fig.1.

Crowding-Measure-Based Maintenance of Pareto Archive. Since Pareto
optimal set is often infinite, Pareto archive is used to offer available optimal
solutions representing the Pareto frontier. In order to make the nondominated
solutions in the archive uniformly distribute on the Pareto frontier, here crowding-
measure is introduced into the maintenance of archive.

di = (d1
i + d2

i )/2 (5)

where d1
i and d2

i are the minimum two Euclidean distances between individual i
and other members of archive.

The crowding measure di reflects the distribution of other individuals around
i. The smaller di is, the more the number of individuals surrounding i is. Con-
sequently during the evolutionary process, when the Pareto archive is full, we
filter the member with the minimum crowding measure. By means of the main-
tenance, the retained members of archive would evenly distribute on the Pareto
frontier.

Evaluation of Global Optimal Solution. The selection of global best posi-
tion pgd is crucial to the whole PSO algorithm. In multi-objective problem, the
population generates several nondominated solutions, all of which can be pgd.
Then how to assign suitable pgd for every single particle is one important task.
Here, combined with the maintenance of Pareto archive, we select the global
best position pgd as follows:
To every newly-generated nondominated solution xi:

– If xi dominates some members of archive, then xi takes the place of all the
dominated ones, and let xi be the new pgd of those particles whose previous
pgd are the replaced;

– Else if the current archive is full, let xi replace the least-crowding-measure
solution xl as well as its position as a pgd.

– Else if the archive is not full, directly insert xi first, and use a newly-defined
variable np(xi), the number of particles whose pgd is xi, to make every mem-
ber of Pareto archive at least be pgd of some particles, thus ensuring the
diversity of solutions:

a For all the solutions xk in the archive, define s = min{np(xk)}, k =
1, 2, . . . , M(M is the swarm size),
if s ≥ g, then s = g and np(xi) = 0; where g = (0.025 ∼ 0.05)M , an
index to prevent a solution from being pgd of too many particles;

b Define F = {xk|np(xk) > s}, u = |F |, v = 1; “‖” means the size of set.
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c Find xk in F , closest to xi, and let xi be pgd of one of the particles whose
previous pgd is xk. F = F |{xk}, np(xi) = np(xi) + 1, v = v + 1;

d If np(xi) < s and v < u, go to step c; If np(xi) < s and v = u, go to
step b; If np(xi) = s, then add xi to the archive.

After the process of PSO flying iterations, the Pareto solution archive represents
the Pareto-optimal solutions of the multi-objective TDMA scheduling.

Evaluation of Local Optimal Solution. As to the selection of local optimal
solution pid in every iteration, we take the method proposed by Coello Coello
[10]:
every time the particle j gets the new position xj and the current local optimal
position pjd after the j iterations, compare the dominance between pjd and xj . If
xj � pjd, then the updated pjd = xj ; else if xj ≺ pjd, then pjd does not change;
else if xj and pjd do not dominate each other, then randomly pick one between
them two.

3.4 PAPSO Optimization

The procedure of PAPSO optimization is as follows:

1. Initialize parameters of PSO, including max generation PSO, W , C1, C2, M
and M ′, and make Pareto archive empty;

2. Initialize Pareto solution archive:
As to all the initial solutions, calculate their fitness f1, f2, . . . , fi one by
one. Then according to Pareto optimality, judge their dominance with each
other, add all non-inferior solutions to P ′, and form an initial Pareto solution
archive.

3. While ( max generation PSO is not reached )
{ generation=generation+1;
generate next generation of swarm by eq.(1)∼(3);
evaluate the new swarm according to the evaluation system, and update
the local optimal position Pid of individual particle and the global optimal
position Pgd of swarm (i.e. Pareto solution archive) }

4. When the evolutionary process is over, output the result of Pareto
optimization.

3.5 Encoding and Decoding Scheme

To apply our evolutionary algorithm on TDMA time slot scheduling, encoding
is a key step. The aim is to express a solution as a sequence code, which is an
individual in population-based algorithms.

According to the description of the scheduling problem in section 2.1, a data col-
lection task can be divided into several hops called subtasks in sequence. Hence,
a set of data collection tasks can be viewed as a combination of all the subtasks.
Therefore, we first denote a subtask as (TaskID,HopNo.), where the TaskID points
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out which task the subtask belongs to, and the HopNo. gives the sequence number
of this subtask, showing its position in the whole task TaskID. For example, if task
1 includes 2 hops, then the two corresponding subtasks can be denoted as (1,0) and
(1,1). Observing this representation method, we take the TaskIDs out of a subtask
sequence to form an individual.

To expatiate the above encoding approach, an example shown in Fig. 2 is given.
There are three tasks, i.e., transmitting a packet from node 0 to AP, another from
node 1 to AP and the third one from 4 to AP. According to their routes, each task
contains 4 subtasks, i.e., (0,0)(0,1)(0,2)(0,3), (1,0)(1,1)(1,2)(1,3), and (4,0)(4,1)
(4,2) respectively. There is a random combination of above subtasks, such as,

(0, 0) (1, 0) (0, 1) (4, 0) (0, 2) (4, 1) (4, 2) (0, 3) (1, 1) (1, 2) (1, 3)

then taking the TaskIDs out, the above sequence can be encoded as follow:
01040440111

A c c e s s   P o i n t 

s o u r c e   n o d e 

r o u t e d   n o d e 

u n r o u t e d   n o d e 
1

0 2 3 

4

A P 

Fig. 2. Example of Network

To summarize the above process, the encoding rule is concluded as follows.
There are N tasks and each task i includes Mi hops. An individual is a sequence
composed of all the task ID numbers from 0 to N −1, where each task number i
appears Mi times. Obviously, the length of the individual is

∑N−1
i=0 Mi. According

to this rule, an individual can be generated at random.
The decoding method of an individual is denoted as follows. First, an indi-

vidual is transformed to a sequence of subtasks. Then, from the first subtask
to the last one, we assign slots in sequence at the same time, trying to assign
those subtasks to one slot without rousing collisions. Take an individual from
the above example network, i.e., 00001111444, the corresponding sequence of
subtasks is (0,0)(0,1)(0,2)(0,3)(1,0)(1,1)(1,2)(1,3)(4,0)(4,1)(4,2). Then the slot
allocation scheme is shown in Fig.3.

From the decoding scheme, it can be seen that an individual can finally
be decoded to a slot scheduling, which allows parallel operations. The map-
ping between an individual and a TDMA scheduling solution is now completely
established.
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S l o t   N o . 1 2 3 4 5 6 7 8 9

S u b t a s k 
S e q u e n c e ( 0 , 0 ) ( 0 , 1 ) ( 0 , 2 ) ( 0 , 3 ) 

( 1 , 0 ) ( 1 , 1 ) ( 1 , 2 ) ( 1 , 3 ) 
( 4 , 0 ) ( 4 , 1 ) ( 4 , 2 ) 

E x e c u t i o n 
N o d e 0 2 3 A P 

1 2 3 A P 
4 3 A P 

Fig. 3. Slot allocation of the example

4 Simulation Results

In the simulation, to validate the viability of our proposed method, four networks
with different numbers of nodes were deployed, randomly generating the network
topology. The access point is located in the center of the area. The capacity of the
channel is set to 500kbps and the packet lengths are 1kbits. Some parameters in
energy aspect are as follows: similar to Ref. [2], the transition time between the
sleep and active states is assumed to 470s. The power consumed in transmission
and reception of a packet is set to 81 and 180mW, respectively. The power
consumed in idle state is set as same as the reception state. In addition, we
assume that the clock drift can be ignored by lengthening the slot time slightly.

To illustrate the effectiveness and performance of our PAPSO optimization
algorithm, two other algorithms are used as comparisons: Max Degree First
coloring algorithm (MDFCA, which is a common 2-distance coloring algorithm),
and Node Based Scheduling Algorithm (NBSA) proposed by Ergen and Varaiya
[6]. In the initialization of PAPSO, the swarm size M was set as 50 and the
maximal generation was 200. And the task amount was that every sensor node
generated a data packet and sent it to the access point. For the sake of fair
comparison, all these algorithms run in energy-efficient mode, i.e. a node with
no packet to send keeps its radio off during its allocated time slots.

Table 1 to 3 respectively illustrates the results of average time delay, average
energy consumption and total time cost of three scheduling algorithms in the
four networks. Among the three algorithms, MDFCA performs the worst on all
the three indice. It is mainly because in MDFCA, many slots are allocated to
those nodes which do not have the transmission task, thus wasting a lot of slots
and decreasing the time performance of transmission. Moreover, in MDFCA,
the node could only work on one slot in each coloring period, which makes the
node have to switch its state in every single transmission. Consequently, graph
coloring is not suitable to the data collecting sensor networks.

Although NBSA is still an algorithm based on coloring idea, its optimization
performance for sensor networks is much better. This is because NBSA excludes
such empty slots assigned to those nodes without packets, which can help the
algorithm to save time and energy. However, both of the two algorithms lack the
ability to adjust energy consumption of network.

The seven PAPSO solutions were continuous 7 members of the Pareto archive,
which size is set as 7 to make data table succinct. According to Pareto optimal-
ity, the results of NBSA and PAPSO dominated the ones of MDFCA obviously
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Table 1. Performance of average delay (slot)

No. of Nodes 25 49 121 169

MDFCA 16.67 44.06 136.13 198
NBSA 12.21 28.58 76.68 108.25

PAPSO(1) 9.08 24.38 70.32 100.75
PAPSO(2) 9.11 24.57 71.18 101.32
PAPSO(3) 9.53 24.77 71.92 101.92
PAPSO(4) 10.28 25.52 73.15 103.25
PAPSO(5) 11.82 26.65 74.82 105.38
PAPSO(6) 13.50 27.95 76.80 107.98
PAPSO(7) 14.58 29.35 78.82 110.91

Table 2. Performance of average energy consumption (mJ)

No. of Nodes 25 49 121 169

MDFCA 0.419 1.211 4.656 7.353
NBSA 0.378 1.057 4.186 6.624

PAPSO(1) 0.394 1.069 4.194 6.565
PAPSO(2) 0.387 1.049 4.138 6.520
PAPSO(3) 0.374 1.035 4.075 6.483
PAPSO(4) 0.365 1.023 4.030 6.450
PAPSO(5) 0.361 1.015 3.990 6.432
PAPSO(6) 0.357 1.009 3.982 6.426
PAPSO(7) 0.355 1.005 3.975 6.425

as table 1 and 2 showed. To illustrate the advantage of PAPSO over NBSA, we
picked data in the 121-node network and compared the two algorithms as Fig. 4
showed. The solution of NBSA was dominated by solution (2)(3)(4)(5) of PAPSO.
Furthermore, since during the maintenance of archive, we fixed two extreme cases
as the border of archive and solutions are evenly distributed, so we can easily find
a tradeoff by picking the middle one, i.e. PAPSO(4). , the performance of total
time cost was not sacrificed. From table 3, we can see that the performance of to-
tal time cost of PAPSO was comparative to NBSA. Even when a tradeoff is met,
the performance of total time cost was not sacrificed.

In a whole, the optimization effect of PAPSO outperforms the other two algo-
rithms. It is mainly because: 1. Effective idea of solving the scheduling problem.
As to the scheduling of TDMA time slots, we assigned time slots to subtasks
sequentially, which avoids generating idle slots and thus ensures the good time
performance. And time slots of subtasks can be flexibly adjusted, which leads
to good working continuity of sensor nodes and decreases the energy consump-
tion. 2. Good search algorithm. As an efficient evolutionary algorithm, PSO not
only owns good search ability in the solution space but also is good at solving
multi-objective optimization problem. Combined with Pareto optimality, PSO
can search the solution space more thoroughly and find out a better tradeoff
between energy consumption and time delay.
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Fig. 4. Comparison of results of NBSA and PAPSO in 121-node network

Table 3. Performance of total time cost(slot)

No. of Nodes 25 49 121 169

MDFCA 46 123 397 602
NBSA 30 62 154 212

PAPSO(1) 28 59 149 205
PAPSO(2) 31 61 155 207
PAPSO(3) 29 59 151 210
PAPSO(4) 31 62 153 209
PAPSO(5) 31 61 153 213
PAPSO(6) 30 60 155 209
PAPSO(7) 32 61 156 215

5 Conclusions

In this paper, according to the characteristics of many-to-one data transmission
in wireless sensor networks, we combined Pareto optimality with PSO and pro-
posed an effective PAPSO optimization to solve the TDMA scheduling problem.
And the optimization has the following advantages: 1. Under the framework of
evolutionary search algorithm, it is easy to deal with multi-objective optimiza-
tion problem and set up the model of multi-objective optimization; 2. We can
make the best of the problem-solving ability of evolutionary search algorithm
over NP problem; 3. The introduction of Pareto optimality makes the evalua-
tion system of multi-objective PSO solutions more reasonable and effective, thus
offering more choices of network performance to decision-makers.

In wireless sensor networks, multi-objective optimization problem widely ex-
ists and there is usually confliction among such objectives. Consequently, our
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proposed multi-objective optimization algorithm can serve as a good idea to
such kind of problem.
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Abstract. Energy consumption is a major factor that limits the perfor-
mance of sensor applications. Sensor nodes have varying sampling rates
since they face continuously changing environments. In this paper, the
sampling rate is modeled as a random variable, which is estimated over a
finite time window. We presents an online algorithm to minimize the to-
tal energy consumption while satisfying sampling rate with guaranteed
probability. An efficient algorithm, EOSP (Energy-aware Online algo-
rithm to satisfy Sampling rates with guaranteed Probability), is proposed.
Our approach can adapt the architecture accordingly to save energy.
Experimental results demonstrate the effectiveness of our approach.

1 Introduction

Sensor networks are emerging as a main technology for many applications, such
as national security and health care. In this context, a key problem that ought to
be tackled is that of devising embedded software and hardware architectures that
can effectively operate in continuously changing, hard-to-predict conditions [1].

In sensor network applications, such as moving objects tracking, tasks may
not have fixed sampling rate. The sampling rate may vary, depending on the
rate the object moves. At same time, the time window of sensor systems is fix.
Hence, how to select the proper number of processing engine PEs and adopt dif-
ferent sampling rates becomes an important problem. The existing methods are
not able to deal with the uncertainty of sampling rate. Therefore, either worst-
case or average-case sampling rates for these tasks are usually assumed. Such
assumptions, however, may not be applicable for the hard-to-predict conditions
and may result in an inefficient task assignment. In this paper, we models the
sampling rate in each time window as a random variable [2].
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In sensor applications, such as camera based sensors, same tasks can be pro-
cessed under different voltage levels with different energy consumptions. DVS
(Dynamic voltage scaling) is one of the most effective low power system design
techniques. We want to select proper number of PEs and assign a proper volt-
age to each task of a sensor such that minimize the total energy consumption
while satisfying the total sampling rate constraint with a guaranteed confidence
probability.

This paper use adaptive approach for online customization of embedded ar-
chitectures that function in non-stationary environments [1]. we design an al-
gorithm, EOSP (Energy-aware Online algorithm to satisfy Sampling rates with
guaranteed Probability), to select the proper number of PEs and assign different
voltage levels to the PEs to minimize total energy consumption. The obtained
voltages will affect the adaptation thresholds of control policies.

The experimental results show that EOSP achieves a significant reduction in
total energy consumption on average. For example, with 4 voltages, compared
with Method 1 (worse-case scenario without DVS), EOSP shows an average
33.8% reduction in total energy consumption while satisfying sampling rate con-
straint 360 with probability 0.80.

In the next section, we introduce necessary background, including basic defi-
nition and models. The algorithm is discussed in Section 3. We show our exper-
imental results in Section 4. Related work and concluding remarks are provided
in Section 5 and 6, respectively.

2 Basic Concepts and Models

In this section, we introduce some basic concepts and models which will be
used in the later sections. First the sensor model is given. Next, two kinds of PE
processing mode are introduced. Then we give the basic formula of DVS. Finally,
we give the formal definition of VAP problem. An example is given throughout
the whole section.

2.1 The Sensor Model

Sensor usually works in highly continue changing environments. For example,
consider a camera based sensor, which is tracking a moving object, such as a
person or vehicle [3,1]. The tracking granularity requirement demands one image
sample per meter of distance traveled by the object, in order to have a trace of the
object’s trajectory accurate to within one meter distance of the object’s actual
location at all times. If the object is traveling at a speed of 20 m/s this sampling
speed would translate to having 20 samples/s for the camera. We modeled the
system dynamics with discrete events formulated over a fixed time window used
to sample the future performance requirements of the system.

For the adaptive architecture, the working procedures are as follows. During
look ahead for the next window, the incoming data is buffered. The controller
uses the inputs from the sampling rate look ahead to update its control policy.
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The controller makes changes to the pool of hardware with the updated policy
after each window.

The time window length (WL) is a design parameter, and will have to be
decided by the designer based on empirical data obtained from simulations of
the particular application. In the tracking example the sampling rate may vary,
depending on the rate the object moves. If sampling rate is high then the number
of hardware resources turned on is larger in order to meet the tighter timing
constraint. There is an upper limit to sampling rate based on the number and
working mode of hardware processing engines (PEs) being made available for it
by an architecture.

Problem Definition: For a given adaptive architecture, how to select the proper
number of processing engine (PE) and assign voltage levels to the PEs for each
time window of a sensor such that the total energy consumption can be mini-
mized with a guaranteed confidence probability satisfying sampling rates.

2.2 Sampling Rate Estimator and PE Processing Method

The sampling rate is a random variable, which is decided by the moving rate
of objects. We use a fixed time window to collect the data. The method we
estimate the sampling rate for each window is based on the previous four average
sampling rates. For example, if the average sampling rates are Sn−1, Sn−2, Sn−3,
and Sn−4, for S in previous 4 time windows, then for current window, Sn =
Sn−1 + 0.5 ∗ (Sn−1 − Sn−2) + 0.3(Sn−2 − Sn−3) + 0.2(Sn−3 − Sn−4). We use
several similar functions to estimate Sn. The estimated Sn is also a random
variable. For example, the S shown in Figure 1 (a) is a random variable. “P1”
represent the corresponding probability of every sampling rate value.
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Fig. 1. (a) Distribution function of sampling rate. (b) Cumulative distribution function
of sampling rate.

When the sampling rate is high, we need use more PEs to process the collected
data. The energy consumption of each PE includes two parts.

Etotal = Ebase + Eprocess (1)
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There are two cases about PE processing modes.

1. Case 1. Each PE works under same voltage and frequency. There is no pro-
cessing time and energy difference.

2. Case 2. Eprocess can be tuned with dynamic voltage scaling (DVS). There
are several different voltage levels for each PE to work on with.

In case 1, since S is a random variable, we want to find a configure of PE such
that the energy is minimized with a guaranteed probability. For example, the
distribution of random variable S is shown in Figure 1 (a). We first compute the
cumulative distribution function (CDF) of S, which is shown in Figure 1 (b).
“P2” represent the cumulative probability of each sampling rate value. Assume
the processing rate R of each PE is 20, and the energy consumption E of each
PE is 50. Then we need 4 PEs with 100% confidence while satisfying timing la-
tency. The minimum total energy consumption is 200. But, this is the worst-case
scenario. We can minimize energy while satisfying timing constraint with 90%
confidence by using only 3 PEs. In this scenario, the total energy consumption
is 150. We will discuss case 2 after introducing DVS.

2.3 Dynamic Voltage Scaling

DVS (Dynamic voltage scaling) is a technique that varies system’s operating
voltages and clock frequencies based on the computation load to provide desired
performance with the minimum energy consumption. It has been demonstrated
as one of the most effective low power system design techniques and has been sup-
ported by many modern microprocessors. Examples include Transmeta’s Crusoe,
AMD’s K-6, Intel’s XScale and Pentium III and IV, and some DSPs developed
in Bell Labs [4].

Dynamic power, which is the dominant source of power dissipation in CMOS
circuit, is proportional to N × C × V 2

dd, where N represent the number of com-
putation cycles, C is the effective switched capacitance, and Vdd is the supply
voltage [5,6,7]. Reducing the supply voltage can result in substantial power and
energy saving. Roughly speaking, system’s power dissipation is halved if we re-
duce Vdd by 30% without changing any other system parameters. However, this
saving comes at the cost of reduced throughput, slower system clock frequency,
or higher cycle period time (gate delay). The cycle period time Tc is propor-
tional to Vdd

(Vdd−Vth)α , where Vth is the threshold voltage and α ∈ (1.0, 2.0] is a
technology dependent constant.

Let t represent the computation time and E represent energy, they are calcu-
lated as follows:

Tc =
k × Vdd

(Vdd − Vth)α
(2)

t = N × Tc = N × k × Vdd

(Vdd − Vth)α
(3)

E = N × C × V 2
dd (4)
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In Equation (2), k is a device related parameter. From Equations (3) and (4),
we can see that the lower voltage will prolong the execution time of a node but
reduces its energy consumption.

Low power design is of particular interest for the soft real time multimedia
systems and we assume that each PE has multiple voltages available on the chip
such that the system can switch from one level to another.

2.4 VAP Problem

For multi-voltage systems, assume there are maximum M different voltages in
a voltage set V = 〈V1, V2, · · · , VM 〉. An assignment is to assign a voltage to each
PE that has been selected. Define an assignment A to be a function from domain
U to range V, where U is PE set and V is the voltage set.

We define F to be the cumulative distribution function of the random variable
S (abbreviated as CDF), where F (t) = P (S < t). When S is a discrete random
variable, the CDF F (t) is the sum of all the probabilities associating with the
computation times that are less than or equal to t. If S is a continuous random
variable, then it has a probability density function (PDF). If assume the pdf
is f , then F (t) =

∫ t

0
f(s)ds. Function F is nondecreasing, and F (−∞) = 0,

F (∞) = 1.
We define the voltage assignment with guaranteed probability (VAP) problem

as follows: Given M different voltage levels: V1,V2,· · ·,VM , a sampling rate con-
straint S and a confidence probability P , find the proper number of PEs and an
assignment of voltage level for each of the selected PEs to gives the minimum
total energy consumption E with confidence probability P under sampling rate
constraint S.

R

E

V1 V2 V3
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20
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100

Fig. 2. The processing speed and energy consumption of each PE under different volt-
age levels

We will use dynamic programming to solve the VAP problem. Our algorithm
Volt Ass is shown in the next section. Here we give an example first. Figure 2
shows the processing rate R and energy consumption E of each PE under differ-
ent voltage levels. The base energy Ebase is 12. Suppose the confidence proba-
bility we need is 0.90. Then we check the table in Figure 1 (b), and find that the
sampling rate S will not higher than a value, i.e., 60 samples/s. That is, S ≤ 60.
We denote the corresponding value to be L. Let N to be the number of PEs
needed, we list the constraint equations to make it clear.

R1 + R2 + · · ·+ RN ≥ L (5)



Energy-Aware Online Algorithm to Satisfy Sampling Rates 161

We want to get
Min(E1 + E2 + · · ·+ EN ) (6)

After running our dynamic programming, we the number of PEs and the
voltage assignment for the PEs. We need 3 PEs, the voltage level assignment of
PEs is shown in Ass 1 of Table 1. The total energy consumption is 135 + 12 ∗
3 = 171. For the case with no DVS, i.e., we only use the maximum processing
speed, we will choose using only 2 PEs. The total energy is 200 + 12 ∗ 2 =
224. The assignment is shown in Ass 1 of Table 1. There is 23.7% difference.
Hence, the solution is: use 3 PEs and let them all work under V2, then the
total energy consumption is 171, while satisfying the sampling rate with 0.90
confidence probability.

Table 1. The assignments with energy consumption 171 and 224 with sampling rate
constraint 60

Num. Speed Volt. Eproc. Ebase

1 20 V2 45 12
Ass 1 2 20 V2 45 12

3 20 V2 45 12
Total 60 135 36

Total Energy = 171

N Speed Volt. Eproc. Ebase

Ass 2 1 30 V3 100 12
2 30 V3 100 12

Total 60 200 24

Total Energy = 224

3 The Algorithms

In this section, we will propose our algorithms to solve the energy-saving problem
of sensor applications. The basic idea is to obtain the minimum total energy
consumption by selecting proper number of PEs and doing voltage assignment.
We consider two cases: Case 1: there is no voltage change for each PE. This case is
simple, and we use EOSP Simple to solve it. We will focus on case 2. Case 2: PE
may work under different voltages. We proposed an algorithm, EOSP (Energy-
aware Online algorithm to satisfy Sampling rates with guaranteed Probability).
In this algorithm, we use Volt Ass sub-algorithm to give the best PE number
selection and voltage assignment for each selected PE.

3.1 The EOSP Simple Algorithm for Case 1

The EOSP Simple algorithm for case 1 is shown in Algorithm 3.2. In EOSP
Simple algorithm, we use the adaptive model [1] to solve energy saving problem
for camera based sensors. The adaptive approach includes three steps: First,
look ahead on performance parameters, such as image sampling rate and system



162 M. Qiu and E.H.-M. Sha

Algorithm 3.1. EOSP Simple Algorithm for Case 1
Require: Several PEs, the sampling rate S, the guaranteed probability P .
Ensure: The number of PEs N with minimum total energy consumption Emin while

satisfying S with P .

1: Look ahead on performance parameters: S ← sampling rate.
2: Use fixed time window to collect data that will be processed.
3: Estimate the sample rate with different estimator, get the random variable S.
4: Build the cumulative distribution function (CDF) based on the distribution func-

tion of S.
5: L ← the corresponding sampling rate value that has Prob.(S ≤ L) ≥ P by looking

CDF of S.
6: N ← the number of PEs with

∑
i=1,···,N Ri ≥ L.

7: Emin ←
∑

i=1,···,N Ei.
8: Output results: N and Emin.
9: Use online architectural adaptation to reduce energy consumption while satisfying

timing constraints with guaranteed probability.

latency, by buffering input data coming in a given time window. Second, dynamic
processing requirements prediction using a high efficient estimator activated at
the end of every window period. Third, use an on-line architecture adaptation
control policy. Since our design is for a non-stationary environments, the control
policy varies with the environment but is stationary within a time window.

3.2 The EOSP Algorithm for Case 2

3.3 Volt Ass Algorithm

To solve the voltage assignment problem, we use dynamic programming method.
In our algorithm, table Di,j will be built. Each entry of table Di,j will store Ei,j ,
which is the minimum energy for i number of PEs with sampling rate j.

Lemma 1. Given E1
i,j and E2

i,j with same sampling rate j, then Min(E1
i,j , E2

i,j)
is selected to be kept.

In every step of our algorithm, one more PE will be included for consideration.
The (R, E) pair of each PE is stored in a local table B , which is shown in
Figure 2. We first sort (R, E) pairs in B according to R in an ascending order,
and represent them in the form: (R1, ER1), (R2, ER2), · · · , (RM , ERM ). Hence, Ej

is the energy consumption only for one PE with sampling rate j, The algorithm
to compute Di,j are shown in Algorithm 3.3.

Theorem 1. The energy consumption in DI,L obtained by algorithm Volt Ass
is the minimum total energy consumption with sampling rate L.

Proof: By induction. Basic Step: When i = 1, there is only one PE and D1,j =
Bj . Thus, when i = 1, Theorem 1 is true. Induction Step: We need to show
that for i ≥ 1, if Di,j is the minimum total energy consumption of i PEs, then
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Algorithm 3.2. The EOSP Algorithm
Require: M different voltages, Several PEs, the sampling rate S, the guaranteed

probability P .
Ensure: The number of PEs N with minimum total energy consumption Emin while

satisfying S with P .

1: Look ahead on performance parameters: S ← sampling rate.
2: Use fixed time window to collect data that will be processed.
3: Estimate the sample rate with different estimator, get the random variable S.
4: Build the cumulative distribution function (CDF) based on the distribution func-

tion of S.
5: L ← the corresponding sampling rate value that has Prob.(S ≤ L) ≥ P by looking

CDF of S.
6: Use algorithm Volt Ass to obtain PEs assignment A with minimized E for the

schedule graph.
7: N ← the number of PEs with

∑
i=1,···,N Ri ≥ L.

8: Emin ←
∑

i=1,···,N Ei.
9: Output results: N , A, and Emin.

10: Use online architectural adaptation to reduce energy consumption while satisfying
timing constraints with guaranteed probability.

Algorithm 3.3. Volt Ass algorithm to compute Di,j

Require: Sampling rate L, M different voltage levels.
Ensure: Di,L

1: Build a local table B according to M different voltage levels;
2: R ← processing speed, E ← energy;
3: Sort (R,E) pairs in B according to R in an ascending order, and represent them

in the form: (R1, ER1), (R2, ER2), · · · , (RM , ERM ) ;
4: Bk ← Ek in each pair of B;
5: Start from the first PE, D1,j ← Bk;
6: I ← L/R1;
7: while i ≤ I , do
8: for all sampling rate j, do
9: Compute the entry Di,j as follows:

10: for all k in Bk, j > k do
11: Di,j = Di−1,j−k + Bk;
12: Insert Di,j−1 to Di,j and remove redundant energy value using Lemma 1;
13: end for
14: end for
15: end while
16: The energy in DI,L is the minimum total energy consumption with sampling rate

L and the assignment can be obtained by tracing how to reach DI,L;
17: Output DI,L;

Di+1,j is the minimum total energy consumption of i + 1 PEs. In the algorithm,
since j = k + (j − k) for each k in Bk, we try all the possibilities to obtain j.
Then we use add the energy consumptions of two tables together. Finally, we
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using Lemma 1 to cancel the conflict energy values. The new energy consumption
obtained in table Di,j is the energy consumption of i PEs at sampling rate k
plus the energy consumption in Di−1,j−k. Since we have used Lemma 1 to cancel
redundant energy values, the energy consumption in DI,L is the minimum total
energy consumption for sampling rate L. Thus, Theorem 1 is true.

From Theorem 1, we know DI,L records the minimum total energy consump-
tion of the whole path within the timing constraint L. We can record the corre-
sponding voltage assignment of each PE when computing the minimum system
energy consumption in the algorithm Volt Ass. Using these information, we can
get an optimal assignment by tracing how to reach DI,L.

It takes O(M2) to compute one value of Di,j , where M is the maximum
number of voltage levels. Thus, the complexity of the algorithm Volt Ass is
O(S ∗ M2), where S is the given sampling rate constraint. Usually, S is upper
bounded by a constant. In this case, Volt Ass is polynomial.

4 Experiments

In this section, we conduct experiments with the EOSP algorithm on a set of
benchmarks including 8-Stage Lattice filter,4-Stage Lattice filter, FFT1, Laplace,
Karp10, Almu, Differential Equation Solver, RLS-Laguerre Lattice filter, Ellip-
tic filter, and Voltera filter. The distribution of sampling rates is Gaussian. For
each benchmark, we conduct a set of the experiments based on different config-
urations. K different voltages, V1, · · ·, VK , are used in the system, in which a
voltage with level VK is the quickest with the highest energy consumption and
a voltage with level V1 is the slowest with the lowest energy consumption.

We conduct the experiments using three methods. Method 1: Use the hard
real-time and we need to guarantee to satisfy the varying sampling rates. Method

Table 2. The comparison of total energy consumption for Method 1, Method 2 and
EOSP while satisfying sampling rate S = 360 for various benchmarks

4 voltages, S = 360

Benchmarks Num. M1 M2 EOSP 0.8 M2 EOSP 0.9
E E(0.8) E(0.8) % M1 % M2 E(0.9) E(0.9) % M1 % M2

8-stage Lattice 42 2655 2154 1762 33.6% 18.2% 1921 1467 44.8% 23.6%
4-stage Lattice 26 1576 1264 1023 35.1% 19.1% 1163 853 45.9% 26.7%

FFT1 28 1644 1312 1072 34.8% 18.3% 1228 937 43.0% 23.7%
Laplace 16 1032 852 689 32.6% 19.1% 736 531 48.1% 27.9%
Karp10 21 1305 1054 865 33.7% 17.9% 942 712 45.5% 24.4%
Almu 17 1053 827 682 35.2% 17.5% 762 583 44.6% 23.5%

Diff. Equ. Solver 11 767 624 508 33.7% 18.6% 567 425 44.6% 25.0%
RLS-laguerre 19 1255 1062 845 32.7% 20.4% 897 682 45.6% 24.0%

Elliptic 34 2384 1935 1589 33.4% 17.9% 1802 1345 43.6% 25.4%
Voltera 27 1668 1358 1108 33.6% 18.4% 1147 892 46.5% 22.2%

Average Reduction (%) 33.8% 18.5% – – 45.2% 24.6%
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2: Use soft real-time and model the sampling rates as random variables. Method
3: Combine soft real-time and DVS together and use EOSP algorithm. We com-
pare the results from EOSP algorithm with those from Method 1 and Method
2. The experiments are performed on a Dell PC with a P4 2.1 G processor and
512 MB memory running Red Hat Linux 9.0. In the experiments, the running
time of EOSP on each benchmark is less than one minute.

The experimental results for Method 1 (“M1”), Method 2 (“M2”), and our
EOSP algorithm with 4 voltages, are shown in Table 2. Column “Num.” rep-
resents the number of nodes of each filter benchmark. Column “E” represents
the minimum total energy consumption (μJ) obtained from the three different
methods. Labels “E(0.8)” and “E(0.9)” represent the minimum total energy con-
sumption when the guaranteed probability is 0.8 and 0.9, respectively. Column
“% M1” and “% M2” under “EOSP” represents the percentage of reduction in
total energy consumption, compared to Method 1 and Method 2, respectively.
The average reduction is shown in the last row of the table.

The results show that our algorithm EOSP can significantly improve the per-
formance of multi-voltage sensor nodes. For example, with 4 voltages, compared
with Method 1, EOSP shows an average 33.8% reduction in total energy con-
sumption while satisfying sampling rate constraint 360 with probability 0.80.
The experimental results show that when the number voltages increases, the
percentage of reduction on total energy increases correspondingly.

Through the experimental results from Table 2, we found that Method 1
doesn’t explore the larger solution space for total energy consumption with soft
real-time. Our EOSP algorithm combined both soft real-time and DVS, and can
significantly reduce total energy consumption while satisfying sampling rates
with guaranteed probability. It is efficient and provides overview of all possi-
ble variations of minimum energy consumptions comparing with the worst-case
scenario generated by Method 1.

5 Related Work

Dynamic voltage and frequency scaling. Many researchers have studied on
DVS [8,5,7,9,10,11]. Semeraro et al. designed a multiple clock domain (MCD) sys-
tem to support fine-grained dynamic voltage scaling within a processor [12]. Yao
et al. [13,14] and Ishihara et al. [6] studied the optimal schedule for DVS processors
in the context of energy-efficient task scheduling. Both showed that it is most en-
ergy efficient to use the lowest frequency that allows an execution to finish before
a given deadline. Ishihara et al. also showed that when only discrete frequencies
are allowed, the best schedule is to alternate between at most two frequencies.

The International Technology Roadmap for Semiconductors [15] predicts that
the future system will feature multiple supply voltages (Vdd) and multiple thresh-
old voltages (Vth) on the same chip This enables the DVS, which varies the
supply voltage according to workload at run time [13, 6]. The highest energy
efficiency is achieved when voltage can be varied arbitrarily [16]. However, phys-
ical constraints of CMOS circuit limit the applicability of having voltage varying
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continuously. Instead, it is more practical to make multiple discrete voltages
simultaneously available for the system [17].

Sensor networks. Sensor networks have wide applications in areas such as
health care, military, environmental monitoring, infrastructure security,
manufacturing automation, collecting information in disaster prone areas and
surveillance applications [18]. In fact, the vision is that sensor networks will
offer ubiquitous interfacing between the physical environment and centralized
databases and computing facilities [19]. Efficient interfacing has to be provided
over long periods of time and for a variety of environment conditions, like moving
objects, temperature, weather, available energy resources and so on.

In many sensor networks, the DSP processor consumes a significant amount
of power, memory, buffer size, and time in highly computation-intensive appli-
cations. However, sensor node can only be equipped with a limited power source
(≤ 0.5 Ah, 1.2 V) [20]. In some application scenarios, replenishment of power re-
sources might be impossible. Therefore, power consumption has become a major
hurdle in design of next generation portable, scalable, and sophisticated sensor
networks. In computation-intensive applications, an efficient scheduling scheme
can help reduce the power consumption while still satisfying the performance
constraints. This paper focuses on reducing the total energy of sensor applica-
tions on architectures with multiple PEs and multiple voltage levels.

6 Conclusion

In this paper, we studied the proper PE number selection and voltage assign-
ment problem that minimizes the total energy while satisfying sampling rates
with guaranteed probability for sensor applications. We proposed a high efficient
algorithm, EOSP (Energy-aware Online algorithm to satisfy Sampling rates with
guaranteed Probability), in this paper. Our algorithm can give a much larger
solution space of total energy minimization to be used for online adaptation
control. A wide range of benchmarks has been tested on the experiments and
the experimental results showed that our algorithm significantly improved the
energy-saving of applications on computation-intensive sensor nodes.
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Abstract. Low-power design became crucial with the widespread use of the em-
bedded systems, where a small battery has to last for a long period. The embed-
ded processors need to efficient in order to achieve real-time requirements with
low power consumption for specific algorithms. Transport Triggered Architecture
(TTA) offers a cost-effective trade-off between the size and performance of ASICs
and the programmability of general-purpose processors. The main advantages of
TTA are its simplicity and flexibility. In TTA processors, the special function units
(SFUs) can be utilized to increase performance or reduce power dissipation. This
paper presents a low-power globally synchronous locally asynchronous TTA pro-
cessor using both asynchronous function units and synchronous function units.
We solve the problem that use asynchronous circuits in TTA framework, which is
a synchronous design environment. This processor is customized for a 1024-point
FFT application. Compared to other reported implementations with reasonable
performance. our design shows a significant improvement in energy-efficiency.

1 Introduction

In recent years, special-purpose embedded systems have become one very important
area of the processor market. Digital signal processor (DSP) offer flexibility and low
development costs, but it has limited performance and typically high power dissipation.
Field programmable gate arrays (FPGA) combine the flexibility and speed of applica-
tion specific integrated circuit (ASIC), but it cannot compete with the energy efficiency
of ASIC implementations. For a specific application, TTA can provide both flexibil-
ity and configurability during the Application Specific Instruction Processor (ASIP)
design process. In TTA processor, special function units can be utilized to increase per-
formance or reduce power dissipation.

Fast Fourier Transform (FFT) is one of the most important tools in the field of digital
signal processing. When operating in embedded environment, the devices are usually
sensitive to power dissipation. So the energy-efficient FFT implementation is needed.
There are many FFT implementations and low power architectures were described in
paper [1], [2], [3], [4] and [5] et al. They all emphasized the importance of the low
power consumption in embedded FFT applications. In CMOS circuits, power dissipa-
tion is proportional to the square of the supply voltage [6]. Reducing the supply voltage
can achieve a good energy-efficiency, but this will result in circuit performance [7].

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 168–179, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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There is a problem for designers to solve that how to make systems have low power
dissipation without performance loss.

Since the early days, asynchronous circuits have been used in many interesting appli-
cations. There are many successful examples of asynchronous processors, which were
described in [8], [9], [10], [11] and [12]. In these papers, asynchronous circuits
have advantages of low power dissipation and high performance. The asynchronous
circuits are very suitable for systems that are sensitive to power consumption and per-
formance. In order to take advantage of flexibility and configurability of TTA and low
power consumption of asynchronous circuits, we attempt to use asynchronous circuits
in TTA. In this paper, we solve the problem that use asynchronous circuits in TTA
that is synchronous design environment. This novel architecture may be viewed as a
globally synchronous locally asynchronous (GSLA) implementation. Based on this ar-
chitecture, a low power TTA processor is customized for a 1024-point FFT application.
Asynchronous function units are utilized to obtain the low power dissipation. The per-
formance and power dissipation are compared against the synchronous version. The
results showed that GSLA implementation based on TTA can can offer a low power
solution for some application specific embedded systems.

This paper is organized as follows. Section 2 briefly describes the radix-4 FFT algo-
rithm. Section 3 describes the Transport Trigger Architecture. Section 4 describes the
implementation of the GSLA TTA processor. Next, the power and performance analysis
results are presented. The last section gives the conclusion.

2 Radix-4 FFT Algorithm

There are several FFT algorithms and, the most popular FFT algorithms are the Cooley-
Turkey algorithms [13]. It has been shown that the decimation-in-time (DIT) algorithms
provide better signal-to-noise-ratio than decimation-in-frequency algorithms when fi-
nite word length is used. In this paper, a radix-4 DIT FFT approach has been used since
it offers lower arithmetic complexity than radix-2 algorithms.

The N -point DFT of a finite duration sequence x(n) is defined as

X(k) =
N−1∑
n=0

x(n)Wnk
N (1)

Where WN = e−j(2π/N), k = 1, 2, ..., N − 1, known as the twiddle factor. The direct
implementation of the DFT have a complexity of O(N2). Using the FFT, the complexity
can be reduced to O(N log2(N)).

For example, one may formulate the radix-4 representation of the FFT in the follow-
ing manner:

Let, N = 4T , k = s + T t and n = l + 4m, where s, l ∈ {0, 1, 2, 3} and m, t ∈
{0, 1, ..., T − 1}. Applying these values in equation (1) and simplifying results in,

X(s + T t) =
3∑

l=0

W lt
4

[
W sl

4T

T−1∑
m=0

x(l + 4m)W sm
T

]
(2)
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For N = 1024 and T = 256, the 1024-point FFT can be expressed from equation
(2) as

X(s + 256t) =
3∑

l=0

W lt
4

[
W sl

1024

255∑
m=0

x(l + 4m)W sm
256

]
(3)

Equation (3) is obvious and suggests that the 1024-point DFT can be computed by
first computing an 4-point DFT on the appropriate data slot, then multiplying them by
765 non-trivial complex twiddle factors and computing the 4-point DFT on the resultant
data with appropriate data reordering.

Because the architecture is determined by the characteristics of the application set,
the first step of the architecture design is to analyze the application [14]. By the anal-
ysis of FFT application, we find that the major operations of FFT are add, multiply,
et al. According to the type of the major operations, designer can quickly decide what
function unit to implement; similarly, the amount of the function units is decided to the
proportion of the equivalent operations. Furthermore, we expect to customize special
function unit to complete these operations in order to achieve a good power-efficiency.

3 Transport Triggered Architecture

As compared to conventional processor architectures, one of the main features of TTA
[15] processor is that all the actions are actually side-effects of transporting data from
one place to another. Thus, the processor has only one instruction move, which moves
data. The programming is oriented on communications between FUs and, therefor, the
interconnection network is visible to the software level, when developing TTA appli-
cations. A TTA processor consists of a set of function units and register files are con-
nected to an interconnection network, which connects the input and output ports. The
architecture is flexible and new function units (FUs), buses, and registers can be added
without any restrictions. Naturally, the approach is well suited for application-specific
processors. In addition, application specific support is provided by implementation of
user-defined function units customized for a given application. The advantages of TTA
processors are, also, short cycle time, and fast and application specific processor design.
The MOVE software toolset [16] enables an exhaustive design-space exploration.

The entire hardware-software co-design flow is presented on Fig. 1. We modify the
MOVE tools in order to make it possible that the special asynchronous function units
library can be also included in MOVE design flow. The applications can be described
by high level languages (HLLs), such as the C/C++ programming language. In our case,
hardware design starts with a C language description of the FFT algorithm. By using
modified MOVE tools and the library of designed special asynchronous function units
we are able to generate description of power efficient processors. After that, the pro-
cessor description file can be converted into a hardware description language (HDL)
representation of the processor core by using MOVEGen tool. Automatically generated
HDL code for the processor core together with HDL predesigned components (instruc-
tion dan data memories and other peripherals) can be used by the ASIC synthesis tools.
As mentioned, HDL code of our special asynchronous function units cannot be directly
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Fig. 1. Design flow with specifical function units form high level language code to hardware
implementation

used by the synchronous synthesis tools. They should be synthesized and implemented
according to the asynchronous circuits design flow. As predesigned components, the
special asynchronous units can be used by IC design platform in order to obtain layout
of the target processor.

4 Implementation of FFT Processor

4.1 Special Function Units

We propose a 32-bit wide ASIP architecture (buses and ports of FUs are 32 bit wide).
The design of ASIP architecture is optimized by implementing several special function
units. The design of the SFUs is started with the most frequent operation, i.e., ADD,
MUL. Asynchronous adder unit (AADD) is one of the designed SFUs. Another SFU,
the asynchronous multiplier unit for arithmetic operations with sub-word parallelism is
also implemented (sub-word multiply operation between two 32-bit numbers represents
two parallel multiply operations on packed 16-bit operands, for example). The imple-
mentation of these SFUs help to achieve high energy-efficiency. By implementing all
of these SFUs we are able to significantly reduce the power dissipation, and to optimize
the overall architecture design.

Asynchronous Adder Unit. In this work, we implemented a 32-bit asynchronous
adder. Pipelining is a standard way of decomposing an operation into concurrently
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Fig. 2. The pipeline architecture of asynchronous adder unit that has four pipeline stages

operating stages to increase throughput at a moderate increase in area. The adder em-
ploys four pipeline stages, and the architecture can be illustrated in Fig. 2.

As shown in Fig. 2, the adder unit is composed of tradition combinatorial circuit and
control circuit. The tradition combinatorial circuit is the same as synchronous circuit.
In synchronous circuit, the communication of data between pipeline stages is regulated
by the global clock. It is assumed that each stage takes no longer than the period of
the clock and data is transferred between consecutive stages simultaneously. In asyn-
chronous pipeline, the communication of data between the stages is regulated by local
communication between stages, therefor, the global clock is replaced by a local com-
munication protocol. The communication protocol employed in pipeline can be either
a 2-phase or 4-phase signaling. The control circuit, called handshake circuit, realizes
the communication protocol locally inside a pipeline between adjacent stage. When
one stage has data which it would like to send to a neighboring stage, it sends a request
(Rout) to that stage. If that stage can accept new data, it accepts the new data and returns
an acknowledgment (Ain). The pipeline designed with request and acknowledgement
signal that governs the transfer of data between stages.

This pipeline circuit is similar to Sutherland’s Micropipeline [17], except that it uses
latches and relies on a simple set of timing constraints for correct operation. Between
signal Rout and Rin, the matching delay elements provides a constant delay timing
constraint that matches the worst case latency of combinatory logic in each stage. Latch
controllers can generate the clock, Lt1, Lt2, Lt3, Lt4, to control the operation of
pipeline circuit.

Based on our asynchronous design flow in [18], it is very simple to design an asyn-
chronous function unit quickly. We employe ripple-carry adder, which performance is
limited but this implementation can satisfy the requirement and save layout area. The
combinatorial circuit can be described by VHDL/Verilog and synthesized by Synop-
sys Design Compiler. The control circuit can be described as signal transition graphs
(STG) [19] and synthesized by Petrify [20]. Then the Verilog description that comes
from Petrify also can be further synthesized by Design Compiler. The logic gates of
control circuit that is synthesized by Petrify and implemented by C-element [21] can be
illustrated in Fig. 3. The control circuit will increase extra cost in terms of area.

In addition to the combinatorial circuit itself, the delay element represents a de-
sign challenge: to a first order the delay element will track delay variations that are
due to the fabrication process spread as well as variations in temperature and supply
voltage. On the other hand, wire delays can be significant and they are often beyond
the designer’s control. So some design policy for matched delays is obviously needed.
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Fig. 3. The control circuit of one pipeline stage

In our procedure, the post-layout timing analysis has been done and custom delay cells
is implemented to provide the constant delay.

Asynchronous Multiplier Unit. Any multiplier can be divided into three stages: par-
tial products generation stage, partial products addition stage, and the final addition
stage. The second stage is the most important, as it is the most complicated and de-
termines the speed of the overall multiplier. In high-speed designs, the Wallace tree
construction method is usually used to add the partial products in a tree-like fashion in
order to produce two rows of partial products that can be added in the last stage.

According to the multiply stages of multiplier, our multiplier is divided into three
stages execution pipeline. The multiplier supports arithmetic operations with sub-word
parallelism. While being similar to the asynchronous adder unit, the multiplier employs
three stages pipeline architecture and matching delay elements.

4.2 Address Generation

In the radix-4 FFT operation, the address of any operand can be defined as follows [22]:

A = 4 ×
r−1∑
i=1

4i−1 ×A(i) + A(0) (4)

Let,

B = 4 ×
r−1∑
i=1

4i−1 ×A(i) +

(
r−1∑
i=1

A(i)

)
(mod 4) (5)

For any address A(0 ≤ A < N), the A and B are in one-to-one correspondence.

If m =
∑r−1

i=1 4i−1 ×A(i), b =
(∑r−1

i=0 A(i)
)

(mod 4), so

B = 4m + b (6)

Based on the equation (6), the address A can be mapping to the memory. The mem-
ory can be divided into four memory banks. The b is the bank number and the m is the
inner address.
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At the p stage of FFT, the m of the four operands that required by the calculation can
be described as follows:⎧⎪⎪⎨⎪⎪⎩

m0 =
∑r−1

i=p+1 4i−1 ×A(i) + 4p−1 × 0 +
∑p−1

i=1 4i−1 ×A(i)
m1 = m0 + 4p−1

m2 = m0 + 2 × 4p−1

m3 = m0 + 3 × 4p−1

(7)

Such an operation can be easily implemented with the aid of counter, which repre-
sents the

∑r−2
i=p 4i−1 ×A(i + 1) +

∑p−1
i=1 4i−1 ×A(i). Then the m can be produced.

4.3 Globally Synchronous Locally Asynchronous Wrapper

The GSLA methodology aims to combine the advantages of asynchronous design with
the convenience of standard synchronous design methodologies.

Global Clock

Locally Asynchronous IslandInterface

Rin

Ain

O1load

T1load

Data

Local Clock

Globally Synchronous Locally Asynchronous Wrapper

Fig. 4. Function unit with locally asynchronous island surrounded by the GSLA wrapper

Fig. 4 depicts a block level schematic of a GSLA module with its wrapper surround-
ing the locally asynchronous island. The wrapper contains an arbitrary number of ports,
a local asynchronous unit, and port controller.

Each function unit in TTA has one or more operator register (O), only one trigger
register (T) and one or more result registers (R). In GSLA wrapper, the operator and
triggered registers are both controlled by global clock. When the signal O1load is high,
the operand will be send to operator register. When signal T 1load is high, the another
operand will be send to trigger register and the function unit will be triggered to work.
Locally asynchronous island is driven by local clock. The control circuit uses two or
four phase handshaking protocol to control the data flow between adjacent pipeline
stages.

In our modified MOVE framework, the latency of specifical asynchronous function
unit should be converted to cycles according to global clock period. For example, if the
latency of our asynchronous multiplier unit is 14ns and the global clock period is 5ns,
the cycles of this unit should be defined as 3. It means that asynchronous function unit
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can complete one operation and other unit can read the result register after three clocks
periods. This method can solve the problem that how to use asynchronous function units
in synchronous TTA environment. In fact, the latency of asynchronous is only 14ns,
which is less than three clock periods. The latency conversion may cause performance
loss, but it a worthy trade-off between performance and power to some systems that are
sensitive to power dissipation.

4.4 General Organization

The processor is composed of nine separate function units and a total of eight register
files (RF) containing 32 general-purpose registers. The function units include one asyn-
chronous multiplier unit (AMUL), two asynchronous adder units (AADD), one com-
parator unit (COMP), one data address generator (AG), one I/O unit (I/O), one shift unit
(SH) and two Load/Store units (LSU). These function units and register files are full
connected by interconnection network consisting of 6 buses. The 32-bit buses are used
to transport data. In addition, the processor contains instruction and data memories. The
general organization of proposed GSLA TTA processor tailored for FFT (GSLAFFT)
processor is presented in Fig. 5.

AMUL AADD AADD

RF I/O LSU

AG

COMP

SH

LSU

Fig. 5. Architecture of the proposed GSLAFFT processor core

The structural description of the FFT processor core was obtained with the aid of the
hardware subsystem of the modified MOVE framework, which generated the Verilog
description. The structures of the address generator unit, comparator unit, shift unit, I/O
unit, and Load/Store unit were described manually in Verilog. The predesigned asyn-
chronous function units library including Verilog description and layout is implemented
according our asynchronous circuits design flow.

5 Simulation Results

In this work, we also implemented synchronous multiplier unit and adder unit using the
same data path as their asynchronous versions. The synchronous FFT processor core
(SFFT) replaced the asynchronous function units of GSLAFFT with their synchronous
versions. The SFFT and GSLAFFT were implemented in 0.18μm 1P6M CMOS stan-
dard cell ASIC technology. The layouts were both implemented in standard cell



176 Y. Li et al.

automatic place and route environment. The Mentor Graphics Calibre was used for the
LPE (Layout Parasitic Extraction) and the Synopsys Nanosim was used for performance
and power analysis. In performance and power analysis, the simulation supply voltage
was 1.8V, the temperature was 25°C, and the device parameters used the typical values
that comes from the foundry. The clock frequency of these processor was 200MHz. The
obtained results are listed in Table 1. It should be noted that the power dissipation of
instruction and data memories are not taken into account.

Table 1. Characteristics of 1024-point FFT on SFFT and GSLAFFT

Design Clock Execution Area Power Energy
Frequency Time
[MHz] [μs] [mm2] [mW] [μJ]

SFFT 200 26.09 0.8543 51.24 1.34
GSLAFFT 200 26.09 0.9001 43.41 1.13

Due to characteristics of fine-grain clock gating and zero standby power consump-
tion, the total power of GSLAFFT is less than SFFT. It shows that the GSLA imple-
mentation based on TTA can offer a low power solution for some application specific
embedded systems. Because of the area cost of the control circuits and independent
power rings layout, the area of asynchronous function unit is lager than its synchronous
version. The area cost is a disadvantage of the asynchronous circuits implementation
without any area optimization. Designers should seek the trade-off between power con-
sumption, performance and area. In different applications, optimization techniques for
different targets should be used [23]. Taking into account of the improvement in perfor-
mance and power dissipation, it is worth to pay attention to the design and application
of asynchronous circuits.

Table 2 presents how many 1024-point FFT transforms can be performed with energy
of 1mJ . The results are presented for some different implementations of the 1024-point
FFT. The 1024-point FFT with radix-4 algorithm can be computed in 6002 cycles in TI
C6416 when using 32-bit complex words [24]. The Stratix is an FPGA solution with
dedicated embedded FFT logic using Altera Megacore function [25]. The MIT FFT uses
subthreshold circuit techniques [26]. The FFTTA is a low power application-specific
processor for FFT [1].

Compared to other FFT implementation, the proposed GSLAFFT processor shows
significant energy-efficiency. The MIT FFT outperforms the GSLAFFT. However, due
to its long execution time, the MIT FFT is not suitable for high performance design. The
FFTTA also shows a significant improvement in energy-efficiency. It should be noted
that the instruction and data memories take 40% of the total power consumption of
FFTTA. If the power consumption of instruction and data memories is not included, the
FFTs per mJ of FFTTA should be 1076 and outperforms our GSLAFFT. However, the
performance of our processor can be scaled, i.e., the execution time can be halved by
doubling the resources. On the other hand, if we use advanced process technology, such
as 130nm, the clock frequency will be increase and the supply voltage will be decrease,
moreover, the power consumption will be reduced. So the FFTs per energy unit will be
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Table 2. Statistics of some 1024-point FFTs

Design Technology Clock Supply Execution FFT/mJ
Frequency Voltage Time

[nm] [MHz] [V] [μs]

GSLAFFT 180 200 1.8 26.09 884
130 720 1.2 8.34 100

TI C6416 130 600 1.2 10.0 167
130 300 1.2 21.7 250
130 275 1.3 4.7 241

Stratix 130 133 1.3 9.7 173
130 100 1.3 12.9 149

MITFFT 180 0.01 0.35 250000 6452
180 6 0.9 430.6 1428

FFTTA 130 250 1.5 20.9 645

increased. Simply, if the clock frequency of GSLAFFT on 130nm technology can be
increased to 250MHz, the FFTs per mJ will be increased to 1104 even that the power
consumption is not reduced.

6 Conclusion

Because TTA is very suitable for embedded systems for its flexibility and configura-
bility. Supported by special low-power function units, the architecture is easy to be
modified for different embedded applications that are sensitive to power. In this paper,
a low-power application-specific globally synchronous locally asynchronous processor
for FFT computation has been described. The resources of the processor have been tai-
lored according to the need of the application. Asynchronous circuits have been used
for reducing the power consumption of the processor. We implemented GSLA wrapper,
which make it be possible to use asynchronous function units in TTA. The processor
was implemented on 180nm 1P6M CMOS standard cell ASIC technology. The results
showed that GSLA implementation based on TTA can can offer a low power solution
for some application specific embedded systems. Although there is some area cost, it is
worth to pay attention to the design and application of asynchronous circuits in embed-
ded systems that are sensitive to power dissipation.

The described processor has limited performance but the purpose of our experiment
was to prove the feasibility and potential of the proposed approach. However, the per-
formance can be improved by introducing additional function units and optimizing the
code of the application.
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Abstract. Many of today’s embedded systems, such as wireless and
portable devices rely heavily on the limited power supply. Therefore, en-
ergy efficiency becomes one of the major design concerns for embedded
systems. The technique of dynamic voltage scaling (DVS) can be ex-
ploited to reduce the power consumption of modern processors by slow-
ing down the processor speed. The problem of static DVS scheduling in
distributed systems such that the energy consumption of the processors
is minimize while guaranteeing the timing constraints of the tasks is an
NP hard problem. Previously, we have developed a heuristic search al-
gorithm: Genetic Algorithm (GA) for the DVS scheduling problem. This
paper describes a Parallel Genetic Algorithm (PGA) that improves over
Genetic Algorithm (GA) for finding better schedules with less time by
parallelizing the GA algorithms to run on a cluster. A hybrid parallel
algorithm is also developed to further improve the search ability of PGA
by combining PGA with the technique of Simulated Annealing (SA).
Experiment results show that the energy consumption of the schedules
found by the PGA can be significantly reduced comparing to those found
by GA.

1 Introduction

With the growing mobile technology, nowadays our life is heavily relied on mo-
bile and portable devices with built in CMOS processors. The biggest limitation
of current electronic devices is the battery life. The technique of dynamic volt-
age scaling(DVS) has been developed for modern CMOS processors, which can
effectively lower the power consumption and enable a quieter-running system
while delivering performance-on-demand(DVS) [1]. Many of today’s advanced
processors, such as AMD and Intel, have this technology.

The CPU power consumed per cycle in a CMOS processor can be expressed
as P = CLfV 2

DD, where CL is the total capacitance of wires and gates, VDD

is the supply voltage and f is the clock frequency. It is obvious that a lower
voltage level leads to a lower power consumption. The price to pay for lowering
the voltage level is that it also leads to a lower clock frequency and thus slows
� The author would like to thank NSERC (National Science Engineering Research

Council, Canada) and CFI for supporting this research.
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down the execution of a task. The relation between the clock frequency and the
supply voltage is: f = K ∗ (VDD − VTH)2/VDD. As a result, exploiting DVS may
hurt the performance of a system (If we reduce the voltage by half, the energy
consumed will be one-quarter and the execution time will be double.) When
using DVS in a hard real-time system where tasks have deadlines, we can not
lower the voltage levels of the processors too much as we also need to guarantee
the deadlines of the tasks be met.

In the past few years, there have been a number of algorithms proposed for
applying DVS to hard real-time systems. Many previous works of DVS-based
scheduling either focus on single processor power conscious scheduling or con-
sider independent tasks only [2,3]. In this paper, we focus on static DVS-based
scheduling algorithm for distributed real-time systems consisting of dependent
tasks. We consider dicrete-voltage DVS processors instead of variable-voltage
DVS as real DVS processors show only a limited number of supply voltage levels
at which tasks can be executed.

The problem of optimally mapping and scheduling tasks to distributed sys-
tems has been shown, in general, to be NP-complete [4]. Because of the computa-
tional complexity issue, heuristic methods have been proposed to obtain optimal
and suboptimal solutions to various scheduling problems. Genetic algorithms, in-
spired by Darwin’s theory of evolution, have received much attention as searching
algorithms for scheduling problems in distributed real-time systems [5,6,7]. The
appeal of GAs comes from their simplicity and elegance as robust search algo-
rithms as well as from their power to discover good solutions rapidly for difficult
high-dimensional problems [8]. Our previous work has adopted Genetic Algo-
rithms for DVS-based scheduling algorithm [9]. The method is different from
other approaches of DVS scheduling of distributed systems [10,11,12,13,14] in
that it does not just construct one schedule once, it constructs populations of
schedules and iterates many generations to find one near optimal schedule. Dif-
ferent from another GA algorithm [15], our GA algorithm integrates task assign-
ment (to which processor the tasks will be assigned), task scheduling (when the
tasks will be executed) and voltage selection (at which voltage level the tasks
will run) at the same phase.

When the task size becomes bigger, the search space becomes larger. In or-
der to find better DVS schedules more efficiently, we design parallel genetic
algorithms (PGA) to improve our previous GA. The PGA is implemented on a
SUN cluster with 33 computation nodes. The PGA cuts down the computation
time of genetic algorithm by reducing the population to smaller size in order to
achieve reasonable speed up with good result. And it also expands the search
space, increases the probability to obtain better result. A hybrid parallel algo-
rithm which combines PGA and Simulating Annealing (SA) is also developed to
further improve the search process.

The paper is organized as follows. First, the energy model and the task model
are described in Section 2. The Parallel Genetic Algorithm (PGA) for DVS
schedling will be described in Section 3 and the experimental results will be
shown in Section 4. Finally the conclusions are presented in section 5.
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2 Task and Schedule Models

We consider the energy aware scheduling problem for a set of task T1, T2, . . . , TN

on a set of heterogeneous processors P1, P2, . . . , PM where N is the number of
tasks and M is the number of processors. Each processor has a number of voltage
levels. The power dissipation for a processor p running at level l is denoted as
POWp,l.

There are precedence constraints among tasks which can be represented by a
directed acyclic graph (DAG). If there is an edge from task Ti to Tj in the DAG,
then Tj can only start after Ti finishes execution.

– Each task has a Worst Case Execution Time (WCET) on each processor for
a given voltage level. The worst case execution time of task t on processor p
at voltage level l is represented as wt,p,l.

– Each task has a deadline. di is used to denote the deadline of task i.
– Suppose task t is assigned to processor p and run at voltage level l. Then

the energy used to execute task t is given by POWp,l ∗ wt,p,l.
– Assume Ti is mapped to processor P (i) and runs at level L(i). Then the

total energy consumptions can be easily calculated as follows: Etotal =∑N
i=1(POWP (i),L(i) ∗ wTi,P (i),L(i)).

To simplify the energy model, we assume that it takes no time to switch from
one voltage level to another and therefore no energy consumed accordingly.

2.1 DVS Scheduling Example

Let’s consider a very simple scheduling example with 3 tasks to be mapped into
2 processors as shown in Fig. 1(a).
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Fig. 1. An Example

Case 1 and case 2 in Fig. 1(b) shows the schedule without DVS and with
DVS, respectively. With DVS, task T1 and T3 can be slowed down to run at 1/2
speed and consume only 1/4 energy. Task T2 can save more energy consumption
as it can slow down more.
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3 Parallel Genetic Algorithms

GA approach can find better solutions for most scheduling problems in terms
of the feasibility of the solutions and the energy saving [9]. However, when the
problem size increases, it takes very long time for the solution to converge due
to the bigger population size needed. Parallel computations reduce the compu-
tation time significantly when using multiple processors. To find better solution
faster, we developed an Parallel Genetic algorithm (PGA) for the energy aware
scheduling problem.

The chromosome representation and the genetic operator are adopted from
the GA developed previously [9].

3.1 Chromosome Representation

Each chromosome is a schedule represented by an ordered list of genes and each
gene contains three data items: Task (the task number), Proc (the processor
number) and Level (the voltage level). The chromosome can be viewed as an
N ∗3 array where N is the total number of tasks. The first row of a chromosome
indicates the tasks ordered from left to right. The second row indicates the
corresponding processor that each task will be assigned to. And the third row is
the voltage level selected for the corresponding processor for each task.

In the example shown in table 1, tasks t1, t2, t3 and t4 are to scheduled onto
processor p1 and p2 where both of the processor have two voltage levels. Task t2
and t3 are assigned to process p2 and runs at voltage level 1 and 2 respectively.
Task t4 and t1 are assigned to process p1 and runs at level 2 and 1 respectively.

Table 1. A Schedule Example

Task 2 3 4 1

Proc 2 2 1 1

Level 1 2 2 1

A random order of tasks may result in infeasibility because the precedence
constraints might be violated. To avoid such problem, we only allow chromo-
somes that satisfy topological order [7]. A topological ordered list is a list in
which the elements satisfy the precedence constraints. To maintain all the in-
dividuals in the populations of any generation to be topological ordered, we
adopted the techniques in [7].

– Generate only topological ordered individuals in the initial population;
– Use carefully chosen genetic operators (see section 3.2).

Note that the deadline constraint may still be violated even when a schedule
satisfies a topological order.
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3.2 Genetic Operators

Genetic Algorithms generate better solutions by exploring the search space by
genetic operators. New individuals are produced by applying crossover operator
or mutation operator to the individuals in the previous generation. The proba-
bility of the operators indicates how often the operator will be performed. We
choose 0.6 as the probability for the crossover and 0.4 as the probability for the
mutation.

The mutation operator creates a new individual with a small change to a
single individual. In our approach, we use Processor and/or Level Assignment
Mutation. To perform the mutation, we randomly select a range of genes from a
chromosome and then randomly change the processor number and/or the level
number within this range. Obviously, the mutation operator does not change
the order of the tasks. Therefore, the new individual also satisfy the topological
order.

The crossover operator creates new individuals by combining parts from two
individuals. To perform crossover operation, we first randomly pick two chro-
mosomes (as parents) from the current population. Then we randomly select
a position where the crossover is going to occur. The first part of child 1 uses
the schedule of parent 1 up to the chosen position. The second part of child 1
is constructed by selecting the rest tasks (the tasks not in the first part) from
parent 2 in order. The same mechanism also applies to child 2. Below is an ex-
ample of our crossover operator. Assume we have two individuals as shown in
Fig. 2(a). Suppose the selected position is 2, then the children will be shown as
in Fig. 2(b).

Task # 1 5 2 4 3 

Processor # 1 2 1 2 1 

Level # 1 2 1 2 1 

Parent 1 

Task # 5 3 2 1 4 

Processor # 2 2 1 1 1 

Level # 1 1 2 2 2 

Parent 2 

(a) Crossover Parents

Task # 5 3 1 2 4 

Processor # 2 2 1 1 2 

Level # 1 1 1 1 2 

Child 2 

Task # 1 5 3 2 4 

Processor # 1 2 2 1 1 

Level # 1 2 1 2 2 

Child 1 

(b) Crossover Children

Fig. 2. Crossover operator

The crossover operator will produce two offsprings that are topological ordered
if the parents are topological ordered. The detailed proof can be found in [7].

3.3 Parallel Environment

Our parallel hardware environment is a Sun Netra X1 Cluster Grid of 33 Sun
servers (nodes). Each node has a Ultra SPARC II 64bit CPU, capable of 1 Gflops
with 1 Gb main memory.

Based on the characteristic of coarse-grain PGA, a C language with MPI
(Message Passing Interface) library has been chosen for our PGA programming.
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We choose to implement a coarse-grain PGA to solve our problem because it is
the most popular method and others have reported good results with this method
in literature. First it cuts down the computation time of genetic algorithm by
reducing the population to smaller size in order to achieve reasonable speed
up with good result. Second improvement is that it expands the search space,
increases the probability to obtain better result. And most it is obvious the large
that amount of nodes used the better chance to get good result.

3.4 The Basic PGA Algorithm

In our PGA, subpopulation is employed in each node instead of the whole popu-
lation as shown in Fig. 3. Assume the population of PGA is denoted as POPSIZE
and there are n computation nodes. Each node performs GA with POPSIZE/n
number of individuals in the subpopulation. Note that when a larger number of
nodes being used, the subpopulation size may become too small. To avoid sub-
population exiguity problem, we set a minimal value for subpopulation. Typically
in our case, 40 is the minimal population size. Each node randomly creates initial
schedules that satisfy the partial order constraints.

Fig. 3. Subpopulation Division

After initialization, PGA goes into a loop with many iterations, each iteration
contains two steps: 1) basic GA operations in each node including selection,
crossover and mutation and 2) communications among nodes. Step 1) in each
iterations allows each node generate a new subpopulation. Each node then finds
its own best chromosome out of the new subpopulation. In Step 2), one node
sends its best solution to the rest of nodes. Note that the nodes take turns to
send the best solution, one node in each iteration. Each node compares the best
solution that it receives with its own best solution and determines whether to
replace or discard it following the replacing policy.

The iterations will keep repeating until the stopping criteria are satisfied.
Finally,the master node gathers all best chromosome from all the nodes and
finds the best one among all.

The cost of communication between two MPI processors can be approximately
divided into two parts: (i) Start-up time Tstartup and (ii) Transmission Time Tt =
(Data size)/Bandwidth. Start-up time is the duration needed for MPI to set
up the communication links. Transmission time is the time needed to send
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the message to its destination. The most commonly used model of the cost of
communication is linear: Tcomm = Tstartup + (Datasize)/Bandwidth.

When PGA broadcasts the best chromosome, a large amount of communica-
tion is required. Since the chromosome contains many pointers and MPI is not
able to send non-continuous memory block at once, we defined a MPI commu-
nication data type called ChromosomeType that contains all the information in
a chromosome. Therefore each MPI communication only need one start up time
plus one transmission time to broadcast the best chromosome.

3.5 PGA Strategies

Initial Schedules Using EDF with TopologicalOrder. To increase the
efficiency of our genetic algorithm, during the initialization of PGA, the general-
ization of schedules include two schedule that uses EDF scheduling policy while
conforming to the topological order of tasks, where one has minimal energy level
and the other one has maximal energy level.

Evaluation and Punishment of Infeasible Solutions. The aim of our op-
timization problem is to minimize the energy consumption of the tasks. The
evaluation function is defined as the energy consumption of all the tasks.

However, the individual schedule with smaller Etotal will not always be con-
sidered better. This is because we need to consider one more factor: the deadline
constraints (precedence constraints are already encoded into the schedule en-
forced by the topological order.). Our algorithm give penalty to the individuals
violating the deadline constraints so that they have less chance in getting into
the next generation.

The Policy of Replacing the Best and Worst Solution. The best feature of
parallel programming is that one computation node can communicate its result
to other nodes to help them get close to optimal solution in the search process.
So exchanging results becomes the most important issues in our PGA. The nodes
send their best result sequentially to other nodes. When a node receive a solution
from others nodes, it will determine whether to use it or discard it.

The replacing best policy works as follow: before communication, each node
find both the best and worst chromosome indexes. After communication, the
local best index will be compared to the received best solution. If the local best
is better than the received one, the node abandons the received one, and replaces
the local worst index with the received best. Otherwise, the node replaces both
the local best and local worst solution with the receive best solution.

Cost Slack Stealing. In a schedule, it is possible that some tasks have slacks.
Our cost slack stealing strategy is to determine whether the scheduling has slacks
and try to reuse these slacks by extending the task execution time as much as
possible by using the feasible lowermost energy level, so the total tasks execution
time can be reduced. Considering the speed efficiency of PGA, this cost clack
stealing method only performed on the final best result in each node to gain last
enhancement of the PGA.
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3.6 Hybrid Parallel Algorithm

This section, we present a hybrid parallel algorithm: parallel simulation anneal-
ing and genetic algorithm(PSAGA), to further improve the performance.

Simulated annealing (SA) is a generic probabilistic meta-algorithm for the
global optimization problem, namely locating a good approximation to the global
optimum of a given function in a large search space [16].

In analogy with the physical process of annealing in metallurgy, each step of
the SA algorithm replaces the current solution by a random ”nearby” solution,
chosen with a probability that depends on the difference between the corre-
sponding function values and on a global parameter T (called the temperature),
that is gradually decreased during the process. The allowance for ”uphill” moves
saves the method from becoming stuck at local minimum as would the greedier
methods.

GA lacks of focus in the search due to the crossover operation. The combina-
tion of SA with GA allows finding a better solution in a particular search point
and search area. PSAGA preforms an extra SA process besides those of PGA
in each iteration. After performing replacing the best and worst solution, an SA
will be started using the best schedule currently found. The SA tries to find the
best neighbor in each iteration.

4 Experimental Results

In this section, we describe the simulation experiments preformed and the results.
First we describe the features of the generated scheduling problems in the

experiments. Fig. 4 shows the number of task and the number of constraints we
have considered in our experiments. For each category, we compared GA, PGA,
and PSAGA. The results you see later in the section are average result of the
5 problems in each category. Beside the task graph, each scheduling problem
has one more variable: the number of processors. We have chosen 3, 5, and 10
processors for each task graph but we mainly compared 10 processors cases in
this paper.

Fig. 4. Test Parameters

We first demonstrate the efficiency of energy reduction and the corresponding
runtime of the PGA algorithm. Fig. 5(a) shows the average energy consumption
of the solutions found by GA and PGA using various computation nodes under
different test categories. When the number of node equals one, it means that it
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(a) Energy Consumption

(b) Computation Time

Fig. 5. The Parallelization Effect

is a serial genetic algorithm. That is, the GA program here is represented by a
1 node PGA program. For small task size 50, GA and PGAs almost have the
same result, and it is hard to see any advantage of PGA in this case. PGA’s
results get better when the computation nodes used for PGA increase. The
improvement is particularly obvious when the task size is above 100 where the
energy consumption can be reduced more than 50% with 8 times less run time.
With task number being 500, the difference seems to be more obvious. PGA has
better solution as the size of nodes is increased and clearly the results show that
the 30 node PGA has the best result overall. With more nodes PGA can find a
schedule closer to the optimal solution. Fig. 5(b) shows the corresponding average
computation time used for the GA and PGA. under different computation nodes.
The run time speed up of PGA with 5 nodes is 4. As the node increases to more
than 5, we use a fixed time for PGA as we aim to find better solutions and the
computation time is tolerable.
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Fig. 6. PGA Strategies

Fig. 7. PSAGA vs. PGA

Next, we show the effect of the typical strategies in PGA in Fig. 6 We found
that policy of the best and worst replacement results in the best fitness than any
other strategies. Including initial schedules using EDF becomes more efficient
when the task number becomes lager. And slack stealing contributes to some
improvement.

For the PSAGA, we only compare it with the PGA with 30 nodes as an
example. From Fig. 7, for task size being 50 to 100, PSAGA and PGA have
similar results. But when the task size increases to 200, the difference become
obvious. PSAGA can save around 15% more energy than PGA. As the results
are similar when using different number of nodes, we can expect that when the
schedule problem size gets larger, the PSAGA performs better than PGA. When
task size increases to 200, PSAGA can reduce 15% more energy than PGA.
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5 Conclusion

We have addressed energy minimization problem in distributed embedded sys-
tems in this paper. A Parallel Genetic Algorithm (PGA) has been described
for static DVS scheduling in such systems. The PGA improves over GA both
on the optimization results and the computation speed. The PGA has been
implemented in a SUN cluster. Various strategies of the PGA, such as the com-
munication between the nodes in the cluster and the replacing strategies of best
and worst individuals, have been discussed. A large number of experiments were
conducted. The experiments show that PGA can find better solutions than GA
for most scheduling problems in terms of the feasibility of the solutions and the
energy saving. The improvement is particularly obvious when the task size is
above 100 where the energy consumption can be reduced more than 50% with 8
times less run time. PSAGA (Parallel hybrid Simulating Annealing and Genetic
Algorithm) is also employed to achieve the further improvement of PGA.
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Abstract. Constructing flash memory based storage, FTL (Flash Trans-
lation Layer) manages mapping between logical address and physical
address. Since FTL writes everydata to new region by itsmappingmethod,
the previous data is not overwritten by new write operation. When a jour-
naling file system is set up upon FTL, it duplicates data between the jour-
nal region and its home location for the file system consistency. However,
the duplication degrades the performance. In this paper, we present an ef-
ficient journal remap-based FTL. The proposed FTL, called JFTL, elimi-
nates the redundantdata duplication by remapping the journal region data
path to home location of file system. Thus, our JFTL can prevent from de-
grading write performance of file system while preserving file system con-
sistency.

1 Introduction

Flash Memory has become one of the major components of data storage since
its capacity has been increased dramatically during last few years. It is charac-
terized by non-volatile, small size, shock resistance, and low power consumption
[1]. The deployment of flash memory is spreading out ranging from consumer
electronic devices to general purpose computer architecture. In nonvolatile mem-
ories, NOR flash memory provides a fast random access speed, but it has high
cost and low density compared with NAND flash memory. In contrast to NOR
flash memory, NAND flash memory has advantages of a large storage capacity
and relatively high performance for large read/write requests. Recently, the ca-
pacity of a NAND flash memory chip became gigabyte stage, and the size will
be increased quickly. NAND flash memory chips are arranged into blocks, and
each block has a fixed number of pages. Currently, typical page size of NAND is
2 KB, and the block size is 128 KB.

For flash memory, many operations are hampered by its physical characteris-
tics. First, the most important feature, is that bits can only be cleared by erasing
a large block of flash memory, which means that in-place updates are not allowed.
It is called out-of-place update characteristics. When data are modified, the new

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 192–203, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Layered Approach with FTL

data must be written to an available page in another position, and old page be-
comes dead page. As time passes, a large portion of flash memory is composed of
dead pages, and the system should reclaim the dead pages for writing operations.
The erase operation makes dead pages become available again. Second, erasing
count of each block has a limited number and erase operation itself gives much
overhead to system performance. Thus, the write operation is more important
than read operation when designing flash memory based systems.

Due to its limitations, data robustness and consistency is a crucial problem.
Since every data should be written to new place in flash memory, a sudden
power failure of system crash may do harm the file system consistency. There
are two approaches to address these problems. One approach would be possible
by designing a file system itself to support specific flash memory characteristics.
There are several native flash file system, such as JFFS [8] and YAFFS [9]. These
are log-structured based file system that sequentially stores the nodes containing
data and metadata in every free region, although their specific structures and
strategies are different from each other. These approach are available only on
board flash memory chips, and if it is desired to be used in PC systems, a flash
memory interfaces should be integrated into computer architecture.

The other approach is to introduce a special layer, called a Flash Translation
Layer (FTL), between existing file system and flash memory [4][5][6]. The FTL
remaps the location of the updated data from one page to another and manages
the current physical location of each data in the mapping table. FTL gives a
block device driver interface to file system by emulating a hard disk drive with
flash memory through its unique mapping algorithm. Figure 1 shows the layered
approach with FTL in flash memory based systems. This layered approach can
offload flash memory from processing unit by utilizing commonly used interfaces
such as SCSI or ATA between processor and flash memory chips. The removable
flash memory cards such as USB mass storage and compact flash are using this
approach. The advantage of it is that existing file systems can be used directly
on the FTL. When existing file systems use upon a FTL, journaling technique
is essential element to prevent from corrupting user data and enhance system
reliability, data consistency and robust. However, journaling method existing
file system itself degrades the system performance. Generally, journaling file
systems write a journal record of important file system data before processing
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write operation. Then this journal is re-written to real file system home location
to make clear consistent state. Due to out-of-place update characteristics of flash
memory, the journaling affects flash memory based system more than disk based
system.

In this paper, we present an efficient journaling interface between file system
and flash memory. The proposed FTL, called JFTL, eliminates the redundant
data copy by remapping the logical journal data location to real home location.
Our proposed method can prevent from degrading system performance while pre-
serving file system consistency. Our approach is layered approach, which means
that any existing file system can be setup upon our method with little modifica-
tion to provide file system consistency. In the implementation, we consider Ext3
file system among many kinds of journaling file systems because it is the main
root file system of Linux. The remainder of this paper is organized as follows.
Section 2 describes motivation and background. Section 3 describes the design
and implementation of our proposed technique, and Section 4 show experimental
results. We conclude in Section 5.

2 Background

Ext3 [13] is a modern root file system of Linux that aims to keep complex
file system structures in a consistent state. All important file system updates
are first written to a log region called a journal. After the write of journal
are safely done, the normal write operations occur in its home locations of
file system layout. The journal region is recycled after the normal updates is
done. A central concept when considering a Ext3 file system is the transaction.
A transaction is the update unit of Ext3 file system, which contains the sets
of changes grouped together during an interval. A transaction exists in several
phases over its lifetime, running, commit, checkpoint and recovery. The detailed
operation of transaction is omitted due to the page limit. Please refer to other
papers.

The Ext3 file system offers three journaling operation modes: journaled mode,
ordered mode, and writeback mode. In journaled mode, all data and metadata
are written to the journal. This provides high consistency semantics including
user level data consistency. However, all are written twice to file system; first
to the journal region, second to its home location. Thus, its write performance
is extremely degraded. In ordered mode, only file’s metadata are written to the
journal, and file’s data are written directly to its home location. To provide
data consistency without double writes for file’s data, ordered mode guarantees
a strict ordering between two writes. The file’s data are should be written to
its home location before the corresponding metadata are written to the journal
when a transaction commits. This can guarantee that file metadata never indi-
cate a wrong data before it has been written. After the metadata logging to the
journal is done, they are re-written to its home location. In writeback mode, as
does ordered mode, only metadata are written to the journal, and file’s data are
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Fig. 2. Double writes of Journaling

written directly to its home location. However, unlike ordered mode, there is
no strict write ordering between these two. A metadata indexes can point to
the wrong data block which wasn’t written to storage. It cannot guarantee data
consistency, but the journal can restore metadata.

The journaling operation of Ext3 can preserve file system consistency, at some
level for each mode. Regardless of the consistency level of each mode, the key
concept is that important information is first written to the journal, and then
written to home location. During these journaling operations, double writes oc-
cur. If Ext3 is mounted in flash memory based storage system, it is set up upon
FTL since FTL presents a block device interface to file system. The issue we
should take notice is system performance. Since write operation occurs twice,
write performance is degraded, since double writing occurs by a log manner in
the flash memory. The Figure 2(a) represents the problem of double writing in
FTL. However, if we make use of the FTL mapping management for journal-
ing technique, we can eliminate double writing overhead. Figure 2(b) shows the
JFTL that remaps the logical home location to the physical location of journal
that was written before. It can eliminate the redundant writes of home location.
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3 Design and Implementation

In this section, we describe our design and implementation of JFTL. The design
goal is to prevent from degrading system performance, while providing file system
consistency semantics. Our JFTL can be applied to all modes in Ext3 journaling,
we explain based on Ext3 journaled mode.

3.1 JFTL: Journaling Remap-Based FTL

In the Ext3 journaled mode, all updates including file data and metadata are
first written to journal region, then copied to home location. Transaction pro-
vides system consistency by writing all together or not included in a transac-
tion. This atomicity is possible to manage duplication between journal region
and home location, because original data remained in home location are not
corrupted by operations during transaction running. The duplication is crucial
feature in journaling. In view of this, if we look into FTL, FTL already uses
duplication by the mapping management. Every written blocks from file system
is written to another new flash pages by FTL not over-written. The problem
is that FTL has no idea about journaling. Specifically, it does not know what
data are associated with transactions, and the relationship between home loca-
tion and journal region. If we can manage these information within FTL, we can
eliminate double writing. In Ext3, these important information is stored in block
called descriptor. For a transaction, descriptor block contains list of addresses
of home location for each subsequent blocks to be written to journal region. The
list represents the blocks to be written to home location after the transaction
commit. During transaction commit phase, these are locked by journal trans-
action. The pdflush daemon of Linux may write journaled data to flash after
commit ends. Thus, all updated data are duplicated.

In the JFTL, blocks in the list of descriptor is not written again to flash
memory actually, but the JFTL remaps the physical location of journal region
to home location. For this, we make a dedicated interfaces between journaling
module and JFTL to pass these information. The lists recorded in descriptor are
passed through the interface from Ext3 journaling module to JFTL, and JFTL
uses these for updating the mapping table associated with blocks recorded in the
list. The overall write process of journal including our remapping of duplicated
blocks is as follows.

At first, when a new transaction is started, all updates are added and clustered
to some buffers, and these are linked and locked. In the Figure 3, the updates,
whose block numbers are 1 and 3, are clustered into running transaction.

Next, when the transaction expires, it enters commit phase where the clustered
buffers, made in running phase, are inserted into list, log list. These data are
written to journal region with two additional special blocks, descriptor and
commit. In the Figure 4, Journal region represents the list to be written to
journal region. In the journal, both descriptor and commit block have a magic
header and a sequence number to identify associated transaction. The descriptor
block records the home addresses of the list by checking their address of journal
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region, according to the order of subsequent blocks that are written to journal
region. For example, the block number of logging data within journal sequence is
1 and 3, so descriptor records the block number 1 and 3, which is associated to
the journal logging sequence. When descriptor block is made with the list, blocks
included in this transaction are flushed to block device layer. The submitted
blocks are written to flash memory through the JFTL, and the JFTL updates
the mapping table. The region are logically journal region, but physically new
free region. Up to now, journal data are flushed to storage.

After journal flushing is done, journaling module of Ext3 sends the list to
JFTL through the dedicated interfaces for remapping. JFTL makes the remap
list, remap list, from using information sent from journaling module. the remap
list has not only home address but also journal address associated with it. For
one element of the list is composed of home address and journal address to be
updated, as shown in Figure 5. Specifically, the block number 1 of home location
is related to the block number 21 of journal region, and the block number 3
of home location is related to the block number 22 of journal region. For each
element, JFTL finds out the physical address of the journal region, and updates
mapping table of home location of the element with the physical address. Then,
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JFTL clears the physical address of journal region. This clearing indicates that
this region is obsoleted so it can be included in erase operation. In the Figure, in
case of element (1,21), the physical address of journal region (21) is remapped
to (18), so we link home location (1) to the physical address (18). Then we clear
the physical address of journal region (21). When crash occurs before the remap-
ping, this transaction journal data should be revoked and the file system status
should be rolled back to the older version. This can be properly operated by
recovering older version of mapping table. When crash occurs after the remap-
ping, the new version is pointed by home location although this transaction is
not properly completed. We don’t worry about the consistency since the remap-
ping can guarantee that all the journaling data in this transaction are written
to storage.

When updating of mapping table associated to this transaction is done by
remapping, the journaled data don’t need to be written to flash memory any
more, because all journal region are written out properly and the home loca-
tion of that now points to the newly written data by remapping of these. The
remaining job is to clear the buffers related to blocks of home location. This is



Journal Remap-Based FTL for Journaling File System 199

possible by simply setting the BUFFER CLEAN flag of buffer head structure
of the blocks. By doing this, these are not flushed to flash by the pdflush daemon
because it only flushed the dirty blocks by its mechanism. After all is done, the
transaction is removed. Lastly, in JFTL, previous address of updated blocks
now can be considered as obsoleted, so these are marked as dead in the table
and can be included in erase operation.

3.2 Recovery

When system crashes, Ext3 performs checking of its superblock and journal su-
perblock, and scans the journal region to recover system corruption. When crash
occurs during journal writes, we should provide rollback mechanism for improp-
erly logged transaction. The improperly logged transaction represents that crash
occurs during this outstanding transaction write. The recovery of Ext3 with
JFTL proceeds as follows. When Ext3 is mounted, it checks the mount flag in
the superblock, and it finds that the system was crashed last. In this case, Ext3
checks journal superblock and identifies its consistency was corrupted by crash.
After finding crashes, it identifies the committed transactions with their sequence
number by scanning journal region. For the properly logged transactions, it reads
descriptor block that is marked as same sequence number of superblock, checks
the logged block addresses, and makes remap list for remapping these. The
remap list is sent to JFTL, and JFTL updates mapping table, as commit does
during runtime. Then, Ext3 scans more to find logged transactions and repeat-
edly performs the updating processes as described above. During the checking
of journal region, if Ext3 finds improperly committed transaction, it stops the
recovery process and returns. Lastly, Ext3 resets the journal region to be cleared
and used later for journaling.

Different from previous recovery process, in case of properly logged transac-
tion, our recovery policy doesn’t perform copies of logged data to permanent
home location, only remaps their addresses to the physical position of that by
updating JFTL mapping table, just like that of run-time commit policy. Even
though the amount of blocks to be recovered is small, our recovery mechanism
is efficient because we only remap the committed transactions without copies to
home locations.

4 Evaluation

The proposed Ext3 journaling mode with JFTL, will be compared to original
Ext3 ordered mode and journaled mode. we exclude the writeback mode since
it gives similar results of ordered mode. The experimental environment we use is
NAND flash memory simulator based PC system. We use nandsim simulator [6]
for the experiments. The nandsim can be configured with various NAND flash
devices with associated physical characteristics. The physical characteristics of
simulated the flash memory is as follows. Page size and block size of configured
flash memory is 512Bytes and 16KBytes, respectively. One page read time and
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Fig. 7. Bonnie Benchmark Performance. The left graph plots character write
performance, and the right graph plots block write performance as the
amount of data written increases along the x-axis.

programming time is configured to 25us and 100us, respectively. Block erase
time is set to 2ms. Those configured settings are accepted among many flash
memories. The reason we chose 512Bytes page size is to match with the sec-
tor size of disk. The capacity of nandsim is set to 128MB, which is allocated
in main memory. For the performance evaluation, we used two benchmark pro-
grams, Bonnie [15] and IOzone [16]. For the benchmark tests, we have tested
as follows, Ext3 ordered, Ext3 ordered with JFTL, Ext3 journaled, and Ext3
journaled with JFTL. Among many file system operations, we are interested
in write performance of file system since journaling gives overheads for write
performance. During all the experiments, we guarantee all the data are written
to flash memory, not be cached to main memory.

We begin our performance evaluation with Bonnie benchmark [15]. Bonnie
performs a series of tests one file of known size. The series of tests are composed of
character write/read, block write/read/rewrite, and random write. Among these,
we plots character write and block write performance as file size increases. The
Figure 7 shows their results. First of all, we can identify throughout the graphs
that the bandwidth of each mode does not changed largely as the written file size
increases. It is from distinct feature of flash memory. Flash memory is electrical
device and does not affected by any geometry structure. Thus, flash memory
is free from complex scheduling overhead like disk scheduling. Instead of, flash
memory is affected by garbage collection issue.

The left graph of Figure 7 plots character write performance, and the right
graph of Figure 7 represents block write performance of Bonnie. The charac-
ter write operation indicates that file is written using the putc() stdio. In block
writes, file is written using write() calls with the amount of block size, 4KB.
They show similar results of write trends without average bandwidth rate val-
ues. In the graphs, among two ordered modes, the ordered with JFTL slightly
outperforms the ordered mode. It is the effect of remapping of metadata not
real writing to home location. However, compared to large amount of data, the
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Fig. 8. IOzone Benchmark Performance. The Left graph plots write performance,
and the right graph plots rewrite performance as write request size per
write operation increases along the x-axis.

amount of metadata is negligible, so the performance gap is small. If we compare
two journaled modes, journaled mode with JFTL greatly outperforms the pure
journaled mode, as we expect. In case of journaled mode, bandwidth is slowly
down as file size increases, which is due to the number of descriptors in the jour-
nal transactions. As the written data is increased within a transaction interval,
number of descriptors is also increased. If journaled with JFTL is compared
with ordered modes, bandwidth degradation of the journaled with JFTL is not
a serious problem. The journaled with JFTL mode can give similar performance
to ordered mode while preserving strict data consistency.

Next benchmark program we tested is IOzone benchmark [16]. It generates
and measures a variety of file operations including write/rewrite, read/reread,
aio read/write, and so on. Among these, we plot write performance verifying
that data is actually written to flash memory. we have experimented write op-
eration while varying the write request size per write operation from 4KBytes
to 4096KBytes when file, whose size is 4096KBytes, is created and written. It
means that 1024 write operation occurs for 4KBytes write size, whereas only
one write operation occurs for 4KBytes write size, when 4096KBytes file is writ-
ten. In the Figure 8, left graph plots write performance, and right graph plots
rewrite performance as write size per write operation increases along the x-axis.
The difference between write and rewrite is that write means new data is writ-
ten and rewrite means the update of previous data. From the left graph, we
identify that throughput of new data increases as the write size increases, which
is due to the metadata update between each write intervals, such as free block
allocation. For small write request size, performance is much degraded in both
ordered mode and journaled mode. It results from the fact that free block allo-
cation and metadata operation is performed for each write operation. As write
request size increases, throughput is increased since metadata operation number
is decreased. However, it is not required to allocate free blocks when the data
is rewritten, which means metadata operation decreases. Thus, throughput of
ordered mode is constant through the request sizes, as we see from the right
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graph. In all experiments, we can identify that the performance of ordered with
JFTL mode and journaled with JFTL outperforms its comparison.

From the experiments, we note several results. First, journaling itself gives
overhead to system while providing consistency. Second, when ordered mode is
used, the performance of JFTL is slightly better than original with the help of
remapping. Third, the journaled mode downs system performance extremely,
at least half of the throughput and latency, even if it provides strict data con-
sistency. Whereas, the journaled with JFTL does not harm largely, and gives
little overhead to the system, while providing strict data consistency.

5 Conclusion

Flash Memory has become one of the major components of data storage since
its capacity has been increased dramatically during last few years. Although it
has many advantages for data storage, many operations are hampered by its
physical characteristics. The major drawbacks of flash memory are that bits can
only be cleared by erasing a large block of memory and the erasing count of
each block has a limited number. Considering a journaling file system on the
FTL, the duplication of data between the journal region and its home location
is crucial for the file system consistency. However, the duplication degrades the
file system performance.

In this paper, we present an efficient journaling interface between file system
and flash memory. The proposed FTL, called JFTL, eliminates the redundant
data copy by remapping the logical journal data location to real home location.
Our proposed method can prevent from degrading system performance while pre-
serving file system consistency. Our approach is layered approach, which means
that any existing file system can be setup upon our method with little modifica-
tion to provide file system consistency. In the implementation, we consider Ext3
file system among many kinds of journaling file systems because it is the main
root file system of Linux.
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Abstract. Many optimization techniques have been adopted for efficient job
scheduling in grid computing, such as: genetic algorithms, simulated annealing
and stochastic methods. Such techniques present common problems related to the
use of inaccurate and out-of-date information, which degrade the global system
performance. Besides that, they also do not properly model a grid environment.
In order to adequately model a real grid environments and approach the schedul-
ing using updated information, this paper uses complex network models and the
simulated annealing optimization technique. The complex network concepts are
used to better model the grid and extract environment characteristics, such as
the degree distribution, the geodesic path, latency. The complex network vertices
represent grid process elements, which are generalized as computers. The random
and scale free models were implemented in a simulator. These models, associated
with Dijkstra algorithm, helps the simulated annealing technique to find out effi-
cient allocation solutions, which minimize the application response time.

1 Introduction

The evolution of the computer electronics have made feasible the production of low
cost microprocessors and the computer networks dissemination. This motivated the de-
velopment of distributed systems. Applications executing on such systems have been
presenting a complexity growth. Moreover, the high cost of specialized resources, such
as parallel machines and clusters, demonstrate the need of a technology able to provide
high scale distributed resources. Those needs have been motivating the development of
grid computing. The resource allocation, in such systems, motivated the study of new
job schedulers addressed to large scale environments.

The job scheduling problem is an important subject in distributed systems, which
aims at taking decisions based on policies such as [1,2,3,4,5]. Policies distribute pro-
cesses, which compose distributed parallel applications, on the available processing
elements (PEs), according to different objectives such as: load balancing, reduce ap-
plication response time and improve the resource usability. Such scheduling policies,

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 204–215, 2007.
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proposed for conventional systems (parallel machines, clusters and NOWs1) do not
provide good solutions for grids, which bring some new functional requirements and
objectives.

Grid resources are heterogeneous and of unpredictable availability. Common deci-
sions to be taken by the scheduler, in such environments, are: which applications will
have access to the computational resources, the amount and localization of resources
to be used by applications. These decisions are affected by different factors, such as
the imposed system workload, the resource heterogeneity and user requirements. Be-
sides that, the scheduling has to deal with specialized applications which have different
resource usage behaviors [6].

The computational grids can better be represented, and also the scheduling problem,by
using complex networks with optimization techniques. Complex networks are a knowl-
edge representation theory which use topological structures (graphs) to store information.
They allow diverse connection types to be established among entities, better representing
the real system. In this work, the network vertices represent computers and the edges, the
connectivity among them. Relevant grid characteristics and properties can be mapped in
complex network models, such as the degree distribution, distance and latency between
vertices. Such information can be used by the scheduling optimization technique.

By observing the advantages of complex networks, Zhao et al. [7] and Costa et al.
[8] proposed specific solutions to computing problems. In the first work, the conges-
tion control problem, in Internet gateways, was modeled by using complex networks.
Important metrics were defined to prevent traffic chaotic situations in communication
channels. In the second work, complex network models characterize grid environments.
Experiments provide model comparisons and conclude about how they can improve
parallel application performance.

Motivated by such works, this paper adopts complex network models and the sim-
ulated annealing technique to optimize the job scheduling problem in computational
grids. The complex network usage is convenient to model grid environment charac-
teristics, such as: statistical metrics to remove and insert computers, the distance and
connectivity among computers. The random and scale free models and the simulated
annealing technique were implemented in a simulator. Results demonstrate the schedul-
ing behavior in environments following the two complex network models.

This paper is organized as follows: section 2 reviews the related work; concepts on
complex networks are described in section 3; section 4 presents the simulated annealing
technique; the job scheduling model is proposed in section 5; section 6 presents the
results; conclusions are described in section 7.

2 Related Work

The grid computing research is mainly concentrated in the coordination of geographi-
cally distributed resources aiming high performance. Some of the main approaches are
[9,10,1,2,3].

In [9] the UGSA (Unified Grid Scheduling Algorithm) algorithm is proposed, which
considers the information on the system workload and the communication latency for

1 NOWs – Network of Workstations.
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job scheduling. Applications are mapped in DAGs (Directed Acyclic Graph) which
define how processes will be allocated in the grid processing elements. In this work, a
genetic algorithm module is also defined, which is executed when processes arrive at
the system.

In [10] a stochastic algorithm, named stochastic greedy, is proposed which prevents
degradation in the system performance. Dynamic hash tables and data replication tech-
niques are used to keep the system workload updated and, in this way, to consider the
last information in the job scheduling. The proposed algorithm is compared to the orig-
inal greedy algorithm indicating higher performance and lower overload.

In [2] the TDS policy [1] is extended by solving some of its limitations. Optimiza-
tions are defined to determine whether the scheduling result is good or not, according to
the policy objective. The main idea is to duplicate processes before placing in the pro-
cessing elements. The TDS is conceptually compared to the TDS extended, although
no real results are presented to quantify such assumptions.

In [3] the opportune cost policy is proposed, which considers applications in which
processes may cause communication overhead. A marginal cost function [11] is adapted
to allow process reallocation on processing elements. The routing concepts of virtual
circuits are used to determine the CPU overhead in communication terms. Each system
processing element has multiple resources: CPU, memory, input/output devices, etc.
The objective is to minimize the overload caused by using such resources. The proposed
overhead evaluation model does not consider the impact that each process cause in the
network communication. Besides that, the model does not evaluate the overhead weight
in a measure which allows to determine the CPU delay, such as the number of MIPS
(millions of instructions for second) consumed when sending and receiving network
messages.

3 Complex Networks

A network is composed of a set of interconnected elements [12] called vertices or nodes,
which are linked by edges. Many kinds of systems can be modeled by using this con-
cept, such as social, information, technological and biological networks.

Newman [12] has defined three topics to be prioritized when studying complex net-
works. The first aims at finding topological properties such as the path length among
vertices and the degree distribution, what characterizes the network structure and be-
havior. For this, we may define mechanisms to measure and collect network properties.
The second aims at creating a complex network model which helps to understand such
properties, for instance, the interaction degree among elements. The third objective aims
at predicting the network behavior based on measured properties and local rules, such
as how the network structure affects the Internet traffic, or how the web server structure
influences on its performance.

3.1 Complex Networks Models

In the last years, lots of attention has been paid to complex networks what is evident
by studies in diverse areas: social, information, technological, and biological networks.
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(a) Random model (b) Small world model (c) Scale free model

Fig. 1. Examples of complex network models

This motivated the design of evaluation models to explain the area characteristics and
properties. The main models are:

Random Model. The random model, defined by Erdös and Rény [13], is considered the
most basic complex network. This model generates random graphs with N vertices and
K edges, called random graph ER. Having N initially detached vertices, the model ER
is obtained by randomly connecting selected vertices (there is a probability for an edge
binding each two vertices) until the number of graph edges is equal to K (techniques
may be used to avoid multiple connections).

In this network model, the vertex expected degree is defined by the equation 1.

GER
N,K (1)

The figure 1(a) presents an example of the random model. By considering that the
generation of network connections is random, Erdös and Rényi concluded that all ver-
tices, in a specific network, have approximately the same number of connections, or the
same probability to have new connections [14].

Small World Model. Duncan Watts and Steven Strogatz [15] discovered that networks
present high interconnection patterns, tending to form clusters of vertices. They had
considered a model similar to the one by Erdös and Rényi, where the edges are estab-
lished between adjacent vertices while part of them are randomly defined. This model
demonstrates that the average distance between any two vertices, in large networks,
does not exceed a small number of hops [16].

In the Watts and Strogatz model each vertex knows the localization of several others.
In large scale, such connections guarantee few separation hops among the network ver-
tices. In a large network, few edges among clusters are enough to form a small world,
transforming the network into a large cluster [16]. An example of this network model
is presented in figure 1(b).

Scale Free Model. Barabási and Albert demonstrate in [14] that some networks are not
randomly built. They define the existence of an order in the network structure dynam-
ics with some specific characteristics. One of such characteristics is called preferential
attachment: a new vertex tends to connect to any other, although there is a high proba-
bility to attach it to the highly connected vertices. This implies in another basic premise:
networks are not formed by degree-equitable vertices.
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On another hand, such networks present few highly connected vertices (hubs), being
most of them with few connections. Hubs always tend to receive more connections.
Networks with such characteristics (example in the figure 1(c)) are named scale free.

The name scale free comes from the mathematical representation characteristics of
the connection degree presented by the network vertices, which follows a very partic-
ular distribution, named power law. This is a logarithmic distribution which decreases
abruptly and has a long tail. This distribution implies that most of the vertices have just
few connections and a significant minority of them has a large number of connections.
More specifically, the degree distribution follows a power law for a large k according
to the equation 2.

P (k) ∼ k−γ (2)

4 Simulated Annealing

The simulated annealing (SA) technique aims at finding a global minimum for an en-
ergy function [17]. Its name comes from an analogy to the metallurgy annealing, which
consists of the controlled heating and cooling of materials aiming at reducing the phys-
ical defects.

Algorithm 1. Simulated Annealing
1: Let the initial solution S0, the initial temperature T0, the cooling rate α and the maximum number of iterations to

reach stability Itermax

2: N(S) // possible solutions space
3: S ← S0; // current solution
4: S′ ← S; // better solution until the current moment
5: T ← T0; // current temperature
6: IterT ← 0; // iteration number T
7: while T > 0 do
8: while IterT < Itermax do
9: IterT ← IterT + 1;

10: Generate a neighbor S′ ∈ N(S)
11: Δ ← f(S′) − f(S)
12: if Δ < 0 then
13: S ← S′;
14: if f(S′) < f(S∗)) then
15: S∗ ← S′; // best solution
16: end if
17: else
18: Generate a random x ∈ [0, 1];
19: if x < e−Δ/T then
20: S ← S′;
21: end if
22: end if
23: end while
24: T ← α ∗ T ;
25: IterT ← 0;
26: end while
27: Return S∗;

This technique introduces the system temperature concept, which makes possible to
find global minima. In this way, for each iteration, the algorithm considers a possible
neighbor state to the current S, which is named S′. During this evaluation, the transition
probability from the current state to the new one is randomly determined, trying to pass
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the system to less energy states. The neighborhood is explicitly defined, being able to
present some variations for specific problems.

The state transition probability is calculated by the function P (E, E′, T ), where E
and E′ represent the energies E(S) and E(S′) for the states S and S′, respectively, and
the parameter T is the system temperature, modified as the execution flows. The essen-
tial property of this function is that the transition probability P must be different from
zero, with E0 > E which indicates a transition to a worse state (i.e., it presents higher
energy). This system characteristic is used as a way to prevent the system stagnation in
a local minimum.

On the other hand, when the system temperature T is next to zero, the probability
function must tend to zero if E0 > E, otherwise return a positive value. This guarantees,
for low values of T , that the system tends to find lower energy solutions. In this way,
the simulated annealing technique can be used to determine behavior changes, trying to
offer a global adequate solution for the optimization problem. However, to apply this
technique, we must know the system in order to determine the temperature variation
when searching the global minimum. The simulated annealing solution adopted in this
work is presented in the algorithm 1.

5 Model for Job Scheduling in Grid Computing

Motivated by results presented in [7][8] and by the need of wide scale systems, this
paper adopts a model based on complex networks to represent a grid computing topol-
ogy and study the job scheduling problem. From this model it is possible to determine
important characteristics to take scheduling decisions such as: the connection degree
among vertices, the communication channel latency and the overhead. Such character-
istics are included in the proposed job scheduling algorithm which is based on the sim-
ulated annealing technique. This algorithm aims at reducing the application response
time and increasing the system throughput.

(a) The model architecture (b) A grid processing element

Fig. 2. Modeling the job scheduling problem

The proposed model architecture is presented in the figure 2(a), which is composed
of the following modules:

1. Grid computing modeling – In this module, complex network models are used to
characterize the grid processing elements, i.e., the computers. Initially, the random
and scale free models were studied and implemented in a simulator;
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2. Vertices connectivity – This module is responsible for the complex network config-
uration which characterizes the relationships among vertices. In the simulator, each
network vertex represents a processing element and its attributes are (figure 2(b)):
(a) processQueue and finishedQueue – they represent the ready and finished pro-

cess queues, respectively;
(b) distance – this vector stores the costs to reach each network vertex. The costs

are calculated using the Dijkstra algorithm;
(c) id computer – it identifies each grid computer;
(d) local time – it represents the computer local clock;
(e) other fields – there are other fields to represent the processing capacity, memory

read and write operations, network read and write operations, which are defined
by probability distribution functions (PDF). For example, the ipsCapacity is
defined as an exponential PDF with average 1500, defining the capacity of
processors. Other attributes are defined in the same way.

The failure of a communication channel is represented, in the complex network,
as the edge elimination. In the same way, the failure of a processing element is
represented by the vertex elimination. The elimination as well as the insertion of
new vertices requires the model reconfiguration, in order to adjust the costs of better
paths between vertices. This is obtained by using the Dijkstra algorithm, i.e., for
each vertex elimination/insertion in the environment, the algorithm is re-executed.
In the proposed simulator, the insertion as well as the removal of grid processing
elements is modeled by PDFs, as demonstrated in the section 6.

3. Scheduling optimization – This paper considers complex network models and
the simulated annealing optimization technique to improve the application perfor-
mance running on grids. After defining the system model and calculating all the
costs to reach any vertex, from any origin, we have to allocate processes in grid
computers. In order to solve this problem, optimization techniques can be applied
to generate solutions. In this work we adopt the simulated annealing technique (SA)
to improve process allocations. The problem solution is represented by a matrix
M = (mpc), where p is the process number (matrix rows) and c is the computer
number (matrix columns). The allocation of the process p in a computer c is repre-
sented by Proc = mpc.

An example is presented in the figure 1, where each row represents a process
and each column a computer. Matrix elements with value 1 represent the process

Table 1. A solution matrix

Computers

Processes 1 2 3 4 5

1 0 0 0 1 0
2 0 1 0 0 0
3 1 0 0 0 0
4 0 0 1 0 0
5 0 0 0 0 1
6 0 1 0 0 0
7 0 0 0 1 0
8 1 0 0 0 0
9 0 0 0 1 0
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and computer association, i.e., which computer (column) will execute which pro-
cess (row) according to the suggested solution. A process can be only placed in a
computer.

The SA simulates a method analogous to the cooling of atoms in thermody-
namics, known as annealing. The algorithm procedure (algorithm 1) is invoked
whenever there are processes to be allocated. The adopted energy function (equa-
tion 3, where getProcessETpc returns the estimated execution time of the process
p when placing it in the computer c) aims at finding solutions which minimize the
total process response time.

1∑
getProcessETpc

(3)

The proposed optimization algorithm is decomposed in two overlapping searches:
– The internal search contains the optimization process. For each iteration, the

solution neighborhood is explored;
– The external search controls the process finish. It is based on cooling state

concepts and considers that a state is cooled when there is no possibility to
reach a better solution.

The algorithm starts searching based on an initial solution. For instance, consider
a parallel application launched in the computer c with id computer = 1. In this
way, all the application processes are located in the column corresponding to that
computer in the initial solution matrix (example in table 2).

Table 2. Initial matrix solution

Computers

Processes 1 2 3 4 5

1 1 0 0 0 0
2 1 0 0 0 0
3 1 0 0 0 0
4 1 0 0 0 0
5 1 0 0 0 0
6 1 0 0 0 0

In each loop iteration, which characterizes the main procedure, a solution S′, which
is a neighbor of the current one S, is randomly generated. The energy function
value variation is evaluated to each neighbor solution generated. In this evaluation
the equation 4 is calculated. When Δ < 0, S′ starts to be the new current solution.
When the generated neighbor is worse, in a quantity Δ > 0, it can be accepted with
a probability equals to e−Δ/T , where T is the temperature parameter.

Δ = f(S′) − f(S) (4)

This process is repeated until T is too small that no movement can be accepted,
i.e., the system reaches stability. The obtained solution, in this stability instant,
evidences a local minimum. The probability to accept movements, which degrade
the energy function value, decreases proportionally to the temperature.
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4. Evaluation and adaptation – After the optimizer execution, i.e. the simulated an-
nealing procedure, a new solution (matrix) for a specific application is obtained.
Then, the processes are migrated to the respective computers, i.e., the system is
adapted to the new solution, until receiving new applications (what launches the
optimizer again).

A simulator was developed to analyze the job scheduling performance under dif-
ferent complex network models for grid computing. This simulator, developed in the
Java language, implements the random and scale free complex network models. Be-
sides that, it also implements the simulated annealing technique (section 4) to optimize
the job scheduling problem in grids.

The main module of this simulator is the class Simulator, responsible for all simula-
tion process control. Computers are represented by the class Computer, and its charac-
teristics presented in the figure 2(b). After creating all computers, they are associated to
one of the two possible complex network models: Random or ScaleFree. After that, the
communication costs are calculated by using the Dijkstra algorithm (class Dijkstra).

The application submission is simulated by attributing processes (object of the class
Process) to computers and calling the optimizer (class SA), which applies the simulated
annealing algorithm to look for job scheduling solutions. Process characteristics are
obtained by a trace file (class Log-Feitelson) [6].

This trace follows the Feitelson’s workload model2 [6] which is based on the analysis
of six execution traces of the following production environments. This model defines
that the process arrival follows an exponential PDF with average 1500 seconds. The
other simulator parameters are also defined by PDFs3: computer capacity in MIPS;
read and write network throughput in KBytes/s; read and write memory throughput
in MBytes/s; read and write disk throughput in MBytes/s; process workload in MIPS;
arrival interval of parallel applications; process memory occupation in MBytes: used
to define the cost to transfer the process in case of migration; probability distributions
to define when vertices (i.e. computers) are inserted and removed from the complex
network.

6 Results

Experiments were conducted to determine which environment configuration presents
better results for the job scheduling, i.e., lower parallel application response time. Other
simulator parameters had to be defined for such experiments. Some of those parameters
were defined in accordance with previous experiments on real environments, others in
accordance with our experience and expectations on grid computing environments. The
parameters are:

– application arrival time – it is represented by an exponential PDF with average 1500
seconds, which follows the behavior detected by Feitelson [6];

2 Feitelson’s workload model – available at
http://www.cs.huji.ac.il/labs/parallel/workload/models.html.

3 This simulator uses the probability distribution functions from the PSOL library, available at
http://www.math.uah.edu/psol/objects/PSOL.jar.
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– addition of computers in the environment – the interval between consecutive addi-
tions is represented by an exponential PDF with average 2500 seconds and another
exponential PDF with average 20 for the number of computers to be added;

– removal of computers from the environment – the interval between consecutive
removals is represented by an exponential PDF with average 3500 seconds and an-
other exponential PDF with average 10 for the number of computers to be removed;

– number of changes made by the SA algorithm – 5 and 10 changes when searching
for a global minimum;

– complex network average degree – 3, 5 and 7 which represent the average number
of connections for each network vertex;

– process size – exponential PDF with average 2MB which represents the process
memory occupation. This is used by the SA algorithm to calculate the migration
cost when transferring the process over the communication channel;

– network read and write operations – they are represented by an exponential PDF
with average 100KB, i.e., each process, on average, reads or writes 100KB in the
network;

– disk read and write operations – they are represented by an exponential PDF with
average 100KB;

(a) SA 5 changes, applications up to 64 tasks (b) SA 10 changes, applications up to 64 tasks

(c) SA 5 changes, applications up to 128 tasks (d) SA 10 changes, applications up to 128 tasks

Fig. 3. Scheduling results
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– memory read and write operations – they are represented by an exponential PDF
with average 500KB;

The figures 3(a), 3(b), 3(c) and 3(d) present the application response times. The lower
the response time is, the higher is the performance.

The first case (figure 3(a)) presents the obtained results for the SA algorithm with 5
changes executing parallel applications composed of up to 64 tasks. We observe that the
response time for the random complex network model had better results. Only for the
last case, with larger average degree of the vertices, the scale free model outperforms
the random.

The second case (figure 3(b)) considers 10 changes for the SA, executing applica-
tions of up to 64 tasks. In this situation the largest number of changes increases the
scale free performance, which, only in the last case, is surpassed by the random model.

The figure 3(c) presents results considering 5 changes for the SA and parallel appli-
cations composed of up to 128 tasks. The figure 3(d) considers 10 changes for the SA
and applications with up to 128 tasks. In these two cases, we observe that by increasing
the number of changes, the scale free model outperforms the random one.

By knowing the Internet follows the scale free model [18,19] and computational
grids are implemented on such infrastructure, we can conclude that algorithms which
explore a large solution space provide better results on such model. This becomes evi-
dent when, by using a large number of changes in the SA algorithm, better solutions are
obtained. Situations where the algorithm does not provide a large solution space, the
inherently characteristics of the complex network random model assists in the process
distribution, however this is not the case when considering grid environments.

7 Conclusion

In order to better model a real grid computing environment and approach the schedul-
ing problem using updated information, this paper considers a scheduling model apply-
ing two complex network models and the simulated annealing optimization technique.
Complex networks assist in the grid modeling and also in the extraction of the envi-
ronment characteristics such as: interconnection degree, distance and latency between
pairs of vertices (which represent computers).

Experiments were conducted using a simulator which allowed to observe that the
inherently Internet characteristics, which follows the scale free model, needs an opti-
mization algorithm with a large search space to provide good scheduling solutions. The
complex network random model assists in the process distribution, as the search space is
amplified by the inherently interconnection of vertices. Therefore, the interconnection
among vertices defines the optimization approach to be adopted.
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Abstract. Based on the renowned method of Bitton et al. (see [1]) we
develop a concise but comprehensive analytical model for the well-known
Binary Merge Sort, Bitonic Sort, Nested-Loop Join and Sort Merge Join
algorithm in a Grid Environment.

We concentrate on a limited number of characteristic parameters to
keep the analytical model clear and focused. Based on these results the
paper proves that by smart enhancement exploiting the specifics of the
Grid the performance of the algorithms can be increased and some results
of Bitton et al. for a homogenous multi-processor architecture are to be
invalidated and reversed.

1 Introduction

Today the Grid gives access to viable and affordable platforms for many high
performance applications hereby replacing expensive supercomputer architec-
tures.

Basically the Grid resembles a distributed computing model providing for the
selection, sharing, and aggregation of geographically distributed autonomous re-
sources dynamically at runtime depending on their availability, capability, per-
formance, cost, and users quality-of-service requirements (see [2]).

We believe that the Grid delivers a suitable environment for parallel and
distributed database systems. There is an urgent need for novel database ar-
chitectures due to new stimulating application domains, as high energy physics
experiments, bioinformatics, drug design, etc., with huge data sets to admin-
ister, search and analyze. This situation is reflected by a specific impetus in
distributed database research in the Grid, starting with the Datagrid project [3]
and now manly carried by the OGSA-DAI project [4]. After a few years where
the research was mainly in the area of distributed data management, now a new
stimulus on research on parallel database operators focusing Grid architectures
(see [5], [6]) can be noticed.

Sorting and Joining are extremely demanding operation in a database system.
They are the most frequently used operators in query execution plans generated

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 216–227, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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by database query optimizers. Therefore their performance influences dramat-
ically the performance of the overall database system [7], [8]. Generally these
algorithms can be divided into internal (main memory based) and external (disk
based) algorithms [9]. An external algorithm is necessary, if the data set is too
large to fit into main memory. Obviously this is the common case in database
systems.

In this paper we present an analysis and evaluation of the most prominent par-
allel sort and join algorithms, Binary Merge Sort and Bitonic Sort, and Nested-
Loop and Sort Megre Join in a Grid architecture based on the well known analysis
and findings of Bitton et al. [1]. Now these algorithms are reviewed under the
specific characteristics of the Grid environment. The surprising fact, justified by
the findings of this paper and resulting from the characteristic situation of the
Grid, is that the some results on the general performance of these parallel algo-
rithms are invalidated and reversed, i.e. in a Grid environment the performance
of these algorithms can be improved choosing an adapted workflow layout on
the Grid taking smartly into account the specific node characteristics.

The paper is organized as follows. In the next section the architectural frame-
work of the Grid environment is laid out. This is followed by the description
of the parallel algorithms, their specific characteristics and the definition of the
basic parameters of the analysis. In section 5 a comprehensive analytical for-
mulation of the parallel algorithms is given, followed by the evaluation of the
algorithms compared and discussion of the findings. The paper is closed by a
conclusion and a presentation of topics for further research.

2 Architectural Framework

2.1 A Generalized Multiprocessor Organization

The work of Bitton et al. [1] is based on a so called generalized multiprocessor
organisation, which basically comprises a homogenous classical supercomputer
architecture, where every working node shows the same characteristics in pro-
cessing power, every disk node in I/O performance and the network interconnect
bandwidth is the same for all node. So basically for the evaluation of the paral-
lel operations on the generalized multiprocessor organization only the following
components are considered:

1. a set of general-purpose processors,
2. a number of mass storage devices,
3. an interconnect device connecting the processors to the mass storage devices

via a high-speed cache

Such an organization is depicted by Figure 1.

2.2 A Static Simplified Grid Organization

The big difference of a Grid environment, which is the focus of this paper, to
the architecture laid out above is the heterogeneity of all comprising elements,
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Fig. 1. Generalized Multiprocessor Organization (from [1])

which are processing nodes, interconnect bandwidth, disk performance. For the
analytical comparison of the parallel algorithms in focus we restrict our approach
to a simplified Grid computing organization focusing on the sensitive parameters
of the model in focus.

We use the term Static Simplified Grid Organization, which describes an or-
ganization to perform a distributed query on a loosely coupled number of het-
erogeneous nodes. There is no logical order or hierarchy. That means, there is no
logical topology of the nodes (e.g. no master/slave nor a equivalent order). Each
node has a fixed number of properties with defined values. The term Static is
used to describe that the values of each node and also the speed of the network
are fixed and not changeable during the execution of a query. The sketch of such
an organization is shown in Figure 2. These assumptions build the basis for our
approach to analyze the operations in a simplified Grid.

Grid

node (CPU) disk network link disk interface

Fig. 2. Static Generalized Grid Organization

2.3 General Architectural Overview

The general layout of our architecture is as follows: A number of nodes are con-
nected via a network. A node consists of one ore more CPUs (Central Processing
Unit), a disk or disk-array and a network interface to the interconnect they are
connected.

The actual configuration of a node is transparent (that means not “seen”
by the outside user). However there exists a database to describe the system
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at the time of the query execution. All relevant data (parameters) describing
the architecture are stored in this database. It is assumed that the following
architectural characteristics hold during the operation:

– Nodes can perform a dedicated operation (compare, sort and merge two
tuples).

– each node has it own mass storage device and the nodes are connected over
a network.

– Nodes can send and receive messages.
– The performance of a node will not drop below a given value during query

execution.
– The availability of each node during the query execution also is guaranteed.

3 Parallel Sorting Algorithms

In this paper we concentrate on two parallel sorting algorithms, the parallel
binary merge sort and the block bitonic sort algorithm and analyze their perfor-
mance in a generalized multiprocessor and a static simplified grid organization.
These two algorithms are broadly accepted and the algorithms of choice in par-
allel database systems, because of their clear design and well studied properties.
Due to the size restriction of the paper only a short description of the two well
known algorithms is given in the following. A more detailed and comprehensive
discussion can be found in the cited literature.

3.1 Parallel Binary Merge Sort

Binary Merge-Sort uses several phases, to sort mk tuples, where m is the number
of pages containing the data set and k denotes the number of tuples per page.
We assume that there are much more pages m than processing nodes p ( i.e.
m >> p) and that the size of the data set is much larger than the available main
memory of the nodes.

We assume the very general case that the pages are not distributed equally
among the mass storage media of the available nodes and that the tuples are not
presorted according to the sorting criteria in the pages. Therefore the algorithm
starts with a prepare phase, which distributes the pages equally across all p
nodes, sorts the tuples inside every page according to the sort criterion and writes
the pages back to disk. After the prepare phase m/p (respectively m/(p − 1))
pages are assigned to each node and the tuples of each page are sorted. The
algorithm continues with the suboptimal phase by merging pairs of longer and
longer runs1. In every step the length of the runs is twice as large as in the
preceding run. At the beginning each processor reads two pages, merges them
into a run of 2 pages and writes it back to the disk. This is repeated, until all
pages are read and merged into 2-pages-runs. If the number of runs exceeds
2p, the suboptimal phase continues with merging two 2-page-runs to a sorted
1 A run is an ordered (respective to the tuples contained) sequences of pages.
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4-page-run. This continues until all 2-page-runs are merged. The phase ends,
when the number of runs is 2p. At the end of the suboptimal phase on each
node 2 sorted files of length m/2p exist. In the suboptimal phase the nodes
work independently in parallel. Every node accesses its own data only. During
the following optimal phase each processor merges 2 runs of length m/2p and
pipelines the result (run of length m/p) to a target node. The number of target
nodes is p/2. The identification of the target-node is calculated by

nodenrtarget =
p

2
+ nodenrsource

for even source-node-numbers, and

nodenrtarget =
p

2
+ nodenrsource + 1.

for odd source-node-numbers.
In the postoptimal (last) phase the remaining p/2 runs are merged into the

final run of length m. At the beginning of the postoptimal phase, we have p/2
runs. During this phase one of the p nodes is no longer used. Each of the other
nodes is used only once during this phase. Two forms of parallelism are used.
First, all nodes of one step work in parallel. Second, the steps of the postoptimal
phase overlap in a pipelined fashion. The execution time between two steps
consists of merging the first pages, building the first output-page and sending it
to the target-node. During the postoptimal phase every node is used only in one
step, that means that every node is idle for a certain time.

Thus the algorithm costs are

n

2p
log(

n

2p
)︸ ︷︷ ︸

suboptimal

+
n

2p︸︷︷︸
optimal

+logp− 1 +
n

2︸ ︷︷ ︸
postoptimal

(1)

which can be expressed as

nlogn

2p
+

n

2
− (

n

2p
− 1)(logp)− 1. (2)

3.2 Block Bitonic Sort

Batchers bitonic sort algorithm sorts n numbers with n/2 comparator modules
in 1

2 logn(logn + 1) steps [10]. Each step consist of a comparison-exchange at
every comparator module and a transfer to the target-comparator module. The
comparator modules are connected by the perfect shuffle [11]. The perfect shuffle
uses three types of comparator modules. The comparator module is represented
by a node, which merges two pages and distributes the lower page and the
higher page to two target-nodes. The target-nodes are defined by using a mask-
information ( i.e. the information for the perfect shuffle).
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It is necessary to build 2p equally distributed and sorted runs of length m/2p.
The prepare-phase and the suboptimal phase produce the runs. The total cost
are:

n

2p

(
logn +

log22p− log2p

2

)
(3)

4 Parallel Join Algorithms

In this section we introduce two join algorithms for relational databases, a parallel
”nested-loop” and a parallel ”sort-merge” algorithm. Like the sort algorithms in
section 3, the presented join algorithms are commonly used in database systems.

4.1 Nested-Loop Join

The inner (smaller) relation T, and the outer relation R (larger one) are joined
together. The algorithm can be divided in two steps:

1. Initiate
Each of the processors read a different page of the outer relation R

2. Broadcast and join
All pages of the inner relation T are sequentially broadcasted to the pro-
cessors. After receiving the broadcasted page, each processor joins the page
with its page from R.

n and m are the sizes (number of pages) of the relations R and R′, and we
suppose n >= m. To perform the join of R and R′ we assign p processors. If
p = n, the execution time is:

Tnested−loop = T (read a page of R)
+mT (broadcast a page of R’)

+mT (join 2 pages)
(4)

S is the join selectivity factor and indicates the average number of pages
produced by the join of a single page of R with a single page of R′. Joining two
pages is performed by merging the pages, sorting the output page on the join
attribute and write the sorted page to disk.

S =
size(R join T)

mn
(5)

If the number of processors p smaller than the number of pages n, step 1) and
2) must be repeated n

p times. Therefore the costs for the Parallel Nested-Loop
Join is

Tnested−loop =
n

p

[
Cr + m[Cr + Cm + S(Cso + Cw)]

]
(6)
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4.2 Sort Merge Join

The algorithm processes in two steps. The first step of the algorithm is to sort
the two relations on the join attribute (we assume, that the two relations are
not already sorted). After sorting, the second step is performed, where the both
sorted relations are joined together and the result relation is being produced. If
we use the block bitonic sort in the first step described in section 3, the costs of
the Sort Merge Join are

T =
[

n
2p logn + m

2p logm + (log22p− log2p)n+m
4p

]
C2

p

+(n + m)Cr + max(nm)Cm + mnS(Cso + Cw).
(7)

Using the Parallel Binary Merge Sort the costs in term of Cp
2 costs are

T =
[

nlogn
2p + n

2 − ( n
2p − 1)(logp)− 1

]
C2

p

+(n + m)Cr + max(nm)Cm + mnS(Cso + Cw).
(8)

4.3 Analysis Parameters

For comparing the algorithm we use the same definitions of the analysis param-
eter as described in [1].

We define with n the number of pages with k tuples each, and with p the
number of processors.

Communication Cost. A processor must request a page, for this purpose a
message is necessary, the cost for such an ”I/O-related” message is Cmsg

I/O Cost Parameters

– H ... certain hit ratio for the cache
– H ′ ... fraction amount of time a free page frame will be available in the cache

during a write operation
– Rc ... cost of a cache to processor transfer
– Rm ... cost of a mass-storage transfer
– k is the number of tuples in a page,
– C are costs of a simple operation (scan, compare, add)

The average cost of a read by a processor is

Cr = HRc + (1 −H)(Rc + Rm) + 2Cmsg

The average cost of writing a page is

Cw = H ′Rc + (1 −H ′)(Rc + Rm) + 2Cmsg
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Merge Cost

– V are costs of moving a tuple inside a page

Thus the costs of merging a page are

Cm = 2k(C + V )

To group some of the above parameters we define analogously to [1] a ”2-page
operation” C2

p as
C2

p = 2Cr + Cm + 2Cw

5 Analysis

The costs of reading a page Cr in a simplified Grid architecture can be split into
two parts:

– Card average costs of reading a page from the disk to the main memory of
the remote node, and

– Carn average costs of transferring a page from the remote node to the local
node.

Analogously to reading a page, writing a page Cw can also be split in two parts

– Cawn average costs of transferring a page from the local node to the remote
node, and

– Cawd average costs of writing a page from the main memory to the disk of
the remote node.

5.1 Lessons Learned for Grid Workflow Orchestration

Based on a thorough analysis, which is beyond the scope of this paper, we proved
the correlation “the higher the network speed, the lower the impact on the costs
of a C2

p operation”, which is also intuitively clear. The costs of disk accesses are
therefore much less influencing the overall performance than the network costs.
Focusing on the sort algorithms the impact on the performance of the sort merge
algorithms depends predominantly on the network bandwidth. Therefore the
nodes with the best network-bandwidth numbers should be grouped to perform
the last (postoptimalII) phase in the binary merge sort. One stage in this last
phase consists of a number of sender and a (number of) receiver nodes. The
algorithm of defining the layout of the workflow for the postoptimal phase can
be described by choosing the nodes with the best network bandwidth starting
from the final stage. If the bandwidth is the same for some nodes the ones with
the best computational power have to be chosen then. This can be described by
the following algorithm:

1. Determine the network bandwidth and processing power for each processing
node

2. Sort nodes according to network bandwidth
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3. Nodes with equal network bandwidth in the sequence are sorted according
to their processing power

4. Identify postoptimal phase as binary tree structure with node creating final
run of length m as root

5. Starting from the beginning of sequence (i.e. best node first) map nodes
level-wise from right to left beginning from root (root is level 0, successors
of root are level 1, etc.).

5.2 Effects on the Performance of the Sort Algorithms

Based on the work of Bitton et al. in a generalized multiprocessor organization
the block bitonic sort always outperforms the binary merge sort (see Figure 3
which is based on the analysis in [1]). To analyze the mapping of the algorithms
onto a simplified Grid organization we have specifically pay attention to the three
phases of the algorithms as laid out in section 3. The last phase (postoptimal)
of the Binary Merge Sort algorithm is split into three parts (see equation 9)
because only one processor is necessary for n

2 costs.

[logp− 1 +
n

2
]︸ ︷︷ ︸

postoptimal

→ logp− 1︸ ︷︷ ︸
postoptimalI

+
n

2︸︷︷︸
postoptimalII

(9)

If we choose for this ”bottleneck” the nodes of the Grid with the best net-
work bandwidth available, the effect on the overall performance has to be at
least remarkable. We specifically emphasize that even only one processing node
with high network performance is worth while to exploit this effect. It is in-
tuitively clear that this situation can be seen as normal in a heterogenous
Grid organization, where nodes with different performance characteristics are
the rule.

This leads to the clear policy for orchestration of a Grid workflow for a parallel
binary merge sort to use nodes with the highest network performance in the
postoptimalII phase as laid out in algorithm of section 5.1.

On the other hand using one high performance node in the bitonic sort gives no
performance at all, because this node is slowed done by all other nodes working
in parallel in a staged manner.

This effect that the binary merge sort now outperforms the block bitonic sort
in a simplified Grid organization is shown in the Figure 4 by the line labeled
“binary merge modified” (please notice the logarithmic scale of the values).

This effect can easily be explained by Amdahl’s law too, where simply said
the performance of a parallel algorithm is dependent on its sequential part. More
specific Amdahls’s law is stating that the speedup is limited by the sequential
part. This is intuitively clear that even the most powerful node will limit the
performance increase if the number of used nodes for the whole parallel algorithm
is increasing. A speedup and scale-up analysis will clear up this issue.
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Fig. 3. Sort in a Generalized Multi-
processor Organization
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Fig. 4. Sort in a Simplified Grid Orga-
nization

5.3 Effects on the Performance of the Join Algorithms in a
Generalized Multiprocessor Organization

Similar to the effects on the performance of the Sort Algorithms in a Gen-
eralized Multiprocessor Organization, the Merge-Sort Join algorithm with the
block bitonic sort outperforms the Nested-Loop Join and also outperforms the
Merge-Sort Join based on the binary-merge sort algorithm, unless the number
of processors available is close to the larger relation size. Figure 5 shows the join
algorithms with a selectivity factor of 0,001. If the ratio between the relation
sizes is significantly different from 1, the nested-loop algorithm outperforms the
merge-sort (except for a small numbers of processors). For lower selectivity val-
ues, the merge-sort algorithm performs better than the nested-loop algorithm
because the merge step (handled by a single processor) has to output fewer
pages.

In a generalized multiprocessor organization we have analyzed the algorithms
with a selectivity factor between 0,001 and 0,9. The effect is, that the difference
between the two merge-sort algorithms stays constant (if S >= 0.05). The reason
is, that the merge costs are only marginal to the overall costs of the algorithm.

5.4 Effects on the Performance of the Join Algorithms in a
Simplified Grid Organization

In the simplified grid organization the Merge-Sort join algorithm based on the
bitonic-sort outperforms the Merge-Sort join based on the binary merge sort up
to 26 processors, see ”Parallel Merge-Sort Join (Binary Merge Sort) modified”
in Figure 6.

As in the multiprocessor organization we have analyzed the join algorithms
in the simplified grid organization with a selectivity factor between 0,05 and
0,9. The effect is the same for the generalized multiprocessor organization, the
difference between the merge-sort algorithm (Parallel Merge-Sort Join (Bitonic)



226 W. Mach and E. Schikuta

and Parallel Merge-Sort (Binary Merge) ) remains constant (if S >= 0.05). The
reason is, that the merge costs have insignificant influence on the overall costs of
the algorithm. The Parallel Merge-Sort (Binary Merge) modified is always faster
(in terms of Cp

2 costs) than the unmodified version.

Parallel
Nested-Loops
Join

Parallel Merge-
Sort Join
(Bitonic)

Parallel Merge-
Sort Join
(Binary Merge)

Fig. 5. Join in a Generalized Multi-
proc. Organization with S=0,001
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modified

Fig. 6. Join in a Simplified Grid Organiza-
tion with S =0,001

6 Conclusion and Future Work

In this paper the performance of the well-known parallel Sort-merge, Bitonic sort,
Nested-Loop join and Merge-sort join algorithms for parallel database systems
was analyzed. We developed an analytical evaluation model based on a simplified
Grid architecture.

These are important results for the creation of parallel execution plans for
database queries in the Grid. This work is performed as part of a project, which
aims towards the development of a query optimizer for database query execution
workflows and their orchestration in the Grid. We aim for a general execution
time model for parallel query evaluations which can be integrated into a smart
broker. This should give us the basis to create (near) optimal bushy query execu-
tion plans, which exploit operator- and data-parallelism in a Grid environment.
In a further state of this research project we also will take into a account the
availability of nodes and will extend our static model towards a more dynamic
version.
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Abstract. Deploying Grid technologies by distributing an application
over several machines has been widely used for scientific simulations,
which have large requirements for computational resources. The Grid
Configuration Manager (GCM) is a tool developed to ease the manage-
ment of scientific applications in distributed environments and to hide
some of the complexities of Grids from the end-user. In this paper we
present an extension to the Grid Configuration Manager in order to in-
corporate a performance based resource brokering mechanism. Given a
pool of machines and a trace file containing information about the run-
time characteristics of the according application, GCM is able to select
the combination of machines leading to the lowest execution time of the
application, taking machine parameters as well as the network intercon-
nect between the machines into account. The estimate of the execution
time is based on the performance prediction tool Dimemas. The correct-
ness of the decisions taken by GCM is evaluated in different scenarios.

1 Introduction

During the last couple of years, Grid computing has emerged as a promising
technology for science and industry. Computational Grids give users the power
to harness spare cycles on PCs or workstations or distribute data and compute
intensive applications on a large number of geographically distributed machines.
Among the key challenges of current Grid technologies is the problem of resource
selection and brokering. The set of resources chosen for a particular job can vary
strongly depending on the goals of the researchers, and might involve minimizing
the costs, optimizing the location of the computational resources in order to
access a large data set or minimizing the overall execution time of the job.

In this paper we present a novel approach for resource selection based on the
estimation of the execution time of an application using a simulator. Given a
pool of machines, the Grid Configuration Manager (GCM) tests several possible
combination of machines fulfilling the requirements of the end user regarding
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the required computational resources. The estimate for the execution time of the
application is based on the performance prediction tool Dimemas [1]. After GCM
determined the combination of machines with the lowest predicted execution
time, it can automatically generate the required configuration files for PACX-
MPI [6] jobs and launch the distributed simulation.

The distribution of an application onto heterogeneous, dynamically changing
resources requires the complex coordination of the resources. Currently, there is
no general strategy or solution to the scheduling problem in a Grid environment
available which meet all the demands [12]. The currently available brokering
and scheduling systems are usually very specific for the target systems [15] or
tailored for special application scenarios [10]. Work on interoperability includes
Grid projects targeting resources running different Grid middlewares [3,14] and
projects using (proposed) standard formats, e.g., to describe computational
jobs [3,9]. The UniGrids [11] project specifically targets inter-operation between
Globus and UNICORE. The difference between the GCM and these projects is
that we also target the use of traditional non-Grid resources.

The remainder of the paper is organized as follows: section 2 presents the
main ideas behind GCM, section 3 introduces the performance prediction tool
Dimemas. In section 4 we detail the integration of Dimemas and GCM. Section 5
evaluates the correctness of the decision taken by GCM for various configurations
and application settings. Finally, section 6 summarizes the paper.

2 The Grid Configuration Manager GCM

The Grid Configuration Manager (GCM)[7] is a tool developed to hide some of
the complexity of Grid environments from the end-user. The central objective
is to ease the handling of scientific, computational jobs in heterogeneous Grid
environments, by abstracting the necessary tasks and implementing them for
the most widely used Grid software toolkits (Globus[4], UNICORE[13]) and for
the most widespread traditional access mechanism, SSH. To hide the complexity
of different Grid protocols, the Grid Configuration Manager provides methods
to support users in dealing with three main problems: handling of different au-
thentication/authorization methods, a common interface for the job description
and steering, and support of file transfer mechanisms for post- and preprocess-
ing. The GCM idea is based on individual models for the resource description
of the participating resources. Two different abstract classes were defined: the
host class and the link class. The host class describes the properties of a re-
source such as name of the machine, user authentication information, number
of processes to be started on this machine, or the start command and path of
the application on this machine. The link class contains information about the
network connection between two hosts, e.g. number of connections between the
hosts and network parameters for each connection (i. e. network protocol and
port numbers to be used). The current implementation of the GCM does not
include an automatic resource discovery mechanism. This means, that the user
has to specify how many nodes are available on the hosts to run his job. In the
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future this information will be gathered by requesting this information from the
batch system for ssh based machines or using information services offered by
Unicore and Globus.

A key component to create advanced applications in Grid environments is the
file transfer component. File transfer operations are required for staging data
files and executables, but also to distribute configuration files required by vari-
ous tools and libraries. The file transfer component developed for GCM is based
on the graphical Network Interface to File Transfer in the Internet (NIFTI).
Given its modular architecture, NIFTI is conceptually independent of the im-
plementation of the services it represents, and currently interfaces alternatively
to FTP, SCP or an UNICORE file services.

One of the original goals of GCM from the very beginning was to support
parallel multi-site jobs, since distributing jobs onto several machines simultane-
ously is an important part of the Grid concept. The need for doing so mainly
comes from applications, which have a high demand on computational resources
or for increasing throughput on the machines and reducing turnaround times.
The GCM supports the handling of a multi-site job for a communication library
called PACX-MPI [6]. While GCM is not restricted to PACX-MPI, the defined
abstract interface has been up to now implemented to support the PACX-MPI
configuration files and startup procedures.

3 Dimemas

Dimemas [1] is a performance prediction tool for message passing applications
develop at the Barcelona Supercomputing Center (BSC). Within the frame of
the European DAMIEN project [5], Dimemas has been extended to support per-
formance prediction of distributed applications in Grid environments. Based on
trace-files of the application, the tool is capable of estimating the execution time
of the very same application for varying networking parameters or processor
speeds. In order to generate a trace-file, the user has to re-link its MPI appli-
cation with a tracing library provided by Dimemas, and run a small number of
iterations of the application on the required number of processes. The tracing
libraries intercepts each call to a communication routine using the MPI profil-
ing interface [8], and stores relevant information such as the sender and receiver
processes of the message, message length and time stamps for the beginning and
the end of the data transfer operation. Thus, Dimemas offers a scalable and fully
automatic approach for generating the trace-files, which has been used for highly
complex, parallel applications.

The Grid architecture supported by Dimemas consists of individual nodes which
can be grouped to a machine. Each node can have one or multiple, identical pro-
cessors. Multiple processors are connected by a network interconnect. Based on a
GUI, the user can modify the performance of the network as well as specify the no.
and the relative performance of the nodes. The network connection between differ-
ent machines can be based either on a shared network resources, i.e. the internet,
or on dedicated network connections. The first approach is based on a congestion
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function, a latency respectively flight time and a maximal bandwidth. Values for
latency and bandwidth of a message are adapted at runtime based on the conges-
tion function provided by the user. The second approach allows the precise defini-
tion of a latency and the bandwidth between the machines. However, the current
version of the tool is restricted to the same latency/bandwidth values between all
machines within a given Grid configuration.

4 Integration of GCM with Dimemas

Among the most challenging issues the user has to deal with in current Grid
environments is the resource selection step. In order to ease the resource se-
lection procedure, GCM has been integrated with the performance prediction
tool Dimemas. The goal of this approach is to enable the automatic selection of
the most efficient Grid configuration for a particular application within a given
set of resources. To encapsulate the required data for Dimemas, GCM has been
extended by a new ‘Dimemas-model’. This model contains all the configuration
details and necessary information to run the Dimemas simulator program. The
host and link classes of GCM have been extended to collect the additional infor-
mation such as the specification of the available SMP-nodes on each machine, a
detailed description of the network connection between the machines, location
of the trace file etc. A special ‘Mapping-Dialog’ allows the user to specify how
the application processes should be distributed across the machines. The class
Dimemas contains all methods to run a Dimemas simulation and store the input
data and results for future usage in a special metadata format. Special GUI in-
terfaces help the user to specify all the information. The results of the Dimemas
simulation and (error) messages can be retrieved on a special output window in
order to allow the usage of GCM as a GUI interface for Dimemas.

To propose an optimal Grid configuration, GCM takes into account the given
resources, the currently available nodes on each machine and the communication
pattern of the machine respectively between the machines. Therefore, the user
has to provide information about the application in form of a trace file which
will be used by Dimemas. Based on this information, GCM creates different ‘test
configurations’ for Dimemas, starts the Dimemas simulator, stores and compares
the results achieved. The Grid configuration with the lowest estimated execution
time will be offered to the user in form of a PACX-MPI configuration. 1 shows
the individual steps of the resource selection within GCM.

Since the number of potential process distributions on the available machines
can be fairly large, GCM creates test configurations based on a simple heuristic.
The distribution of processes onto the hosts follows a simple round robin algo-
rithm. For each available machine, GCM generates a test configuration using
that machine as the starting point and allocates all available processors on that
machine for the simulation. In case more processors are required in order to run
the simulation, GCM takes the required number of processors from subsequent
machines in sequential order, etc. Using this approach, n test configurations are
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generated for a machine pool containing n machines. An advantage of this heuris-
tic is, that since we assign the maximum number of processes on each machine
to the simulation, the number of machines used for each test configuration are
being minimized. For parallel, distributed applications this kind of configuration
usually produces the lowest execution times, as the communication between the
machines is fairly time consuming. As an example, lets assume that 16 pro-
cesses should be distributed onto 4 machines, each of which offer 6 processors.
According to the described algorithm, the following test configurations will be
created:

– 6 processes each on machines 1 and 2; 4 processes on machine 3
– 6 processes each on machines 2 and 3; 4 processes on machine 4
– 6 processes each on machines 3 and 4; 4 processes on machine 1
– 6 processes each on machines 4 and 1; 4 processes on machine 2

Fig. 1. Resource selection based on the estimated execution time of the application
within GCM

The simulations based on Dimemas estimating the execution time of the ap-
plication for different network and machine parameters are executed on the very
same a local PC where GCM is being executed. Depending on the size of the trace
file, a single simulation takes at most a couple of seconds on a state-of-the-art
PC, and does not require any Grid resources itself.

5 Evaluation

In the following, we would like to verify the correctness and the accuracy of
the choices made by the Grid Configuration Manager. The application used
throughout this section is a finite-difference code which solves a partial dif-
ferential equation (PDE), respectively the set of linear equations obtained by
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discretization of the PDE using center differences. To partition the data among
the processors, the parallel implementation subdivides the computational do-
main into rectangular subdomains of equal size. Thus, each processors holds
the data of the corresponding subdomain. The processes are mapped onto a
regular three-dimensional mesh. Due to the local structure of the discretization
scheme, a processor has to communicate with at most six processors to perform
a matrix-vector product.

The Grid configurations used in this subsection consists of a collection of
homogeneous resources based on the technical data of local InfiniBand clusters
of the participating institutions. This approach allows us to investigate the effect
of different parameters on the decision procedure of GCM individually. As an
example, a configuration such as shown in table 1 consists of four machines,
each of them being from the technical perspective identical. Unless explicitly
mentioned otherwise, the communication bandwidth between the machines is
set to 12MB/s and the latency is 4 ms for the Dimemas simulations, which are
typical values for Fast Ethernet connections.

Table 1. Estimated execution times by Dimemas of the Finite Difference Code for
various test configurations. Times are given in seconds.

No. of processors on estimated No. of processors on estimated

machine execution time machine execution time

1 2 3 4 (s) 1 2 3 4 (s)

Test 1: 16 processes Test 3: 16 processes
16 0 0 0 1.17 * 10 6 0 0 10.08 *
0 6 6 4 7.41 0 6 6 4 12.19
4 0 6 6 7.41 6 0 6 4 12.22
10 0 0 6 5.13 10 2 0 4 12.23

Test 2: 32 processes Test 4: 32 processes
6 26 0 0 8.71 10 12 10 0 10.69
0 32 0 0 4.44 * 0 12 20 0 7.99 *
6 14 6 6 10.52 6 0 22 4 11.22
6 20 0 6 10.52 10 12 6 4 10.47

The first set of tests have been set up in order to verify, that the configura-
tion chosen by GCM/Dimemas is using the minimal number of machines to run
an application. Since the communication between machines is at least an order
of magnitude slower than the communication between processes on the same,
minimizing the number of machines used by an application will in the vast ma-
jority of scenarios also minimize the overall execution time of the application. Of
special importance are scenarios where the application could run on a single ma-
chine and thus would completely avoid expensive inter-machine communication.
The results of the simulations are shown in table 1. GCM was configured such
that its pool of machines consisted of four identical clusters. In the tests 1 and
2 (left) one machine advertises sufficient available resources to run the simulation
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entirely on that platform, while using any of the other machines would require
a combination of multiple machines in order to provide the requested number of
processors. Similarly, in the tests 3 and 4 only a single combination of available
resources leads to a two-host configuration capable of providing the number of
requested processors. Table 1 shows for each test case the combination of re-
sources respectively the number of processes on each platform used by GCM to
find the minimal execution time and the estimated execution time by Dimemas.
The combination of resources selected by GCM is marked by a star. In all sce-
narios, GCM/Dimemas was able to spot the combination requiring the minimal
number of machines, by either using a single machine (tests 1 and 2), or two
machines ( tests 3 and 4).

Table 2. Estimated execution times by Dimemas of the Finite Difference Code for
various test configurations with varying bandwidth between the machines. Times are
given in seconds.

No. of processors on estimated No. of processors on estimated

Bandwidth machine exec. time machine exec. time

1 2 3 4 (s) 1 2 3 4 (s)

Test 5: 24 processes Test 6: 32 processes

100 MB/s 12 12 0 0 6.601620 * 16 16 0 0 6.937863 *
25 MB/s 0 12 12 0 7.361563 0 16 16 0 6.958964
30 MB/s 0 0 12 12 7.052505 0 0 16 16 6.939202
95 MB/s 12 0 0 12 6.601623 16 0 0 16 6.937885

In the second test we would like to evaluate, whether our approach is correctly
determining the set of resources offering the best network connectivity between
the machines. Two separate set of tests have been conducted. In the first test,
we keep the latency between all machines constant, vary however the available
bandwidth between each pair. As shown in table 2, all four machines advertise
the same number of processors, namely either 12 in test 5 or 16 in test 6. Since
the user requested however 24 respectively 32 processors, GCM has to find the
combination of two machines promising the lowest execution time. The band-
width between the according pair of machines is shown in in the first column of
table 2.

As can be seen on the results shown in table 2, this particular application
shows only limited sensitivity to the bandwidth between the machines. All exe-
cution times estimated by Dimemas end up in the very same range. Nevertheless,
in both scenarios GCM did chose the combination of resources with the highest
bandwidth, namely machines 1 and 2.

Similarly to the previous scenario, we kept this time the bandwidth between
all four machines constant at 12 MB/s. However, we varied the latency between
the different machines between 0.6 ms and 5 ms. The first column in table 3 shows
the latency value used between the according pair of machines. The results indi-
cate, that this finite difference code is significantly more sensitive to the network
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Table 3. Estimated execution times by Dimemas of the Finite Difference Code for
various test configurations with varying latency between the machines. Times are given
in seconds.

No. of processors on estimated No. of processors on estimated

Latency machine exec. time machine exec. time

1 2 3 4 (s) 1 2 3 4 (s)

Test 2: 24 processes Test 4: 32 processes

4 ms 12 12 0 0 9.59947 16 16 0 0 7.414597
5 ms 0 12 12 0 10.480678 0 16 16 0 7.948321

0.6 ms 0 0 12 12 6.612363 * 0 0 16 16 5.660996 *
0.8 ms 12 0 0 12 6.787963 16 0 0 16 5.759201

latency between the machines than to the inter-machine bandwidth. GCM could
correctly identify the combination of machines with the lowest network latency.

5.1 Using GCM and Dimemas to Evaluate Implementation Options
for Grid Environments

An alternative usage scenario for GCM together with Dimemas is to evaluate
the performance of different implementation options given a particular execution
environment or Grid configuration. The motivation behind this approach is, that
many scientific applications have various options given a particular functional-
ity. As an example, there are many different ways to implement the occurring
neighborhood communication in scientific code, each of which might lead to the
optimal performance for different problem sizes and machine configurations [6].
Similarly, a application often has the choice to use different linear solvers, or
multiple algorithms with slightly different characteristics for a particular solver.
Using GCM together with Dimemas gives the code developers and end-users a
powerful tool to get very realistic estimates about the performance of each op-
tion on various machines respectively set of machines, without having to run the
actual code on all possible combination of machines.

This approach is being demonstrated in this subsection using different al-
gorithms for the solver used in the finite difference code. Four different solvers
namely QMR, QMR1, TFQMR, and TFQMR1 are available within the frame-
work. The main difference between these four solvers are the number of collective
operations per iteration and the number of synchronization points per itera-
tion [2]. As a first step, the user has to generate tracefiles for each solver and for
the number of processors it would like to utilize. This can be done on a single
machine, and does not require any distributed resources per se. In a second step,
the user generates in GCM the Grid environment of interest, by specifying the
number of machines, the number of nodes on each machine and the network
characteristic between the machines. GCM will then call Dimemas for each of
the according scenarios/traces and suggest the version of the code delivering the
best performance. In case the application chooses the solver at runtime based on
a setting in an input file, it is straight forward to add a plug-in to GCM which
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could alter the input file by choosing the solver which has been determined to
deliver the best performance for the given Grid environment.

The main limitation of this approach is due to GCM not having any ’ex-
tended’ knowledge about the different version being compared. As an example,
comparing the execution time of two iterative solvers for a given number of iter-
ations does not include any information about the convergence behavior of the
solver. Thus, a decision purely based on the execution time might not neces-
sarily lead to the best solver. However, there are sufficient important scenario,
where a useful decision can be made based on the execution time. In the tests
shown here, the QMR and the TQMR solvers expose significantly different
convergence characteristics from the numerical perspective. It is however safe to
compare the execution times between QMR and QMR1 and between TFQMR
and TQMR1 in order to determine, which implementation performs better in a
given environment. The results of such a comparison is shown in table 4. Two
different scenarios are shown here requiring 16 processes and 32 processes. The
configurations provided to GCM have been chosen such that the processes are
evenly distributed on two machines.

Table 4. Results scenario 3 - Comparison of different solvers (* indicates the configu-
ration chosen by GCM)

No. of processors measured simulated No. of processors measured simulated

Solver on machine exec time exec time on machine exec time exec time

1 2 (s) (s) 1 2 (s) (s)

Test 1: 16 processes Test 3: 32 processes

QMR 8 8 1.78 1.85 * 16 16 1.42 5.66 *

QMR1 8 8 2.78 5.62 16 16 2.35 7.90

Test 2: 16 processes Test 4: 32 processes

TFQMR 8 8 3.63 4.25 16 16 2.79 8.67

TFQMR1 8 8 3.50 3.50 * 16 16 2.66 5.04 *

Table 4 shows the number of processes used on each machine, the avg. execu-
tion time of each solver measured on the given environment and the estimated
execution time by Dimemas. In all four scenarios, the estimated execution time
and the average measured execution times are pointing to the same solver as
being optimal/faster. Please note, that within the context of these tests, the
accuracy of the estimated execution time compared to the measured execution
time is only of limited interest. More relevant is the factor, that the relative
performance between the solvers is determined correctly by Dimemas. Since
Dimemas is a powerful tool with many options, a user can optimize the settings
of Dimemas in order to close the absolute gap between the estimated and the
measured execution time. Clearly, the smaller the gap the wider the range of
useful scenarios for GCM. In the tests shown in table 4 most of the parameters
of Dimemas were the default values delivered by the tool.
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6 Summary

We described in this paper the integration of the performance prediction tool
Dimemas with the Grid Configuration Manager GCM. Based on a trace-file of
the application, this combination of tools can be used in order to optimize the re-
source selection procedure for a given pool of resources. Using various test-cases
we have shown, that GCM together with Dimemas (i) minimizes the number of
machines used for a configuration and (ii) does take network parameters such
as network and latency between different machines into account when choosing
the set of resources for a particular run. Furthermore, we have demonstrated,
that this combination of tools can also be used in order to evaluate various im-
plementation/functional options of an application for a given Grid environment
without having to actually run the application on a distributed set of resources.

The limitations of this approach are two-fold: first, in order to use the ap-
proach outlined in this paper, the user has to generate a trace file of his appli-
cation. This can be a restriction for some applications. However, since the trace
file can be generated on a single machine, this step should not pose any ma-
jor challenges. Second, the accuracy of the predictions does inherently have an
influence on scheduling decisions. Using Dimemas as basis for the performance
prediction step gives GCM the most powerful performance prediction tool cur-
rently available - in fact, the only tool known to the authors which can be used
out-of-the-box for arbitrary complex MPI applications.
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Abstract. Advance Reservations(AR) make it possible to guarantee the QoS of 
Grid applications by reserving a particular resource capability over a defined time 
interval on local resources. However, advance reservations will also cause the 
processing time horizon discontinuous and therefore reduce the utilization of local 
resources and lengthen the makespan (i.e., maximum completion time) of non-
resumable normal jobs. Single machine scheduling is the basis of more compli-
cated parallel machine scheduling. This study proposed a theoretic model, as well 
as four online scheduling algorithms, for local single machine schedulers to re-
duce the negative impact on the utilization of local resources and to shorten the 
makespan of non-AR jobs resulting from advance reservations for Grid jobs. The 
performances of the algorithms were investigated from both of the worst case and 
the average case viewpoints. Analytical results show that the worst case per-
formance ratios of the algorithms against that of possible optimal algorithms are 
not less than 2. Experimental results for average cases suggest that the First Fit and 
the First Fit Decreasing algorithm are better choices for the local scheduler to al-
locate precedence-constrained and independent non-AR jobs respectively. 

1   Introduction 

Grid computing affiliates the sharing of all kinds of resources. Advance Reserva-
tions(AR) make it possible to guarantee the QoS of Grid applications by reserving a 
particular resource capability over a defined time interval on local resources[1]. In 
general, advance reservations will also cause the processing timeframe discontinuous 
and therefore reduce the utilization of local resources and lengthen the completion time 
of non-AR jobs. Up till now, many studies and experiments have been conducted on 
reservation-based Grid QoS technologies. Most of them have been focused on the 
benefits for AR jobs coming from advance reservations[2-5]. Few of them have been 
devoted to evaluate the impact from advance reservations on the performances of local 
resources and/or normal jobs[6-9]. However, none of them has been published to try to 
reduce the disadvantages on local resources and/or normal jobs resulting from advance 
reservations for Grid jobs. 

Single machine scheduling is the basis of more complicated parallel machine 
scheduling. In this study, it was aimed to find a theoretic model, as well as local 



240 B. Li and D. Zhao 

scheduling algorithms, for single machine schedulers to reduce the disadvantages on 
utilization of local resources and to shorten the makespan(i.e., maximum completion 
time) of normal jobs while supporting advance reservations for Grid jobs. The local 
scheduler can fulfill both targets by allocating non-AR jobs into available intervals with 
the goal to minimize the makespan of the jobs. 

For single machines, the impact of AR on the allocating of local jobs is depicted in 
Fig.1. Jobs are classified into two types: AR jobs and non-AR jobs. AR jobs are Grid 
jobs with advance reservations. Once their reservation requirements are accepted, they 
will be put into the AR-job queue and will be processed within reserved processing 
intervals. Non-AR jobs are put into the non-AR-job queue and will be processed only 
within those available intervals left by AR jobs. All reserved intervals for AR jobs are 
unavailable for non-AR jobs. 

non-AR jobs

AR jobs t

PE

 

Fig. 1. The allocating of AR and non-AR jobs on single processing element 

Because non-AR jobs can be processed only in discontinuous available intervals, the 
allocating of non-AR jobs into available intervals to minimize the makespan is a kind of 
availability constraint scheduling problem. With availability constraints, a machine can 
process jobs only in discontinuous available intervals. This restriction arises in many 
areas such as manufacturing industry, production scheduling and computer science [10, 
11]. Suppose all non-AR jobs are non-resumable, it is NP-hard to allocate them into 
available intervals to minimize the makespan. When a non-resumable job cannot be 
finished before the ending of the available interval in which it is processed, it has to 
restart from the beginning later in another available interval, rather than to continue. 

Assume the information (e.g., arrival time, required processing time) on queued AR 
and non-AR jobs is known before scheduling. If there are more than one AR jobs in 
queue, in order to meet the reservation requirements of possible arriving AR jobs, it is 
necessary to allocate non-AR jobs only into existing available intervals made by ac-
cepted reservations. Suppose the number of queued AR jobs is one and the scheduler 
knows the time point when a new available or unavailable interval will end as it arrives, 
this setting can be referred to as online. 

This paper will propose a new theoretic model for the local single machine scheduler 
to minimize the makespan of non-AR jobs while supporting advance reservations for 
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Grid jobs, will present four online scheduling algorithms and evaluate their perform-
ances from both of the average case and the worst case viewpoints. 

2   Problem Definition and Online Algorithms 

For the online scheduling problem to allocate non-AR jobs into available intervals, the 
completion time of the non-AR jobs equals the length of the duration from the starting 
time point to the end time of the last job. Considering that the makespan comes from 
both of the available intervals and unavailable intervals, we can divide it into two parts: 
the one coming from unavailable intervals and the other coming from available inter-
vals. For any deterministic problem instance of which the arrival time and the duration 
of any unavailable or available interval are fixed, the makespan is dominated by how to 
allocate the jobs to the available intervals. In other words, the goal to minimize the 
makespan is equivalent to allocate the jobs into as small number of earlier available 
intervals as possible. By regarding the jobs and their processing time requirements as 
items and item sizes respectively, and by regarding the available intervals of the ma-
chine and their durations as bins and bin sizes respectively, the deterministic online 
single machine scheduling problem for nonresumable non-AR jobs can be transformed 
into a online version of a variant of the standard Variable-Sized Bin Packing(VSBP) 
problem firstly proposed in [12]: given a list 1 2( )nL a a a= , , ,L  of items, each with size 

( ) 1js a j n, ≤ ≤ , and a list 1 2( )B b b= , ,L  of bins, each with size ( ) 1is b i, ≤ , the goal is 
to pack the n  items into the bins with a minimum total size of bins from 1b  to the last 
one being used (say 1)tb t, ≥  in list B . To distinguish the new problem from the 
standard VSBP[13], in this paper we call it the Variant of the Variable-Sized Bin 
Packing problem, VVSBP for short. 

According the sizes of the bins and the items, we can divide VVSBP into two sub-
cases with feasible solutions: 

 

1. Subcase A: min{ ( )} max{ ( )}i js b s a≥ ; 

2. Subcase B: min{ ( )} min{ ( )}i js b s a≥  and max{ ( )} max{ ( )}i js b s a≥ . 
 

where min{ ()}s  and max{ ()}s  denote the minimum and the maximum in ()s  re-

spectively. 
In the online scheduling problem, if the duration of a new available interval is not 

greater or equal to the maximum processing time requirement of the non-AR jobs in 
queue, this interval will not be considered for processing jobs. This is equivalent to 
subcase A. If only those available intervals the durations of which are less than the 
minimum processing time requirement of the non-AR jobs are ignored, we get subcase 
B. To guarantee feasible solutions for any problem instance of subcase A, we assume 
the number of bins is not less than the number of items. Because subcase A can be 
viewed as a subset of subcase B, to guarantee feasible solutions for any problem in-
stance of subcase B, we can exclude those intervals with sizes less than the maximum 
item size in the problem instance of subcase B to construct a problem instance of 
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subcase A, and require the number of the bins in the derived problem instance is not 
less than the number of items. 

In the online version of the classic one-dimensional bin packing(BP) problem or the 
standard VSBP problem, we have all information on the bins but we cannot preview  
the information of items before they arrive. An online algorithm assigns items to bins in 
the order of 1 2( , ,..., )na a a  with item ,1ja j n≤ ≤  solely on the basis of the sizes of the 

preceding items and the bins to which they were assigned. Without loss of generality, 
we can assume that no new item will arrive until its preceding items are packed into 
bins and no new bin will open to hold items until all the used bins cannot accept the 
current item. In the online version of the VVSBP problem, we have all information on 
items but we cannot preview the type of the bins before packing. We must decide which 
items should be packed into the bin as it arrives. A new bin will arrive after the current 
bin is closed and a closed bin will never be reopened to accept items even if it is empty. 

The differences between the two kinds of online issues make those online algorithms 
for the BP or the VSBP problem not applicable to the VVSBP problem. It is reasonable 
to extend the four algorithms in [12] for both of the subcases of the online version of the 
VVSBP problem. Except NF, FF, NFD and FFD, we can also adapt other bin packing 
algorithms for the VVSBP problem, such as the Worst Fit(WF) algorithm, the Almost 
Worst Fit(AWF) algorithm, the Worst Fit Decreasing(WFD) algorithm and the Almost 
Worst Fit Decreasing(AWFD) algorithm. However, because these four algorithms are 
not as typical as NF, FF, NFD and FFD in practice, they will not be considered in the 
following. Without causing confusion, we also use the names of the algorithms in the 
BP problem to denote their analogues adapted for two subcases of the VVSBP problem. 

1. Next Fit(NF): Pack items in the order of 1 2( )na a a, ,..., , if the current bin ib  has not 

sufficient space to hold the current item ja , ib  will be closed and the next bin 1ib +  

will be opened to try to hold ja  

2. First Fit(FF): All items are given in the VVSBP problem and they will be packed in 
the order of 1 2 na a a, ,..., . When packing 1ja j n, ≤ ≤ , put it in the lowest indexed 

open bin into which it will fit. If such an open bin does not exist, open a new bin 
until we find the least i  such that 1ib i, ≥  is capable of holding ja .  

Presort the items in non-increasing order by size, and then apply FF, BF to the re-
ordered items, we will get the First Fit Decreasing(FFD) algorithm and the Best Fit 
Decreasing(BFD) algorithm respectively. 

In the scheduling problem, if the jobs must be processed in index order, we say they 
are precedence-constrained. On the other hand, if the jobs can be processed in random 
order, we say they are independent. Of course, only these algorithms without presorting 
as mentioned above, i.e., FF, BF, WF and AWF, can be used for prece-
dence-constrained jobs. 

3   Worst Case Analysis 

Competitive ratio is usually used to evaluate the performance of online algorithms, 
which describes the maximum deviation from optimality that can occur when a  
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specified algorithm is applied within a given problem class. For a list L  of items, a list 
B  of bins and an approximation algorithm H  for the VVSBP problem, let ( , )H L B  

denote the total size of bins by algorithm H , and let ( , )OPT L B  denote the total size in 

optimal packing, the competitive ratio of algorithm H  is defined as 

,

lim sup{ ( , ) ( , ) | ( , ) }
H

k L B

R H L B OPT L B OPT L B k∞

→∞
= ≥ . For instances of subcase B in 

section 2, if feasible solutions do not exist, we say 
H

R∞ = ∅  for any algorithms; if fea-

sible solutions exist but algorithm H  can not get a feasible solution, we say 

( , )H L B = ∞  and thus 
H

R∞ = ∞ . 

Let H  denote any of the online algorithms defined above, we get their competitive 
ratios in subcase A and subcase B as follows. 
 

Theorem 1. For worst case instances of subcase A, 2
H

R∞ = . 

 
This theorem can be proved by applying the results in [12] in that subcase A is 
equivalent to the essential assumption in [12] and that the four algorithms here are 
identical to those in [12]. 
 

Theorem 2. For worst case instances of subcase B, 
H

R∞ = ∞ . 

 
Proof. Without lose of generality, let the list L  of items with sizes 

1 2 1 2 3
( ) ( ) ... ( ), ( ) ( ) ( )

n
s a s a s a s a s a s a> > > < + , two instances are considered: 

Instance 1: If { , }H NF NFD∈ , suppose the sizes of bins are 

1
( ) ( ),1

( ) ( ),

i n i

i n

s b s a i n

s b s a i n

− += ≤ ≤

= >
⎧
⎨
⎩

, an optimal and feasible solution is to pack 
i

a  into 

1
,1

n i
b i n− + ≤ ≤ .  

Instance 2: If { , }H FF FFD∈ , suppose the sizes of bins 

are

2 3 1 1 3

1 2

1 2 2 3

1

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ), 3 1

( ) ( ),

i i

i n

s a s a s b s a s a

s a s a

s a s b s a s a

s b s a i n

s b s a i n

+

+ ≤ < +

< +

≤ < +

= ≤ ≤ −

= ≥

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

, an optimal and feasible solution is to 

pack 
1

a  into 
2

b , 
2

a  and 
3

a  into 
1

b , 
i

a  into
1i

b − for 4 i n≤ ≤ . 

In the two instances, H  cannot get feasible solutions, we have ( , )H L B = ∞  and 

1
( , ) ( )

n

ii
OPT L B s b

=
=∑ , and thus 

H
R∞ = ∞ . 
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4   Average Case Experiments 

Usually, simulations with real workload trace records(e.g. Parallel Workload Ar-
chive[14]) are used to investigate the performances of parallel or Grid scheduling al-
gorithms[8, 15-17]. However, up till now, there are not any real workload trace records 
for single machine schedulers. In this section, we will investigate the average-case 
performances of the online algorithms only from the bin packing viewpoint. 

Theoretical analysis and experimental simulation are two methods to determine the 
average-case performance of bin packing algorithms. The usual approach for aver-
age-case analysis is to specify a density function for the problem data, including the 
sizes of items and bins, and then to establish probabilistic properties of an algorithm, 
such as the asymptotic expected ratio, the wasted space expected ratio etc.[18, 19] 
Among the distributions for average-case analysis, continuous uniform or discrete 
uniform distributions are widely used. For uniform distributions, the asymptotic ex-

pected ratio is defined as 
1 1

lim lim [ ( ( )]n

H n H n n n
ER ER E H L OPT L∞

→∞ →∞ , ,= = /  and the 

wasted space expected ratio is defined as 

1 1
lim lim [ ( ( )]n

H n H n n n
EW EW E H L s L∞

→∞ →∞ , ,= = − , ( )
n u

s L ,  denoting the total size of n  

items drawn independently from the uniform distribution on the interval [0 ]u, . It is 

suggested in [18] that it is often easier to analysis the average case results about n

H
EW  

than about n

H
ER  directly and the former typically imply the latter in that for most dis-

tributions that have been studied 
1 1

lim [ ( ) ( )] 1
n n n

E OPT L s L
→ ∞ , ,

/ =  and 1
BF BFD

ER ER
∞ ∞= =  for the 

classic one-dimensional bin packing problem. Moreover, when item sizes are drawn 
independently from the uniform distribution on the interval [0 ]u, , it is proved in [20] 

that ( ) lim [ ( ) ( )]
u n n u n u

ER H E H L s L
∞

→ ∞ , ,
= /  and ( ) 1 [0 1]

u
ER FF u

∞

= , ∈ , . When only consider the 

limitation of 1u → , it is suggested in [18] that 
1

lim ( [0 ]) 1
b FF

R U b∞

→ , = . 

For instances of the VVSBP problem with given lists of bins and items, the goal to 
minimize the total size of bins is not only related to the numbers and sizes of items and 
bins, but also related to the sequence of bins. This makes it more difficult to analyze the 
average-case performance of algorithms mathematically. Instead of mathematical 
analysis, a numerical experiment solution is used in this section to simulate the be-
haviors of different algorithms for typical problem instances with sizes of items and 
bins drawn independently from uniform distributions. 

In the following, we adapt the definition of ( )
u

ER H∞  for algorithms in average-case 

experiments as ( ) lim [ ( ) ( )]
u n n u n uwn u

ER H E H L B s L∗

∞

→∞ , ,,
= , / , in which 

wn u
B ∗,

 denotes 

the list B  of wn  bins with sizes drawn from the uniform distribution in the interval 

[ 1]u∗ , . In experiments, for problem instances in subcase A, u u∗ =  and 1w = ; For 

subcase B 
,

min{ }
n u

u L∗ =  and 10w = . 
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Let us first examine the situation when n  is small. Fig. 2(a) and Fig. 2(b) depict the 
average values of ( ) ( )

n u n uwn u
H L B s L∗, ,,

, /  of algorithms when applying them to problem in-

stances in subcase A and subcase B respectively with 20n =  and 100. u  ranges from 
0.05 to 1 in steps of 0.05 and each data point represents the average of 100 runs. It can 
be seen from Fig.2(a) and Fig.2(b) that FF and FFD are always better than NF and 
NFD. As n  increases, the improvement of NF and NFD are not as remarkable as that of 
FF and FFD. Surprisingly, in Fig.2(a), when 0 7u > . , the performance curves of NF 
and NFD with 100n =  become even worse than that with 20n = . 
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                                     (a)                                                                        (b) 

Fig. 2. ( )
u

ER H
∞  for subcase A(a) and B(b) as a function of u  with n=20 and 100 

To be able to obtain the asymptotical average performances of algorithms, long lists 
of items are preferred. Experiments with 500n = , 1000, 2000, 5000, 10000 and 20000 
are carried out to examine the asymptotical performances. Fig.3(a) and Fig.3(b) depict 
the experimental results with 500n =  and 2000 for subcase A and B respectively. 

In experiments, with the same value of u , the improvements of the average ratios of 
NF and NFD coming from the increasing of n  are very small: as n  increases from 500 
to 2000, in subcase B, the improvements of the average ratios of NF for 0 05u = .  
through 1 are within [ 0 8405 0 0202]− . , . , and the improvements of NFD are within 

[ 0 9870 0 0184]− . , . ; In subcase A, the improvements of NF are within 

[ 0 0005 0 0187]− . , . , and the improvements of NFD are within [ 0 0022 0 0168]− . , . . 

Moreover, by 10000n = , both the NF and the NFD algorithm appear to have con-
verged, and both of them seem to be very near their asymptotes: in subcase A, as n  
increases from 10000 to 20000, the improvements of NF for 0 05u = .  through 1 are 
within [ 0 0013 0 0017]− . , . , and the improvements of NFD are within 

[ 0 0005 0 0019]− . , . . Similar convergence happens in subcase B. Due to the convergence 

properties of NF and NFD in subcase A, it is shown that the results of NF or NFD with 
different n  are overlapped in most cases. Thus in Fig.3, for simplicity, only the results 
with 2000n =  were given out. 
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Fig. 3. ( )
u

ER H
∞  for subcase A(a) and B(b) as a function of u with n=500 and 2000 

5   Conclusions 

Although many researches have been reported to investigate the impact on the utiliza-
tion of local resources, on AR jobs or on non-AR jobs resulting from advance reser-
vations for Grid jobs, none of them has been devoted to try to reduce the disadvantages 
on local resources and/or normal jobs. This study was aimed to find a theoretic model, 
as well as local scheduling algorithms, for single machine schedulers to reduce the 
disadvantages on utilization of local resources and to shorten the makespan(i.e., 
maximum completion time) of normal jobs while supporting advance reservations for 
Grid jobs. The performances of the algorithms were investigated from both of the worst 
case and the average case viewpoints. Analytical results show that the worst case 
performance ratios of the algorithms against that of possible optimal algorithms are not 
less than 2. Experimental results for average cases show FF and FFD are better than NF 
and NFD. Considering that when applying NFD to the non-AR jobs, it’s required that 
the processing order of the jobs can be changed without interfering the execution of the 
jobs, NFD can be applied only for independent non-AR jobs. Because it is not neces-
sary to change the processing order of the jobs when applying FF, this algorithm can be 
applied for both of independent of precedence-constrained non-AR jobs. For inde-
pendent non-AR jobs, the average performance of FFD is better than that of FF. 
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Abstract. Currently some complex grid applications developing often need 
orchestrate multiple diverse grid services into a workflow of tasks that can 
submit for executing on the grid environment. In this paper, we present 
CROWN FlowEngine—a GPEL-based grid workflow engine for executing grid 
workflow instances. Besides basic functions of a conventional BPEL4WS-
based workflow engine, CROWN FlowEngine has many features including 
hierarchical processing mechanism, multiple types of task scheduling, 
transaction processing, etc, which are of paramount importance to supporting 
workflow instances using GPEL language. CROWN FlowEngine will be 
adopted and widely deployed in CROWN Grid environment to support a wide 
range of service grid applications integration. We conduct several experiments 
to evaluate the performance of CROWN FlowEngine, and the results of 
comparing our work with GWES are presented as well. 

1   Introduction 

As the progress of grid[1] technology and the increasing prevalence of grid 
applications, a large numbers of resources could be accessed by drawing on grid 
middleware. In particular, with the appearance of OGSA (Open Grid Service 
Architecture)[2] architecture, some web service technologies have been successfully 
incorporated into grid computing to deal with resource heterogeneity and other 
important issues. And the resultant service grid is generally regarded as the future of 
grid computing. Many specifications, including OGSI, WSRF, WSDL, SOAP, etc, are 
introduced to standardize service grid technology. In service grid, various resources 
such as computers, storage, software, and data are encapsulated as services (e.g. 
WSRF services). As a result, resources can be accessed through standard interfaces 
and protocols, which effectively mask the heterogeneity. 

Our CROWN (China Research and Development Over Wide-area Network)[3, 4] 
project aims to support large-scale resource sharing and coordinated problem solving 
by using service grid and other distributed computing technologies. In CROWN 
development, we find currently many complex grid applications developing often 
need integrate multiple diverse grid services into a new application. Traditional 
workflow technology gives this requirement a well solution. Like workflow model, 
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first we need to use a language to orchestrate logic and sequence relation of available 
grid services and create a grid workflow description document; second the grid 
workflow description document is deployed a execution engine, and then is scheduled 
and run according to defined logic and sequence relation. 

In this paper, we present CROWN FlowEngine—a GPEL[5]-based grid workflow 
engine for executing grid workflow instances. Besides basic functions of a 
BPEL4WS-based workflow engine, CROWN FlowEngine has many features 
including hierarchical processing mechanism, multiple types of task scheduling, 
transaction processing, etc, which are of paramount importance to support workflow 
instances using GPEL language. GPEL is a grid process execution language based on 
the web service composition language BPEL4WS[6], and a detailed introduction 
about GPEL were discussed in the reference paper. CROWN FlowEngine will be 
adopted and widely deployed in CROWN Grid environment to support a wide range 
of service grid applications integration. 

The rest of the paper is organized as follows. In section 2, we analyze related 
works in the area of grid workflow engine. The system architecture of CROWN 
FlowEngine is presented in section 3. In section 4, we show the implementation 
details and design issues. Results of performance evaluation are discussed in section 
5. And in section 6, we conclude this paper and pave the way of future works. 

2   Related Works 

Grid computing offers tremendous benefits in the domains of different industry and 
science especially Life Sciences, Finance, Energy, Biology etc. As the appearance of 
service grid, we use various resources expediently through grid middleware. But 
while encountering a complex computing paradigm, we have to integrate and 
orchestrate multiple single computing units to a new application for the original 
requirement, so from grid service to grid workflow is a natural evolvement process in 
grid computing area. 

Now there are some existing researches about grid workflow engine in academy 
domain. Jia Yu and Rajkumar Buyya of University of Melbourne publish a technical 
report[7] about workflow management systems for grid computing and survey current 
main grid workflow systems. Condor DAGMan[8] is a service for executing multiple 
jobs with dependencies in a declarative form. It uses DAG (Directed Acyclic Graph) 
as the data structure to represent job dependencies. Each job is a node in the graph 
and the edges identify their dependencies. Each node can have any number of 
“parent” or “children” nodes. Kepler[9] is a popular scientific workflow system, with 
advanced features for composing scientific applications, it  has been extended to 
support web service.Taverna[10] is used to assist scientists with the development and 
execution of bioinformatics workflows on the Grid. FreeFluo is also integrated into 
Taverna as a workflow enactment engine to transfer intermediate data and invoke 
services. The Grid Workflow Execution Service(GWES)[11, 12] is the workflow 
enactment engine, which coordinates the composition and execution process of grid 
workflows by GWorkflowDL language. GWES supports pure web services and 
Globus Toolkit 4 (GT4)[13], and it is easily extendible for further execution 
platforms. In the section 5 we compare the performance of GWES with CROWN 
FlowEngine. 
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3   System Architecture 

CROWN FlowEngine is a GPEL-based grid workflow engine, and Figure 1 shows its 
system architecture. Traditional BPEL4WS-based workflow engine provides a basic 
implementation of a workflow engine; however, these basic functions are not enough 
to satisfy the requirements for workflow engine in real grid environments. 

 

Fig. 1. System Architecture of CROWN FlowEngine 

The Grid Workflow Forum[14] thinks grid workflows differ from "normal" 
workflows, such as business workflows or IT workflows, mainly in the following 
sense: stateful/stateless, reliability and performance. So when designing and 
developing CROWN FlowEngine, we fully consider specialties of grid environment, 
such state of service, reliability, performance, scheduling, etc.  

Fist, our CROWN FlowEngine is based on GPEL, the extension of a international 
factual specification－BPEL4WS version 1.1, so some general workflow model 
created using BPEL4WS can be explained and executed. We provide stack-based 
explaining and executing algorithm to explaining GPEL documents and adopt 
multithread mechanism to executing each process instance for reducing complexity of 
the CROWN FlowEngine. Especially, in order to solve the problem that process 
instance waits longer for system resource consumption in asynchronous invoking, the 
method to persistencing process instance is adopted. Second, an advanced hierarchical 
processing mechanism enhances concurrent performance of CROWN FlowEngine. 
And a task processing adaptor supports multiple invocation types, including local 
application, general stateless web service, stateful WSRF service, and dynamic grid 
service schedule based on JSDL[15] for various requirements of users. Third, in order 
to ensure consistency and reliability, besides usual exception handling CROWN 
FlowEngine implements WS-Reliability[16] protocol for reliability in message layer. 
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It is significant to adopt a novel distributed transaction processing technology which 
ensures reliability and consistency of a group of key grid services. In next section we 
will describe these implementation details of various components and mechanisms. 

4   Implementation Experience 

4.1   Hierarchical Processing Mechanism 

To increase quantity of the concurrent process instances in CROWN FlowEngine, we 
present a hierarchical processing mechanism which consists of transport layer, 
message layer, public service layer, workflow processing layer and corresponding 
interfaces[17], and Figure 2 shows its hierarchical architecture. 

 

Fig. 2. Hierarchical Processing Mechanism 

Transport layer is a foundation layer that can receive and transmit SOAP message 
bound on various transfer protocols (such as HTTP, SMTP). Therefore, this layer 
needs to deal with various types of user request and SOAP message transferred on 
various protocols. With processing content mentioned above, we design converters of 
in-output messages, protocol listener and packer. 

Message layer ensures reliability of transferring message at invoking external 
application or service. Message layer provides support to WS-Reliability protocol and 
at least can realize one of following two requirements: first, when fault and exception  
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occur occasionally but not crash, all messages from sender should be delivered to 
receiver; second, if fault and exception keeps continuously or crash occurs, after fault 
and exception is eliminated or crash is resumed, all previously sent message should be 
delivered to receiver. In addition, in order to solve a number of concurrent requests, 
context pool is set in this layer. 

Workflow processing layer is core of CROWN FlowEngine. Its function is to 
create, explain and execute a process instance, control the lifecycle of this process 
instance and so on. It consists of following parts: 

• Global engine manager: this is the global control component; it is in charge of the 
management of all external messages and internal information. 

• Workflow instance manager: it manages lifecycle of all process instances, 
including operations of creating, pausing, persistencing and resuming. According 
to the name and method of request message a new process instance is created. 

• Runtime of process instance: it explains and executes activity in GPEL language 
and processes the activity of a process instance by stack-based explaining and 
executing algorithm. 

• Processes scheduler: it adopts the policy of “First Come First Served” to deal with 
requests of users or external applications. 

Public services layer provides the necessary functions in runtime of CROWN 
FlowEngine, which includes logging management, transaction management, 
persistence management, exceptions management, database connectivity and so on. 

4.2   Task Scheduling 

Conventional workflow engine and workflow engine based on BPEL4WS invokes 
tasks in a process instance is static, that is it has been decided in orchestrating. But 
compared with other distributed computing the characteristic of grid computing is  
 

 

Fig. 3. Multiple Types of Task Scheduling 
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able to carry out job dynamic scheduling, that is a task can be located to the proper 
computing node according to user requirement and environment constraint. Shown as 
figure 3, our CROWN FlowEngine not only support local application and web 
service/ WSRF service call but also support grid job dynamic scheduling based on 
JSDL language. 

In practical development, we add mostly inner property of cooperative partner 
description activity (partnerLink) and service invoking activity (invoke). When 
creating grid workflow model, user may assigns different type for certain external 
invoking task. In CROWN FlowEngine, workflow instance is explained and executed 
in activities stack. When external invoking activity (invoke) is executed, task 
processing adapter selects different call modes by the description at user modeling. 

• Local Application Invoker: it may invoke local grid application and support 
currently Java language programs. This mode is mainly aimed at grid workflow 
developers, who need not to encapsulate the developed local application into a 
service in some situations. The local program is more efficient than other. 

• Web Service/WSRF Service Invoker: this is a remote method invocation based on 
SOAP RPC. Invoking web service is basic function provided by CROWN 
FlowEngine. However with service grid presented and developed stateful service 
plays more and more important role in grid computing environment. Our GPEL 
support invoking standardized WSRF service. By being tested, CROWN 
FlowEngine is completely compatible with Globus Toolkit 4 (GT4). 

• JSDL Job Scheduler: it is a remote method invoking based on SOAP Document. 
JSDL is used to describe the requirements of computational jobs for submission to 
resources, particularly in Grid environments. Noticeably, CROWN FlowEngine is 
a light and stand-alone grid workflow engine. CROWN FlowEngine itself has no 
grid job scheduling function and must together work with a external scheduler 
(such as CROWN Scheduler) supporting JSDL. At processing a JSDL description 
task, our JSDL Job Scheduler encapsulates JSDL document into SOAP message 
and commits it to a real external scheduler that can process JSDL document. Last, 
JSDL Job Scheduler parses and processes. 

4.3   Transaction Processing Model 

Transaction processing is an advanced characteristic of the CROWN FlowEngine, 
which ensure reliability and consistency of a group of key grid services.  

Transaction technology is a processing mechanism that constructs a reliable 
application and ensures identity of all participants’ output result in application. The 
concept of transaction originates from database research. Along with research and 
development of the distributed technology, distributed transaction across different 
resources (such as database, message middleware) is presented. Distributed 
transaction mentioned above can effectively apply in the closely coupled 
organization, but they are unable to satisfy participant's requirement for local 
autonomy and long transaction under the relaxed coupled grid environment. 
Therefore, under CROWN FlowEngine we need a new transaction technology and  
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model－service grid transaction to coordinate a group of key grid services in the 
workflow instance and ensure reliability and consistency of their result. 

CROWN FlowEngine adopts BTP[18] protocol as specification of our transaction 
processing model. BTP is first XML-based B2B transaction processing protocol that 
defines the logic sequence and message types of the transaction processing. Purpose 
of BTP is to permit many participants owned and controlled by heterogeneous 
organization to coordinate running. BTP uses Two-Phase-Commit in order to ensure 
that the entire application program obtains the consistent result.  

Figure 4 shows our transaction processing model: 

 

Fig. 4. Transaction Processing Model in CROWN FlowEngine 

In this model a grid workflow instance is regarded as the "external" Application. 
When it need to processes a group of transactional grid services the grid workflow 
instance sends message to Coordinator Factory. After the coordinator factory 
initializes an instance of Coordinator, the instance sends a request to the Participant 
Agent to inform it. The Participant Agent searches this node for the Participant and 
registers it. The instance of Coordinator commits request message to the Participant 
Agent and the Participant by Two-Phase-Commit and finally returns transaction result 
to the Application.  

The Coordinator is kernel component created by the Coordinator Factory at 
generation of the transaction. The Coordinator coordinates the transaction processing 
throughout all time. During the transaction processing the Coordinator communicates 
with the Participant Agent time after time. One transaction processing corresponds to 
one coordinator and is identified with a unique ID. 

The Participant Agent is essential component in transaction node. All Participants 
in distributed node communicate with a Coordinator via the Participant Agent. 
Actually in course of communication none of Participants communicate with external. 
The advantage of our implementation is: the Participant Agent simplifies a 
Participant’s work; a lot of messages are centralized by a Participant Agent to control  
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transactions in the node. With Participant Agent, logging and committing Two-Phase-
Commit become more convenient. And Participant's task is finishing business 
operation, but not regarding transaction implementing. 

5   Performance Evaluation 

In this section, we present the performance evaluation of CROWN FlowEngine. We 
will show the performance comparison of CROWN FlowEngine and GWES 
implementation.  

The experiments are conducted on PC1 and PC2. Between the two PCs, there is an 
Ethernet connection of 100Mbps. PC1 has AMD Sempron 1.6 GHz CPUs, 1 GB 
DDR Memory and Windows XP OS and PC2 has Pentium D 3.4 GHz CPUs, 1 GB 
DDR Memory and Windows XP OS. 

PC1 serves as the both grid workflow engines (CROWN FlowEngine and GWES) 
and the most simple workflow instance “Echo” (GPEL and GWorkflowDL) 
respectively is deployed. The workflow instance is a sequence process which can 
invoke an external service “HelloWorld”. There is a stateless “HelloWorld” service in 
the grid service container (CROWN Node Server), that is deployed on PC2. The 
client that sends concurrent requests to the workflow engines (PC1) using Java thread 
technology. We use the following metrics to do the performance evaluation. (1) 
Throughput. This metric is used to evaluate how many requests can be processed in 
one second. (2) Average response time. This metric reflects the processing efficiency 
under different scenarios. (3) Invocation processing time. This metric reflects the 
processing efficiency of external invocation. (4) Overhead of transaction processing. 
This metric is used to evaluate the system overhead of transaction processing under 
CROWN FlowEngine. 

In our experiment, we hope to evaluate the metrics mentioned above of CROWN 
FlowEngine and GWES under different numbers of concurrent requests. All the 
experiments are repeated 10 times, and we report the average results. 

The results of our experiment are presented in Figure 5~8. We vary the number of 
concurrent requests from 0 to 200 (10, 20, 30 … 130, 140, 150, 175 and 200). Figure 6 
plots the throughput of CROWN FlowEngine and GWES, while Figure 7 shows the  
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Fig. 5. Throughput vs. Num of concurrent 
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Fig. 6. Average response time vs. Num of 
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Fig. 7. Comparison of Invocation processing 
time (Echo) 
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Fig. 8. Performance of transaction proce-
ssing (Echo) 

average response time for processing a request. We can see that CROWN FlowEngine 
outperforms GWES almost in all cases. We figure out there can be two reasons to 
explain the results. First, GWES is a service self and depends on third-part 
Application Server that deals with messages processing, in this experiment GWES is 
deployed under Tomcat; however, CROWN FlowEngine is a stand-alone server. 
Second, we design the hierarchical processing mechanism in CROWN FlowEngine to 
implement some buffers and pools for concurrent requests. In a general way external 
invocation can consume much time of a process instance processing. Therefore, on 
grid workflow engine side, we measure the processing time of invocation function, 
and the result is shown in Figure 8. The difference of invocation processing time 
further verifies that CROWN FlowEngine performs better than GWES. The result of 
Figure 9 shows that the transaction processing does not incur too much overhead to 
CROWN FlowEngine itself. 

6   Conclusion and Future Works 

In this paper, we present the design and implementation experience of a novel GPEL-
based grid workflow engine, CROWN FlowEngine.  

In order to solve the difficult problems such as stateful/stateless, reliability and 
performance in grid workflow, we present many feasible mechanisms and approaches 
including hierarchical processing mechanism, multiple types of task scheduling, 
transaction processing, etc. CROWN FlowEngine will include in CROWN 3.0 release 
that have been tested in CROWN testbed and widely use in real applications as well. 
We perform extensive experiments to evaluate the performance of our 
implementation and GWES. The results show that CROWN FlowEngine performs 
better that GWES under various numbers of concurrent requests. 

We will perform more tests on all components of CROWN FlowEngine to make it 
stable to use. Also we will further design and develop a console for CROWN 
FlowEngine to monitor, manage and analyze process instances. In addition, we hope 
to perform further study on performance issues. 
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Abstract. As Grids become increasingly relied upon as critical infrastructure, it 
is imperative to ensure the highly-available and secure day-to-day operation of 
the Grid infrastructure. The current approach for Grid management is generally 
to have geographically-distributed system administrators contact each other by 
phone or email to debug Grid behavior and subsequently modify or reconfigure 
the deployed Grid software. For security-related events such as the required 
patching of vulnerable Grid software, this ad hoc process can take too much 
time, is error-prone and tedious, and thus is unlikely to completely solve the 
problems. In this paper, we present the application of the ANDREA 
management system to control Grid service functionality in near-real-time at 
scales of thousands of services with minimal human involvement. We show 
how ANDREA can be used to better ensure the security of the Grid: In 
experiments using 11,394 Globus Toolkit v4 deployments we show the 
performance of ANDREA for three increasingly-sophisticated reactions to an 
intruder detection:  shutting down the entire Grid; incrementally eliminating 
Grid service for different classes of users; and issuing and applying a patch to 
the vulnerability exploited by the attacker. We believe that this work is an 
important first step toward automating the general day-to-day monitoring and 
reconfiguration of all aspects of Grid deployments.  

1   Introduction 

As Grids become increasingly relied upon as critical infrastructure, it is imperative to 
ensure the highly-available and secure day-to-day operation of the Grid infrastructure. 
However, as Grid system administrators and many Grid users know, the deployed 
Grid software remains quite challenging to debug and manage on a day-to-day basis: 
Grid services can fail for no apparent reason, Grid services can appear to be running 
                                                           
* This material is based upon work supported by the National Science Foundation under Grant 

No. 0426972 and through TeraGrid resources provided by NCSA. Any opinions, findings, 
and conclusions or recommendations expressed in this material are those of the author(s) and 
do not necessarily reflect the views of the National Science Foundation.  
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but users are unable to actually utilize them, information services report seemingly 
incorrect information, new versions of Grid software can need to be deployed, etc. 
Whenever a Grid administrator at a site determines that some part of their local Grid 
services is not running according to plan, and it is not immediately solvable via some 
local action, Grid administrators must generally contact their peers at other sites via 
telephone or email to debug overall Grid behavior. Email and telephone are also 
heavily utilized to disseminate the availability of new versions of deployed Grid 
software, including those updates that contain important security patches. For such 
critical security-related events, this ad hoc process can take too much time, is error-
prone and tedious, and thus is unlikely to remedy the situation.   

The broad challenge addressed in this paper is: How can a large collection of Grid 
services be dynamically managed in near-real-time to provide an acceptable level of 
functionality without significant human involvement? At the core of our approach is 
Willow 1, a large-scale feedback control architecture featuring sensors, actuators, and 
hierarchical control logic that runs side-by-side to the Grid and uniquely facilitates 
near-real-time monitoring, reconfiguration, and general management of the overall 
functionality of a Grid. Specifically, in this paper, we narrow our focus to the design 
and implementation of the integration of ANDREA 2 -- the “actuation” part of 
Willow -- to ensure the security of large-scale Globus Toolkit v4 deployments (GT4 
3) in the presence of an intruder (essentially a person gaining unauthorized access to 
some service). We do not pursue ways in which to determine that a Grid intrusion has 
occurred, rather we assume that one has occurred and subsequently need to 
holistically react to such a breach. In simulated experiments involving 11,394 Globus 
Toolkit v4 deployments, run over 768 real nodes, we show the application and 
performance of ANDREA for three increasingly-sophisticated reactions:  shutting 
down the entire Grid; incrementally eliminating Grid service for different classes of 
users; and issuing and applying a patch to the vulnerability exploited by the attacker. 
We believe that this work is an important first step toward automating the general 
day-to-day monitoring and reconfiguration of all aspects of Grid deployments. 

2   The ANDREA Management Framework 

Willow 1 is a comprehensive approach to management in critical distributed 
applications that uses a  combination of (a) fault avoidance by disabling vulnerable 
network elements intentionally when a threat is detected or predicted, (b) fault 
elimination by replacing system software elements when faults are discovered, and (c) 
fault tolerance by reconfiguring the system if non-maskable damage occurs. The key 
is a reconfiguration mechanism that is combined with a general control structure in 
which network state is sensed, analyzed, and required changes actuated.   ANDREA 
is the "actuation" component of Willow. Because the focus of this paper is on the 
integration and use of ANDREA to control Globus installations in the context of 
intrusion detection, we will not discuss Willow any further. That is, we do not discuss 
the use of Willow to detect the intruder in question here, rather we focus on the use of 
Willow (specifically ANDREA) to react and take corrective actions.  
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2.1   Distributed, Hierarchical Management Policy in ANDREA 

ANDREA is a distributed, hierarchical collection of nodes that integrate at the lowest 
level with the controlled system, which is in this case the Globus-based Grid. The 
collection of ANDREA nodes exist in a loosely coupled configuration in that they are 
not aware of one another’s names, locations, or transient characteristics. This is a key 
point for controlling truly large-scale systems where the cost of any node maintaining 
a precise and up-to-date view of the remainder of the system is prohibitive (or the task 
is impossible). An ANDREA node advertises a set of attributes that describe 
important state of the application node it wraps. This is similar to a management 
information base (MIB) in traditional management architecture. 

ANDREA nodes interact with one another through delegation relationships. Each 
ANDREA node: (1) states a policy describing constraints on the attributes of other 
ANDREA nodes from which it will accept delegated tasks; and (2) describes 
constraints on the kinds of tasks it will accept. This is known as a delegate policy. 
Meanwhile, if an ANDREA node seeks to delegate a task, it states constraints on the 
attributes of possible delegates. This is called a delegator policy. A delegated task is 
given to all ANDREA nodes in the system and only those nodes for which, within a 
time window specified by the delegator: (1) the delegator’s attributes and the tasks’s 
attributes meet the requirements of the delegate’s policy; and (2) the delegate’s 
attributes meet the requirements of the delegator’s policy. Details of the addressing 
language and underlying mechanism used by ANDREA, called Selective Notification, 
are provided in the work by Rowanhill et al. 4. 

Once an ANDREA node has delegated a task to other ANDREA nodes, there 
exists a loosely coupled management relationship between the nodes, because the 
delegator need not know the name/locations of its delegates. It merely uses the 
“handle” of the management relationship to multicast a communication to its 
delegates. Likewise, a delegate need not know the name/location of its delegator, and 
it need not be aware of any other delegates. It can communicate with the delegator 
using the management relationship as a handle. In addition, temporal coupling 
between nodes is minimized. Delegates can join a relationship at any time during the 
specified time window and receive all relevant communications in the correct order 
upon joining. This management relationship is particularly advantageous for users (or 
other software components) that are “injecting work” into the ANDREA system.  

2.2   Hierarchical Workflow in ANDREA 

Management is affected in ANDREA by defining workflows. A workflow is a 
partially ordered graph of task nodes, and a task can define a child workflow within it. 
A task with an internal workflow represents a composite action. A leaf task is one that 
contains no sub-workflow. A leaf task may be an action, a constraint, a query, or a 
periodic query. Each leaf task of a workflow states an intent, a token from an 
enumerated language known to all ANDREA nodes. A task’s intent can represent any 
delegated entity. A common semantic is that each intent represents a requirement on 
distributed system service state defined as a constraint on system variables. Each 
workflow defines a reason, a token from a global enumerated language stating the 
purpose for the intents of the workflow. Conflicts are detected between the intents of 
tasks on the same blackboard, and resolved through preemptive scheduling based on 
the priority of reasons.  
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An application component can introduce management requirements into a system 
by defining a local workflow to its ANDREA service interface. This workflow is 
managed by the ANDREA system so that tasks and constraints are carried out in the 
right order and delegated to appropriate nodes. Each ANDREA node has a 
conventional hierarchical workflow and blackboard model.   

It is impractical (and non-scaleable) for any single ANDREA node to keep track of 
all nodes in the system and thus be able to precisely determine which nodes have or 
have not complied with the intended action of a given workflow. Instead, delegates  
in a workflow keep aggregate determinations, in the form of histogram state. When  
a delegated task is completed (based on this aggregate state),  the delegator rescinds 
the delegation. The management relationship that had linked the delegator to the 
delegates is terminated and eliminated and thus again fully decoupled. 

2.3   Programming ANDREA 

ANDREA has a unique programming model in which system configuration tasks 
(which are part of the workflows) are represented as constraints. The set of managed 
resources to which a constraint applies is described by a set of properties of the 
resource. Each system administrator (or automated system administration component) 
can issue “constraint tasks”, i.e. system configuration workloads that put the system in 
a state with certain properties. ANDREA will configure the system and attempt to 
maintain the given constraints. Conflicting constraints are typically resolved by a 
priority scheme among administrators. For example, suppose an administrator issued 
the constraint that no low priority jobs should be run on a set of Grid nodes. 
ANDREA will reconfigure the selected nodes, and then continue to make sure this 
constraint is upheld. So, if another administrator issued a command that no medium 
priority jobs should be run on an overlapping set of nodes, ANDREA can configure 
the system to maintain both constraints (i.e., no low or medium priority jobs). 
However, if a command to allow low priority jobs is received, there is a conflict since 
both constraints cannot be simultaneously met.  

3   Using ANDREA to Reconfigure the Grid in Response to 
Intrusion Detections 

While we believe ANDREA can be used for many aspects of day-to-day Grid 
management, our focus in this effort is to use ANDREA to reconfigure the Grid in 
response to intrusion detections. We generically describe the scenario as follows: an 
operator has manually discovered a rootkit on a node in the Grid and relays this 
information to the Grid control center, which uses ANDREA to put the system into a 
number of different configurations on a per-node basis1: 

• Normal – nodes are accessible to all user classes 
• Shutdown – no users are allowed to access nodes (since they are considered 

infected) 

                                                           
1 In the future, we will use the sensing capabilities of Willow to discover such rootkits and 

automatically engage ANDREA (with human confirmations as warranted). 
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• No low priority – no low priority users are allowed access to nodes. Eliminating 
this class of resource consumption reduces the dynamics of the Grid so that it is 
easier to assess the extent of the intrusion, without shutting down the entire 
Grid.  

• Only high priority – no low or medium priority users are allowed access to 
nodes. If "no low priority" is not sufficient, this configuration further simplifies 
the Grid environment while still offering some level of service.  

• Patch nodes – in the case that the rootkit is exploiting a known vulnerability, 
grid system administrators can use ANDREA to take nodes identified as 
vulnerable offline, patch them, and bring them back online. This will cause a 
percentage of the Grid nodes to be unavailable for a time, but will allow other 
nodes (ones without the vulnerability that allowed the break in) to remain 
operational. 

While this may seem like a simple scenario (and a simple “shutdown” solution), it 
is an ideal illustrator of the tasks for which ANDREA was designed. Every node in 
the system must be informed of the vulnerability and (as we shall see) ANDREA can 
provide a probabilistic description of “the grid’s” response (i.e. “the grid is now 90% 
patched”). While an equivalent effect of avoiding the vulnerable nodes may be 
achieved via the manipulation of scheduling policies in either a single global queue or 
via coordination of scheduling policies on multiple queues in the Grid, we believe that 
this is not a reasonable approach for a number of reasons. First, it is extremely 
unlikely that there is a single queue, and coordination of multiple queues requires 
sites to give up site autonomy, which is unlikely (in contrast, as will be discussed in 
Section 5, ANDREA can be configured to respect site autonomy). Second, we require 
a mechanism affecting all Grid access, not just access to a job submission queue. 
Third, ANDREA is part of the larger Willow functionality, which will in the longer 
term automate some of the sensing and control-rule aspects implied here. Solely 
manipulating queuing policies offers no automated solution for integrating the 
discovery of a rootkit and an appropriate reaction.       

In the remainder of this section, in the context of intrusion detection and reaction, 
we describe how to deploy ANDREA for the Grid (Section 3.1), the Grid-specific 
ANDREA workflows (Section 3.2), and the actual mechanisms executed on the 
controlled nodes to reconfigure the Globus Toolkit v4 Grid (Section 3.3). 

3.1   Deployment of ANDREA for the Grid 

An ANDREA deployment consists of a set of ANDREA nodes, which are processes 
that can receive configuration messages, enforce constraints, and report status. It is up 
to the ANDREA system deployer to determine how many managed resources are 
controlled by an ANDREA node, but typical deployments have one ANDREA node 
per machine. In the experiments reported in this paper, each deployment of GT4 on a 
machine was managed by a single ANDREA node. Each ANDREA node uses an 
XML deployment descriptor for the various supported system configurations and the 
possible conflicts between those configurations. (The mechanism by which ANDREA 
maps these labels into actual operations on the Grid is discussed in Section 3.3.) From 
this XML description of the supported configurations, ANDREA can infer that “patch 
nodes” mode conflicts with the “shutdown”, “no low priority” and “only high 
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priority” modes since they are subsets of “normal” mode. Configuration tasks, i.e. “go 
into normal mode”, are issued with an attached priority that is used to resolve 
conflicts. In this way, configuration tasks can be dynamically prioritized. The current 
security model in the ANDREA implementation still requires receiver-side 
authentication and authorization checks to fully ensure that a received command is 
legitimate. 

3.2   Using ANDREA Workflows for Configuring the Grid  

System administrators (and potentially automated entities) inject workflows into their 
ANDREA nodes to manage and configure the Grid. Some of the tasks in a given 
workflow are delegated from the controller to all ANDREA nodes with particular 
attributes and acceptance of the controller’s attributes, as described previously. The 
result is the arrival of a task at a set of ANDREA nodes managing Grid components, 
with the members of the set based on the policies stated at controllers and managers. 
Once an ANDREA node receives a task, it carries it out by actuation of the managed 
Grid components.  

The status of the action, constraint, query, or periodic query is periodically sent 
back to the task’s delegator on the order of seconds. ANDREA’s distributed 
algorithms perform aggregation of this status information from all other delegates of 
the task.  The command issuer can use these status updates to make determinations 
about the overall system state based on the percentage of nodes that have responded. 
ANDREA includes mechanisms to map task status histograms to representation of the 
task’s state at the commander. For example, the Grid may be considered to be in a 
certain configuration when 90% of the nodes have replied that they are in that 
configuration, as 100% responses may be unlikely or unnecessary in large systems, 
depending on the situation.   

Once a task is received by an ANDREA node, it must decide what action to take. 
The actual action an ANDREA node takes depends on what other active tasks are 
already being enforced. For example, if an ANDREA node is enforcing a “normal” 
constraint and a task arrives to enforce the “patch nodes” constraint, the net effect will 
depend on the priority of the “patch” command. If it has a higher priority then it will 
be enforced in place of the “normal” configuration. However, if it has a lower 
priority, it will not be discarded. Instead the “patch” command will remain on the 
ANDREA node’s blackboard. If the “normal” configuration is withdrawn by its 
issuer, then the highest priority commands still on the blackboard that do not conflict 
with one another will be the ones that are enforced.   

3.3   Integration of ANDREA with GT4 (A2GT4) 

Although each local ANDREA manager knows which constraints apply to the 
resources it manages, it requires a resource- (or application-) specific mechanism to 
enforce those constraints. In our system, enforcement is performed by a system 
component called ANDREA-to-GT4 (A2GT4). A2GT4 is the mechanism by which 
ANDREA can alter the behavior of Globus Toolkit v4 and also includes an actuator, 
plugged into each ANDREA node’s blackboard, defining how and when to run the 
mechanisms based on tasks on the blackboard and their scheduling. 
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We developed A2GT4 based on particular scenarios. Each new scenario is additive 
to the existing A2GT4 mechanism (note that ANDREA itself handles conflicts 
between concurrent re-configurations). With regard to the specific intrusion-detection 
scenario, this means that we had to map each of the five identified states ("normal", 
"shutdown", "no low priority", "only high priority", and "patch nodes") into a 
particular configuration of the GT4 services. In these experiments, the A2GT4 
mechanisms manipulate authorization mechanisms to control the overall performance 
of a GT4 services. We chose this approach because the scripts were easy to debug, 
easy to confirm correctness, and not prohibitive of more sophisticated approaches 
necessary for different scenarios (which are under development). 

4   Experiments 

To evaluate the performance of our Grid management methodology, we deployed 15 
instances of the Globus Toolkit, each managed by a local ANDREA node, on 768 
nodes of the NCSA IA-64 TeraGrid cluster. Each cluster node had two 1.3-1.5 GHz 
Intel Itanium 2 processors and 4-12 GB of memory, with a switched Gigabit Ethernet 
interconnect. Excluding approximately 1.1% of the instances that failed to correctly 
start up for various reasons, this single NCSA cluster allowed us to simulate a much 
larger Grid of 11,394 ANDREA nodes and Globus Toolkit instances (Note that it was 
a “simulation” because it wasn’t an actual wide-area Grid deployment, although we 
truly had 11,394 independently-configurable Globus deployments in our 
experiments). 101 of the computers each ran a Selective Notification node, forming 
an overlay network in the form of a tree with a branching factor of 100. Each of the 
ANDREA nodes was connected as a leaf to this overlay network, such that each lower 
level Selective Notification dispatcher supported roughly 115 ANDREA nodes. The 
ANDREA controller ran on a machine at the University of Virginia. 

We performed three experiments using the attacker/intruder scenario introduced in 
Section 3, with normal, no low priority, only high priority, and patch node 
configurations. For each experiment, we issued configuration commands from the 
ANDREA controller at UVA and logged the results at UVA and NCSA. At UVA, 
ANDREA logged the times at which commands were issued to and acknowledged by 
the ANDREA nodes at NCSA. At NCSA, the A2GT4 scripts logged each state 
change to the cluster’s file system. Over 200,000 events were recorded. 

4.1   Experiment 1: Shutdown 

The first experiment evaluated the ability of the ANDREA manager to shutdown all 
Grid nodes in the event of an attack or break-in. An ANDREA controller issues the 
command for all nodes to enter the shutdown state, prompting all ANDREA nodes to 
run the A2GT4 shutdown script, which denies access to all Globus Toolkit services 
on that node. 

In Figure 1, we see that within seconds of issuance of the Shutdown command 
from UVA, the A2GT4 shutdown scripts begin running at NCSA, with all nodes 
shutdown 26 seconds after the command was issued. ANDREA confirms the state 
change of most nodes after 16 seconds, and all 11,394 nodes are confirmed shutdown 
after 26 seconds. 



 Dynamic System-Wide Reconfiguration of Grid Deployments 267 

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30

Seconds after Shutdown command issued

N
u

m
b

er
 o

f 
G

ri
d

 n
o

d
es

 
sh

u
td

o
w

n

Nodes executing local shutdown procedure Nodes that Andrea believes are shutdown
 

Fig. 1. Testing Basic ANDREA Control of GT4 Grid Nodes 

4.2   Experiment 2: Shutting out User Groups/Classes to Enable Better Damage 
Assessment 

The second experiment evaluates the ability of ANDREA state changes to control 
Grid jobs. We periodically submitted batches of Globus WS-GRAM jobs using three 
different user credentials, where the users and their jobs are prioritized as low, 
medium, and high. As the Grid comes under attack, an ANDREA controller decides 
to limit access to medium and high priority users only, to reduce the number of 
accounts to monitor while continuing to serve higher priority customers. As the 
intruder/attack continues, a separate ANDREA controller decides to limit access to 
only high priority users to further lock down the system. 
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Fig. 2. Incrementally Eliminating Classes of Users 

Figure 2 shows the number of high, medium, and low priority jobs running during 
the experiment. The number of running jobs follows a cyclical pattern, as a new batch 
of jobs is submitted while the previous batch is completing. The first ANDREA 
controller issued the command to deny access to low priority jobs 80 seconds into the 
experiment. Each ANDREA node ran the A2GT4 NoLow script, killing all running 
low priority jobs and updating the Globus authorization mechanism list to deny access 
to low priority users. 24 seconds later, all low priority jobs had stopped running and 
ANDREA acknowledged the change to the no low priority state. While the low 
priority user continued to attempt job submissions, they were all denied due to the 
access control change. At 275 seconds into the experiment, the ANDREA manager 
issued the command to deny access to both low and medium priority jobs. ANDREA 
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ran the A2GT4 HighOnly script, killing all running medium priority jobs and updating 
the Globus access control list to allow access to only high priority users. 16 seconds 
later, all medium priority jobs had stopped running and ANDREA acknowledged the 
change to the only high priority state. These results demonstrate how ANDREA 
efficiently propagated state changes initiated by the manager at UVA across the 
11,394 nodes at NCSA and the A2GT4 scripts effectively reconfigured the Grid 
environment on the nodes. 

4.3   Experiment 3: Patching Vulnerable Nodes 

The first two experiments evaluated the functionality and performance when the 
ANDREA manager issued constraints defining new states that the nodes should 
maintain, such as shutdown, no low priority, or only high priority. The third 
experiment evaluates ANDREA actions, which are commands that are executed once 
per node, and also demonstrates the use of ANDREA's selective notification. 
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Fig. 3. Applying a Patch to Only Red Hat 7.3 Nodes 

We artificially configured 20% of the ANDREA nodes to report their operating 
system to be RedHat 7.3, while the other nodes report other operating systems. In this 
scenario, we assume that the operator determines that the specific compromise arose 
as a result of a vulnerability in Red Hat 7.3, and the operator want to use ANDREA to 
issue an instruction to only those vulnerable nodes to take themselves offline, apply 
the patch, and then re-register with the Grid (i.e., come back on-line). Figure 3 
illustrates that it took about 7 seconds for all 20% of the nodes (approx. 2250 nodes) 
to initiate the patch command within A2GT4. We simulated that the operation of 
retrieving the patch (the patch itself is not contained in the control signals provided by 
ANDREA, although a URL could be included), installing the patch, and then 
rebooting (which subsequently brings the Grid node back on-line) took 3 minutes in 
its entirety. Hence, these patched Grid nodes began appearing back on-line at 180 
seconds into the experiments; all nodes were back on-line and reported to ANDREA 
within 13 seconds after that.  While not directly shown in Figure 6, ANDREA's 
Selective Notification facilitated the "addressing" of the Patch command to only those 
nodes that published the property of being Red Hat 7.3 -- the actual destination (IP 
Address, port) of relevant nodes was handled by ANDREA. Only simulated Red Hat 
7.3 nodes received such a command.  
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5   Discussion 

We believe that our experiments show a valuable approach to the semi-real-time 
management of large-scale Grids. However, some discussion of the results is 
warranted. First, there is a question of the base-line against which these results can be 
compared. Unfortunately, we are aware of no Grid systems that actuate changes on 
system components in the automated manner at the scale of which ANDREA is 
capable. Intuitively, it seems that being able to issue re-configuration commands 
(such as “shutdown”) to over 11,000 receivers in ~25s seems not unreasonable for 
many application domains (while our experiments take place in a simulated 
environment of millisecond-latency between nodes, we believe that in a real wide-
area deployment, network propagation delays will not have an overwhelming effect 
on these durations, as the dominant effect is based on the algorithms and topology of 
the ANDREA control structure, hierarchy, and fan-out as used in these experiments).   

Second, there is the question of the cost of ANDREA’s ability to scale. In other 
words, ANDREA’s ability to reach large numbers of nodes, addressed by properties, 
and aggregate responses from those nodes may make it inappropriate for smaller scale 
communications tasks. We are not claiming that ANDREA should be used as a 
replacement for current grid communication mechanisms. Instead, we wish to use 
ANDREA for the task of managing large-scale distributed systems such as Grids and 
ANDREA’s performance should be viewed in this context. While ANDREA would 
undoubtedly be slow when compared to a single grid communication (e.g., typically a 
web service call), its performance is reasonable when compared to 11,394 such calls.   

In general, we recognize that there are clearly a number of issues that must be 
addressed before our approach is ready for an operational Grid like the TeraGrid:  

• The scope of the A2GT4 mechanism must be expanded to all functionality of the 
Grid node beyond those capabilities provided by GT4 (e.g., SSHD).  

• A more comprehensive mechanism to put the managed node into each particular 
state must be developed. For example, the "shutdown" mechanism we 
implemented is of negligible value in the unlikely event that a vulnerability in the 
GRAM service allowed an attacker to bypass the GT4 authorization mechanism!  

• A comprehensive suite of use-cases that cover the majority of day-to-day 
operations must be developed and reflected in A2GT4 and the ANDREA 
workflows. For example, we are currently investigating a scenario in which a high-
importance operation that relies on the Grid (such as tornado prediction) is not 
meeting its soft deadlines. The corrective actions to take, particularly at the same 
time as an event such as an ANDREA reaction to intrusion detection, is the subject 
of on-going research in this project.  

• The security of ANDREA must be further analyzed and improved. Certain 
operations in ANDREA are not mutually authenticated, instead relying on a trust 
model that in some cases oversimplifies the actual requirements of a TeraGrid-like 
environment. In addition to analyzing and correcting for vulnerabilities within 
ANDREA itself, we would like to leverage the authentication infrastructure of the 
Grid itself, namely GSI 16.  
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• The entire functionality of Willow (including the sensing and control logic) must 
be applied to a Grid setting, leveraging existing solutions. For example, regarding 
the sensing capability/requirement of Willow, we believe that existing tools such as 
INCA 5 could be leveraged as the foundation for such operations. 

In our experiments, for simplicity we had a single control center, which is not 
unlike the Operations center of the OSG or the TeraGrid. But Willow/ANDREA 
supports multiple "control loops", such as a "VO controller" and an "Enterprise 
controller”. Ultimately, the decision regarding what to enact (even in the presence of 
conflicting commands) lies with the controlled nodes. Willow/ANDREA's control 
mechanism accommodates sites not executing commands requested of them.  

It is clear that ANDREA can be used to manage the Grid, but one can reasonably 
wonder about the management of ANDREA itself! Currently, the assumption is that 
ANDREA is running on a dedicated, reliable network of reliable machines. This is 
plausible for most situations but clearly not applicable for the broader Internet itself. 
It is the subject of future work to make ANDREA itself manageable. 

6   Related Work 

There exist many hierarchic management architectures in the literature, some 
commercial, others experimental. The size of the managed systems and the scope of 
management vary with architecture.Applying the model of Martin-Flatin et al 6, we 
can describe management architectures by the nature of their delegation capabilities. 
Early management architectures, such as traditional SNMP based systems 7, apply 
centralized control.  SNMP-based systems have evolved to apply management 
hierarchy (e.g., SAMPA 8, Tivoli 9, and Open Systems Interconnection (OSI) 
standard 6. In each, the power of late-bound, run-time delegation service is increased, 
allowing managers to delegate authority through commands over otherwise static 
infrastructure in static hierarchical configurations. These architectures assume 
capability divided into static, implicit hierarchy assigned at system design time. 

Many of the tools of large-scale Grid deployments can be utilized in 
Willow/ANDREA. Existing monitoring systems, such as the Globus Toolkit MDS 11, 
the TeraGrid INCA system 5, and MonALISA 12, could provide sensor data to 
ANDREA for analysis. For software configuration management of Grid systems, 
ANDREA could interface with package managers such as Pacman 14 and GPT 15 to 
(for example) patch vulnerable software versions. ANDREA’s delegation policies, 
matching tasks to nodes, are similar to Condor’s ClassAd Matchmaking 16, though 
we believe ANDREA’s mechanisms for resolving conflicting constraints are more 
powerful. The Hawkeye monitoring system 13 builds on Condor’s ClassAd 
capabilities. Evolving grid/web service standards are important for the management of 
large-scale grids. WS-Notification 18 and WS-Eventing 19 define message formats 
for the delivery of asynchronous messages. ANDREA’s selective notification system 
could be modified to send messages that are consistent with these standards.     
ANDREA could also use WS-Management 20 and WSDM 21, specifications that 
define a standard language used for management of web services.   
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7   Conclusion 

For security-related events such as the required patching of vulnerable Grid software, 
the ad hoc process of human operators using email and telephones can take too much 
time, is error-prone and tedious, and thus is unlikely to completely work. The 
Willow/ANDREA approach provides powerful mechanisms for dynamic 
reconfiguration of Grid nodes in the presence of intruder detections. We have 
demonstrated, through the development of A2GT4 and experiments involving 11,394 
Globus Toolkit v4 deployments, that ANDREA can effectively enact a variety of 
different holistic Grid reconfigurations to limit the vulnerabilities. We believe that 
this work is an important first step toward automating the general day-to-day 
monitoring and reconfiguration of all aspects of Grid deployments.  
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Abstract. The grid security architecture today does not prevent certain 
unauthorized access to the files associated with a job executing on a remote 
machine. Programs and data are transferred to a remote machine for completing 
staging jobs. Footprints may remain on the machine after the programs and data 
are deleted from the remote machine. Anyone with super user privileges can 
access these footprints. In this paper, we explore the problem of unauthorized 
access to programs and data, supporting it with experiments carried out using 
the Globus toolkit. After showing that programs and data are at risk, we also 
discuss ways for secure deletion of data and programs on the remote machine. 

1   Introduction  

One of the goals of any security architecture is confidentiality, which ensures access 
to computer resources must be authorized. Grid security research and development 
currently revolves around developing better solutions to address the following 
requirements: Authentication, Secure Communication, Effective Security Policies, 
Authorization, and Access Control [11]. For example, Globus Grid Security 
Infrastructure (GSI) provides X.509 certificates with the use of TLS (Transport Layer 
Security) protocol for mutual authentication and delegation. GSI by default provides 
unencrypted communication but can be configured to use encryption for 
communication [2, 3, 13].   

The policies for access control and authorization as applied to grid computing 
today affect access to resources by authenticated grid users abiding by authorization 
policies on the resource [11]. Other policies define the resource usage and security 
provided by the resource providers in the VO (Virtual Organization) [12].  Access to 
grid resources, which are spread across geographical and political boundaries, is 
based on a trust relationship between the resource providers and the users. Thus both 
have to stick to the security policies agreed upon by both parties. Before a grid user 
accesses any grid resource, the user needs assurance that the machine is not 
compromised and his data and programs will not be stolen [10]. However, the users 
and providers may not be aware of the system being compromised or having internal 
breaches based on some users having administrator privileges. User data is at risk if 
there is any significant compromise of any system on the grid.  

To our knowledge, no grid security architecture deals with securing a grid user’s 
data and programs on the remote machine from any user that has super user 
privileges; there are no policies governing this type of confidentiality requirement. In 
other words, we have found no grid security policies that deal with confidentiality of 
user data and code on the grid system with respect to super users. Although super user 
related risks include insider threat, these risks also include risks associated with any 
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hacker that compromises a component of the grid system to an extent that provides 
super user access. In this paper, we discuss this confidentiality issue and show how 
the programs and data of a grid user are in jeopardy on a remote machine.   

An experimental grid was set up to search for the footprints of a grid user’s data 
and program on the remote machine. Experiments were carried out using the Globus 
tools for job submission on a grid implemented with the Globus toolkit version 4.0.3. 
Physical memory and secondary storage on the remote machine were examined for 
footprints using standard digital forensics tools. The results indicate when a grid 
user’s program and data on the remote machine can be at risk.  We then discuss some 
ways to prevent this unauthorized access in certain scenarios or to at least limit the 
time frame during which such access could occur.  

The paper begins in Section 2 with explanation of what can be extracted by reading 
secondary storage and physical memory on a grid system. Then the paper describes 
details of our experimental configuration in Section 3. Section 4 describes the 
experiments carried out to find footprints of the grid user’s data and programs in 
secondary storage and physical memory. Section 5 explains how a grid user’s data 
and programs can be deleted from secondary storage and outlines a plan for how to 
remove them from physical memory. The paper finally concludes after a brief 
discussion of future work.  

2   Memory and Storage Analysis 

Data Lifecycle Management (DLM) is an important security requirement for Grids [8, 
13]. DLM is the process of managing data throughout its lifecycle from generation to 
its disposal across different storage media for the span of the entire life of the data.  
The data lifecycle is the time from data creation to its indefinite storage or deletion. 
There is a need for a security system that protects the grid user’s data from all other 
users, even the super user. In order to determine whether current grid systems provide 
this protection, we need to analyze the memory and storage on grid systems. Ideally, 
backups and other storage media should be considered. However, here we focus on 
the standard memory and storage on grid systems. We recommend encryption of data 
when it is in storage, so that all backups will also be more secure. Next, we show how 
such analysis for memory and secondary storage is performed. 

2.1   Secondary Storage Analysis  

Secondary storage of a machine on a grid system can be analyzed to locate data and 
programs. A super user can read any grid user’s data and programs as the current 
security systems don’t restrict the super user’s access. Based on the method used for 
deleting data and programs (<fileCleanUp> attribute of job description language or 
the UNIX rm command), files are just deleted from the file system. Deletion of files 
typically entails just removing the metadata and adding the storage space to the 
available space list. This deletion is not a secure deletion of files on the remote 
system. These files could be temporary files, executables, program files, data files, 
output files, stdout, or stderr.  

The normal deletion of files from secondary media is not secure, as the file 
contents are still stored on unallocated space of the secondary storage. The deleted 
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files can be read by a variety of software or utilities (e.g., dd command of UNIX) that 
can read raw images of the storage. Due to the nature of grid systems, multiple users 
can be mapped to a single account on local machine. Therefore, there it may be 
possible for the users to read footprints left by previous users.  

For securely deleting files from secondary storage it is necessary to overwrite that 
data with some pattern on the secondary storage. The number of times the data of the 
file is overwritten determines whether the data from the deleted space can be 
extracted [5]. The required level of confidentiality of the file to be deleted determines 
the number of times it has to be overwritten. There are many free tools and utilities 
that securely delete files from secondary storage. An example is the UNIX command 
shred that deletes files securely.  

Another place to look for footprints is swap space, which is used for swapping out 
inactive jobs when system resources are low. With the size of RAM increasing, there 
are fewer possibilities to find much on the swap space, unless the system is heavily 
loaded [9]. Virtual memory provides the same opportunity. 

Slack space is another place to look on the disk, which can be used to read 
information, which was previously written to the disk. Slack space is part of an 
allocated file that has not yet been written to and thus retains the old data (this is at 
the end of the last block of a file).  

Overwriting is one method to prevent reading deleted data using programs that 
read raw data. However another analysis method, magnetic force microscopy (MFM), 
can still read overwritten data. MFM is a technique based on imaging magnetization 
patterns with high resolution and minimal sample preparation [6].  Although this 
technique can be used in forensics, it requires access to the physical media and this 
limitation would protect the data from hackers, at the very least.  Further, most super 
users do not have access to MFM, so we do not consider this a significant risk for grid 
users unless there is a critical forensic analysis in progress. 

Thus, it appears that analysis of hard drives on a grid system can let anyone with 
super user privileges read data and programs or their footprints.  In particular, our 
experiments assess how much can be found and under what conditions. 

2.2   Physical Memory Analysis  

Physical memory analysis can be used to extract text and executable files, detailed 
information about terminated and executing processes, open network connections, 
and passwords [1]. Some confidential information access may prove to be fatal for a 
grid user, as this information can be used on behalf of that user on other sites. The 
physical memory can be analyzed to read raw data and meta data. Raw data is the 
execution code or data section from a memory mapped file or temporary data 
structures such as the stack used by the executing processes.  Meta data is the data 
related to memory structures of page tables, processes, etc.  

Physical memory (RAM) on Linux machines can be read using /dev/mem or 
/proc/kcore with administrator privileges. /dev/mem is a device file that mirrors main 
memory and the byte offsets are interpreted as the memory addresses by the kernel. 
/proc/kcore is an alias to the RAM. When we read from /proc/kcore the kernel 
performs the necessary memory reads. The output of kcore is in Executable and 
Linkable Format (ELF) and can be read using gdb, whereas the output of /dev/mem 
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can be read using an ascii editor or examined by running strings on it. The 
System.map (the name depends on the kernel version) contents provide a map for 
addresses of important kernel symbols, which can be used to find the addresses of 
system calls, the address of memory attached to a process, etc. [1]. The physical 
memory contents are not erased after the process ends, but are stored as free memory 
until it is overwritten (as shown in Experiment III) or the power is turned off [9]. 
Thus an image of physical memory can give details related to the process and its data.  

3   Experimental Grid Setup 

A grid with two machines connected to each other using Globus Toolkit version 4.0.3 
with default settings was configured [3]. Details of the grid environment (machines 
Grid0 and Grid1) are: 

1) Before installing the globus toolkit, the prerequisites were installed on both of the 
machines. The basic prerequisites installed are j2sdk-1.4.2.13 and Apache Ant 1.6.5. 

2) For consistency, Fedora Core 5 was installed on both machines. The Fedora Core 
5 kernel (2.6.19) was patched to enable administrator access to /dev/mem. 

3) Grid0 has 512 MB of system memory and a 30 GB hard drive. Grid1 has 256 MB 
of system memory and a 40 GB hard drive. 

4) The minimum set of users is created on both machines. Grid0 has globus, 
postgres, and student in addition to root. Grid1 has globus and student1 in addition 
to root. The user student1@Grid1 maps to student@Grid0 when executing jobs. 

5) The PostgreSQL database was installed on Grid0 to support the RFT (Reliable 
File Transfer). RFT is a web service that provides scheduling properties for data 
movement, for which it requires a relational database to storing states [3]. 

6) Tomcat was installed on Grid1 to support WebMDS (MDS - Monitoring and 
Discovery System), which is a web based interface for viewing information about 
grid services. 

7) A Simple CA certificate authority was set up for signing user certificates on Grid0 
to support grid operation. 

8) Firewall settings were changed to allow tcp traffic for ports 8443 (GRAM and 
MDS), 2811 (GridFTP), and 5432 (PostgreSQL). A range of ports were added on 
both machines for temporary connections to PostgreSQL for RFT transfers. 

3.1   Job Submission and Execution 

This project uses WS - GRAM for job submission and management. Job submission 
to WS-GRAM requires a valid X.509 proxy certificate. WS GRAM has many 
command line clients to submit jobs, of which we use globusrun-ws, the official 
command line client, to submit jobs. The jobs submitted are staging jobs specified in 
a job description file using the standard job description XML schema.   

4   Analysis on the Experimental Grid Setup 

The following sets of experiments were carried out to find footprints of the grid user’s 
data and programs that reside in the secondary storage and physical memory. Each 
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experiment was run numerous times with results always being consistent with the 
observations presented below. In the tables that follow for each experiment, the 
approximate number of times the experiment was run is listed along with the 
summary of results. Any super user can access any grid user’s data and programs. 
Such files can be accessed (until they are overwritten) even after the files are deleted 
by a grid user.  

4.1   Experiment Set I 

The experiments carried out consist of executing a simple Perl script on the remote 
machine. This Perl script (Appendix I) creates a temporary file and writes easily 
identifiable strings in the file and then deletes the file using the UNIX rm command. 
The job was submitted from Grid1 to Grid0 using the job description file (Appendix 
II). During the execution of that script on Grid0 a dump of the physical memory 
(/dev/mem) was taken using the standard forensic tool dd on an external hard drive. 
After the job was executed, an image of the hard disk (/dev/hda) on Grid0 was taken 
using the dd command. Then the dumps were searched using the UNIX command 
grep to find the strings that were written in the file. 

Observations. The experiments of remote execution were performed many times to 
observe and verify consistent behavior depending on the size of the file created by the 
Perl script on the remote machine (Grid0).  

Small Files. Small files (with size around 24MB) created by the Perl scripts were 
tested. A search on the secondary storage dump did not reveal the file created by the 
Perl script, although a search on the physical memory dump showed the contents of 
the file.  

Large Files. Large files (with size greater than 40MB) created by the Perl script were 
tested. A search on the secondary storage as well as in physical memory showed the 
contents of the file. 

File Risk Summary. In summary, Experiment Set I shows the following. 
 

File 
size 

# 
Experiments 

Files found in 
secondary storage 

Files found in 
physical memory dump 

~ 24 
MB 

90 0% 100% 

> 
40MB 

75 100% 100% 

 
As an indication of the degree of security risk detected, let the risk associated with 

a file being found in storage be 70% risk and the risk associated with a file being 
found in the physical memory dump be 30%.  This is an arbitrary allocation of risk, 
but it illustrates the point that the risk of information being recovered is higher in 
storage than it is in memory, as memory is more volatile. Further, when the data is 
located in both, methods can be used on either to recover the information so the risk  
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of both recovery approaches is present. Note that this discussion does not consider all 
security risks, e.g., it does not account for the security risk associated with 
transferring data across the Internet. However, with these caveats, we arrive at the risk 
analysis graph in Figure 1, where the percentage of risk is shown on the y-axis and 
risk associated with different security issues are shown are the x-axis. 
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Fig. 1. Security risk using rm for file removal 

Other Findings. The Perl script submitted was found in the secondary storage dump 
of Grid0. The contents of files written by earlier scripts were found on the physical 
memory and secondary storage dump. 

4.2   Experiment Set II 

The experiments carried out consist of executing a modified version of the Perl script 
used in Experiment Set I. The modified Perl script replaces the UNIX rm command 
with the UNIX shred command to securely delete the file it creates on the remote 
machine. Note that, as a reviewer pointed out, the secure deletion of files is based on 
the operating system. Here were we are using a built in UNIX command. If the 
operating system does not have a command in the standard distribution, then we 
would recommend an operating system extension or add on. 

During the execution of that script on Grid0, a dump of the physical memory 
(/dev/mem) was taken using the dd command on an external hard drive. After the job 
was executed, the image of the hard disk (/dev/hda) on Grid0 was taken using the dd 
command. Then the dumps were searched using UNIX command grep to find the 
strings that were written in the file. 
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Observations. A search of the secondary storage dump did not show the file created 
by the Perl script but a search on the dump of physical memory did find the contents 
of the file. A search on the secondary storage dump showed the existence of the Perl 
script that was submitted. The execution of the Perl script takes a long time because 
of overwriting the storage space many times (25 times as a default number) with the 
shred command.  For many users, the number of overwrite iterations could be 
significantly lower and still provide adequate security. 

File Risk Summary. In summary, Experiment Set II shows the following. 
 

File 
size 

# 
Experiments 

Files found in 
secondary storage 

Files found in 
physical memory dump 

~ 24 
MB 

60 0% 100% 

> 
40MB 

45 0% 100% 

 
Using the same indications of the degree of security risk detected, we arrive at the 

risk analysis graph in Figure 2. 
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Fig. 2. Security risk using shred for file removal 

4.3   Experiment Set III 

The experiment carried out consisted of adding the following script [9] to the Perl 
script used in Experiment Set I and creating a new script with just the following lines 
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of code. This script attempts to overwrite all accessible user memory. These files 
were submitted for execution on Grid0. After the job was finished, the dump of 
primary memory was taken on the external hard drive. Then the dump was searched 
using the UNIX command grep to attempt to find the strings that were written in the 
original file. 
 

for (;;) { 
        $buffer[$n++] = '\000' x 4096; 
        } 

Observations. In both cases (the combined scripts and the separate scripts), the 
process was killed after some time but the physical memory dump showed the 
memory was overwritten with \000. Thus the strings, which were originally written in 
the file, were overwritten by \000 preventing the original strings from being shown.  

File Risk Summary. In summary, Experiment Set III shows the following. 
 

File 
size 

# 
Experiments 

Files found in 
secondary storage 

Files found in 
physical memory dump 

~ 24 
MB 

10 0% 0% 

> 
40MB 

10 0% 0% 
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Fig. 3. Security risk using shred and the buffer erasing script for file removal 
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Using the same indications of the degree of security risk detected, we arrive at the 
risk analysis graph in Figure 3. 

5   Secure Deletion  

In order to overcome some of the security risks that have been illustrated in this 
paper, we now present some simple deletion methods that reduce these dangers. 

5.1   Secondary Storage 

Secure deletion methods depend on the operating system and file system on the 
remote machine. Securely deleting the code and data from the hard drive on a Linux 
machine with a default Linux file system can be is done using the shred command (as 
shown in the experiments). In the case of Windows machines, there are no such 
included commands that securely delete files. Thus, in case of remote machines 
having Windows, the grid user should make sure there is secure file deletion software 
installed. If no such software is installed, the user should in addition to sending the 
files for the job, send an executable to be used to securely delete files that were 
transferred or created. There are free software and utility programs (e.g., sdelete, 
eraser, cipher, etc.) available for Windows that can be used to securely delete the data 
and code.  Each of these scripts works in the Windows operating system framework, 
but extends the standard capabilities of the operating system. 

5.2   Physical Memory 

Removing the data files from physical memory can be dependent on the memory 
management system of the underlying operating system. One naive way to erase the 
data/code from memory is shown in Experiment Set III. Even repeated runs of such 
programs as root only changes about 3/4 of the main memory. Such programs do not 
overwrite any of anonymous memory, kernel, or file caches [9]. The best way to 
eradicate everything from physical memory is to reboot the system, but that is not 
possible for a normal user in a grid environment. The naïve method shown tries to 
overwrite as much memory as a process can access and when as it exceeds its limit 
the process is killed by the operating system. This reduces the likelihood of finding 
the data and programs of the grid user in the physical memory. Since the data was 
originally written in the user space, we should be overwriting that same memory with 
this deletion process. However, more experiments are needed to verify this 
assumption and to ensure that data and code are not sometimes stored in anonymous 
memory or file caches. 

Another approach that may be considered is to overwrite all variables in the 
program before termination of the simulation or solution code. This, however, is more 
complicated and we have not experimented with this approach yet. 

5.3   Other Storage 

Note that we have not addressed any backups or offline storage systems.  If the data 
were encrypted, when not in actual use, then with high probability, the data in other 
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storage systems would be encrypted.  The caveat of “with high probability” is needed 
for the case where the data must be decrypted and temporarily put in storage. If that 
occurs, then it would be possible, but not probable, that a backup would occur while 
the data was stored in an unencrypted form.  

If the unencrypted data is only in memory, and never put in user storage, then there 
should not be a backup created as systems typically only create backups of files in 
storage, not files in memory. 

In summary, the presence of other storage systems and backups creates an added 
level of security risk for access to the data.  If the data is not encrypted and securely 
deleted, it can be recovered from any of the media on which it is stored. 

6   Future Work 

This work was a side effect of our beginning work on Grid Forensics. In the future, 
we intend to carry out more detailed memory analysis and extend attribution methods 
for use in Grid Forensics. In particular, we will extend our experiments on secure file 
and memory deletion to provide better guidelines for grid user data and code 
protection.  We will also explore the encryption of data while in untrusted file 
systems.   

In addition to memory analysis, other vulnerabilities of the grid systems will be 
studied to inform grid users of the risks to their data and code, as well as for use in 
Grid Forensics. For example, network forensics will be applied to grids in order to 
find other means to collect code and/or data belonging to grid users.  

7   Conclusion   

Currently, it is the responsibility of the grid user to determine whether they wish to 
trust their code and data on a remote file / computer system.  Here we examined what 
risks are associated with the decision to extend such trust. 

In particular, we analyzed the problem of unauthorized access to deleted data and 
program files on a grid system. We have shown that both data and code can be found 
in secondary storage and memory by anyone with super user access. Grid users must 
be made aware of such security loopholes and provided with methods to avoid them. 
We have also illustrated how such unauthorized access can be avoided or limited in 
certain cases.  
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Appendix I: Perl Script for File Creation 

#!/usr/bin/perl 
open ( TMPFILE , ">outputFile" ) || die "cannot open 
outputFile for writing : $!" ; 
for ( $i =0 ; $i < 10000 ; $i++ ) {  

print TMPFILE "5555aaaa5555aaaa5555aaaa5555aaaa\n" ; 
} 

  close ( TMPFILE ) ; 
  `rm -rf outputFile` ; 

Appendix II: Job Description File 

<job> 
  <executable>/usr/bin/perl</executable> 
  <directory>${GLOBUS_USER_HOME}</directory> 
  <argument>my_echo</argument> 

  <stdout>${GLOBUS_USER_HOME}/stdout</stdout> 
  <stderr>${GLOBUS_USER_HOME}/stderr</stderr> 
  <fileStageIn> 
    <transfer> 
      

<sourceUrl>gsiftp://student1@Grid0:2811/tmp/second.pl</so
urceUrl>                  
     <destinationUrl> 
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                file:///${GLOBUS_USER_HOME}/my_echo 
     </destinationUrl> 

    </transfer> 
  </fileStageIn> 
  <fileStageOut> 
    <transfer> 
       
<sourceUrl>file:///${GLOBUS_USER_HOME}/stdout</sourceUrl> 
       <destinationUrl> 
               gsiftp://student1@Grid0:2811/tmp/stdout 
       </destinationUrl> 

    </transfer> 
  </fileStageOut> 
  <fileCleanUp> 
      <deletion> 
            
<file>file:///${GLOBUS_USER_HOME}/my_echo</file> 
      </deletion> 
  </fileCleanUp> 
</job> 
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Abstract. In the business Grid environment, the business relationship
between a customer and a service provider should be clearly defined. The
responsibility of each partner can be stated in the so-called Service Level
Agreement (SLA). In the context of SLA-based workflows, the business
model is an important factor to determine its job-resource-mapping pol-
icy. However, this aspect has not been described fully in the literature.
This paper presents the business model of a system handling SLA-based
workflow within the business Grid computing environment. From this
business model, the mapping policy of the broker is derived. The exper-
iment results show the impact of business models on the efficiency of
mapping policies.

1 Introduction

Service Level Agreements (SLAs) [1] are currently one of the major research top-
ics in Grid Computing, as they serve as a foundation for a reliable and predictable
job execution at remote Grid sites. The SLA is a business contract between a
user and a service provider. Thus, a SLA context represents a business envi-
ronment. In our system of SLA-based workflows [3,4,5,6,7], the user wants to
run a SLA-based workflow, which can be represented in Directed Acyclic Graph
(DAG) form. The user has responsibility to specify the estimated runtime of the
sub-jobs correlating with the specific resource requirements. He also provides
the number of data to be transferred among sub-jobs. In the case of commu-
nication workflows with light communication, the data that will be transferred
between sub-jobs is very small. The main requirement of the user is finishing
the whole workflow within a specific period of time. Figure 1 depicts a sample
scenario of running a workflow on the Grid environment. To ensure the deadline
constraints, sub-jobs of the workflow must be distributed over many high perfor-
mance computing centers (HPCCs) in the Grid. The resources in each HPCC are
locally managed by the software called Resource Management System (RMS).
To ensure that a sub-job can be executed within a dedicated time period, the
RMS must support advance resource reservations such as CCS [2]. As HPCCs
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usually connect with the network through a broadband link, the data transfer of
the workflow with light communication can easily be executed in one time slot
without the necessity to reserve network capacity. In our system, the time slot
that executes the data transfer is right after the slot within which the source
sub-job finished.

Subjob 0
RMS 1

SLA workflow broker

Subjob 5
RMS 1

Subjob 4
RMS 2

Subjob 6
RMS 6Subjob 3

RMS 4

Subjob 1
RMS 2

Subjob 2
RMS 3

Fig. 1. Sample running workflow scenario

Assigning sub-jobs of the workflow to resources requires considering many
constraints such as workflow integrity, on-time conditions, and optimality con-
ditions. To free users from those tedious stuff, it is necessary to have a SLA
workflow broker performing the co-operation task of many entities in the Grid.
The business relationship of the SLA workflow broker with the users and the
Grid service providers will determine the core working mechanism of the broker,
the mapping policy. However, this issue has not been fully considered in most of
the previous works about SLA-based workflows [9,10,11,12,13,14,15]. This paper,
which is belongs to a series of efforts supporting SLA -based workflow [3,4,5,6,7],
will analyze this problem to fill the gap. The paper is organized as follows. Sec-
tion 2 describes the business model and SLOs. Section 3 presents the mapping
policy and Section 4 describes the experiment. Related works are described in
section 5. Section 6 concludes the paper with a short summary.

2 Business Model and SLOs Analysis

2.1 Business Model

The business relationship between entities in the system running the SLA-based
workflow is depicted in Figure 2. There are three main types of entities: end-user,
SLA workflow broker and service provider.

The end-user wants to run a workflow within a specific period of time. The
user asks the broker to execute the workflow for him and pays the broker for the
workflow execution service. The user does not need to know in detail how much
he has to pay to each service provider. He only needs to know the total amount.
This number depends on the urgency of the workflow and the financial ability
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Grid resource
broker for
workflow

SLA workflow

Service
provider 1

SLA subjob

Service
provider 3

SLA subjob

SLA subjob
Service

provider 2

User

Fig. 2. Stakeholders and their business relationship

of the user. If there are problems with the workflow execution, for example the
deadline is violated, the user will ask for compensation from the broker. This is
clearly defined in the Service Level Objectives(SLOs) of the SLA.

The SLA workflow broker takes on the task of a user as specified in a SLA
with the user. It controls the workflow execution. The SLA workflow broker
also has to perform mapping of sub-jobs to resources, signing SLAs with the
services providers, monitoring, and error recovery. When the workflow execution
has finished, it settles the accounts. It pays the service providers and charges the
end-user. The profit of the broker is the difference between boths. The value-add
that the broker provides is the handling of all the tasks for the end-user.

The service providers execute the sub-jobs of the workflow. In our business
model, we assume that each service provider fix the price for its resources at the
time of the SLA negotiation. As the resources of one HPCC usually have the
same configuration as well as quality, each service provider has a fixed policy for
fining SLA violation, for example n% of the total cost for each late time slot.

Concluding, all activities between end-users, SLA workflow broker and service
providers are specified in legally binding contracts (SLAs). We think that the
consideration of business models is important in order to establish incentive
structures for users to consume HPCC services at low risk, and for brokers to
perform efficiently. That means:

– If the broker does not get any monetary compensation for managing the
workflow, there is little incentive for the broker to find a high-quality map-
ping solution. On contrary, it will encourage the broker to find some unreli-
able solutions, increasing its income.

– With the proposed business model, the broker takes responsibility for the
mapping solution. When a failure happens and the workflow does not fin-
ish within the desired period, the user can fine the broker and the broker
would not get compensated. This method allows the user to get a guaranteed
service.

– The described business model frees the user from the hard work of managing
the workflow execution. He only signs an SLA with the SLA workflow broker
and then waits for the result.
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2.2 SLOs Analysis

Based on the analysis of the kind of entities in our model as described in the
previous section, we identified five main SLOs, which ensure a successful execu-
tion of the workflow:

SLO1

Between broker - provider: If the storage usage of the sub-job exceeds the
pre-determination space, the sub-job will be canceled and the broker has to pay
resource reservation cost. The provider has to cancel the sub-job, since otherwise,
other sub-jobs would be affected through less-available resources.

Between user - broker: If the storage usage of a sub-job of the workflow ex-
ceeds the pre-determination space, the workflow will be canceled and the user
has to pay for the cost of the executed sub-jobs. As the wrong estimated sub-job
is canceled, the whole workflow must also be canceled because of the workflow
integrity characteristic.

SLO2

Between broker - provider: If the memory usage of the sub-job exceeds the
pre-determined space, the sub-job will be canceled and the broker has to pay
resource reservation cost. If the memory usage of the sub-job exceeds the pre-
determined space, the data has to be swapped in and out of the harddrive and,
thus, slows down the processing speed and exceeds the specified runtime. There-
fore, the provider has to cancel it.

Between user - broker: If the memory usage of a sub-job of the workflow
exceeds the pre-determined space, the workflow will be canceled and the user has
to pay for the cost of the executed sub-jobs.

SLO3

Between broker - provider: If the sub-job cannot be finished because of com-
puting system failure, the sub-job will be canceled and the provider is fined. This
case happens when the whole system is down. For example, the electric power
or the network link to the Internet is broken.

Between user - broker: If the workflow cannot be finished because of comput-
ing system failure, the workflow will be canceled and the broker is fined. This case
happens when many RMSs are down and the remaining healthy RMSs cannot
execute the sub-jobs of the workflow. In general, the probability of this kind of
problem is very small.

SLO4

Between broker - provider: If the runtime of the sub-job exceeds the limitation
because of a wrong estimation, the sub-job can run some more time slots if there
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are sufficient resource free. The broker has to pay the extra cost for computation.
If there are insufficient resources available, the sub-job will be canceled and the
broker has to pay the cost for the computation.

Between user - broker: If the runtime of a sub-job of the workflow exceeds
the limit because of customer’s wrong estimation and the sub-job is cancelled, the
workflow will be cancelled and the user has to pay the computation cost. If the
sub-job is not cancelled, the broker will change the mapping solution to ensure
the workflow integrity. The user has to pay the extra cost and accept the runtime
delay of the entire workflow.

To check the conditions for this SLO, we have to monitor the entire system.
Therefore, if there is no failure in the computing system and the sub-job finished
late nonetheless, it can be deduced that the user estimated the resources needed
wrongly.

SLO5

Between broker - provider: If the runtime of the sub-job exceeds the limit
because of computing system failure, the sub-job can continue running and the
provider has to pay fining for late time slots.

Between user - broker: If the runtime of the workflow exceeds the limit because
of computing system failure, the workflow can continue running and the broker
has to pay fining k$ for each additional time slot.

To check the condition of this SLO, we also have to monitor the system status.
If there is a failure of the computing system and the sub-job cannot finish on
time, we can deduce that any delay detected is caused by the failture. Usually,
the latency caused by this error is small. However, if the runtime of the sub-job
exceeds a threshold (which includes the extra time for error recovery), we can
say that the user had wrong estimation and the sub-job is cancelled.

Each SLO stated above can be implemented by using the structures described
in [4].

2.3 The Influence of SLOs on Mapping Policies

In most of the existing systems [9,10,11,12,13,14,15], the broker tries to find
a solution which is as inexpensive as possible. As the number of data to be
transferred among sub-jobs in the workflow is very small, we can omit the cost
of data transfers. Thus, the cost of running a workflow is the sum of three factors:
the cost of using: (1) the CPU, (2) the storage and (3) the expert knowledge.
The runtime of the sub-job depends on the resource configuration. The runtime
estimation mechanism can be based on the one described in [17].

However, within the SLA context, the formal policy is not always effective.
First, the deadline of the workflow has different meanings for different people.
The importance of a deadline depends on the urgency of the workflow. If the
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workflow is critical, the user is willing to pay more but also imposes stricter fining
rates. Otherwise, he pays less and requires lower fining rates. Thus, having a fixed
mapping mechanism is not enough. The broker must have suitable policies to
handle different user requirements. In this way, the fining rate, as defined in the
SLO, can effect seriously the mapping policy of the broker. Assume that the
broker choses a hardware resource with a higher processing power than specified
by the user. Assume as well that the broker adjusts the expected runtimes of
the sub-jobs according to the processing power. If a sub-job is finishing late
(although no failure in any RMS has been detected), the broker cannot impose
the responsibility to the user. It is not possible to determine whether the delay
is caused by a poor initial estimation of the user or by a faulty adjustment of
the broker. Therefore, the broker should pay in this case.

3 Mapping Policies

In our system, we define three types of urgencies: high, medium, and low. It
depends on the user to select the level of urgency for his workflow. Depending
on the preference of the user, the broker will have different mapping policies.
The goal of those mapping policies is securing the deadline of the workflow
under different constraints.

The most common cause that affects the deadline of a workflow is the crash
of some nodes within a RMS. According to Google system [18], there is a node
down every hour. When a node is down, the sub-jobs cannot continue running.
In this case, the RMS will restart the sub-job from its checkpoint, an image of
the process states from some time in the past [16]. This event will prolong the
previously estimated runtime of the sub-job. Consequently, the deadline of the
workflow may be violated. A mapping policy could deal with this situation in
different ways. For example, a mapping policy could be to introduce spare time
slots between sub-jobs of high urgency workflows. In the following, we propose
three mapping algorithms correlating to three urgency levels of workflows.

3.1 Mapping Workflow of High Urgency

For high urgency workflows, each sub-job of the workflow should have a spare
time period. In case of light communication workflows, we can distinguish two
types of spare time. The first type is for sub-jobs having flexible start time and
end time. For example, sub-job 1 can start in a wide range of time slots without
effecting the deadline of the workflow. Therefore, if this sub-job is scheduled
earlier than the latest end time, we could introduce a spare period. The second
type of spare time is for dependent, sequential sub-jobs (e.g. sub-jobs in the
critical path 0, 2, 3, 6 of figure 1. The spare period can only be introduced
if those sub-jobs are assigned to run on a more powerful RMS than initially
specified. Thus, the actual runtime will be shorter than originally specified and,
therefore, opening up the opportunity for spare time periods.
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Fig. 3. EL-Map algorithm

From the two above observations, we propose the algorithm called EL-Map (E
presents Extreme, L presents Light), which is based on L-Tabu algorithm [3], to
do the mapping task. At the step of determining RMS candidates for each sub-
job, we refine further the solution space in order to satisfy the spare time period
requirements. For critical sub-jobs (i.e. a sub-job on which many subsequent
sub-jobs depend), we choose only RMSs having more powerful configuration
than required by the user.

3.2 Mapping Workflow of Medium Urgency

For medium-urgent workflows, each sub-job of the workflow does not need to
have a spare time period. The broker will reserve the resources according to the
user’s estimated time period. The mapping algorithm for this case is L-Tabu
algorithm [3].

3.3 Mapping Workflow of Low Urgency

For workflow of low urgency, we suggest to use existing algorithms, which reduce
the cost by considering the runtime on sub-job-suitable hardware resources. The
algorithm that we use is called L-Map and is presented in Figure 4 [5].

Step 0: With each sub-job of the workflow, we sort the RMSs in the candidate
set according to the cost of running.

Step 1: We form the first configuration by assigning each sub-job to the RMS
that has the lowest cost in the candidate list.

Step 2: We compute the earliest start time and the latest stop time of each
sub-job using the conventional graph algorithm.

Step 4: If the reservation profile has conflict periods, we have to move sub-
jobs by adjusting the earliest start time slot or the latest end time slot of the
sub-jobs.
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Step 5: We have to adjust the earliest start time and latest stop time of each
sub-jobs that is affected by moving of sub-jobs in step 4 and then repeat step 3
and 4 until we cannot adjust the sub-jobs any more.

Step 6: If after adjusting phase, there are still some conflict periods, we have
to move some sub-jobs contributing to the conflict to other RMSs. If a sub-job
cannot be moved to other RMS, we can deduce that the Grid resource is busy
and the w-Tabu algorithm is invoked. If w-Tabu cannot find an initial solution,
the algorithm will stop.

Step 7: The process from step 3 to step 6 is repeated until there is no conflict
period or w-Tabu algorithm is invoked. After this phase, we have a feasible
candidate solution.

Step 8: A local search procedure is used to improve the quality of the solution
as far as possible.

4 Experimental Results

The goal of the experiment is to measure the difference in cost and the influ-
ence on business decisions when applying different mapping policies. The exper-
iments are executed with 18 workflows. Each workflow differs in its topology,
the number of sub-jobs, the sub-job specifications, and the amount of data to
be transferred. These workflows are then mapped to 20 RMSs with different
resource configurations and initial resource reservations by 3 algorithms: EL-
Map, L-Tabu and L-Map. In the experiment, 30% of all RMSs have a CPU
performance equal to the requirement, 60% of RMSs have a CPU performance
is twice as powerful than required, 10% of RMSs have a CPU performance that
is 200% more powerful than required. Along with the increase in performance,
we assume that the price for each CPU class increases linearly, however, slower
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Table 1. Performance experiment result

Fig. 5. Cost in average of each algorithm

than f(x)=x. The information about RMS and workflow is available online at
http://it.i-u.de/schools/altmann/DangMinh/desc expe1.txt.

In the experiment, the runtime of each sub-job in each type of RMS, which is
used in L-Map algorithm, is assigned by using following formula:

rtj =
rti

pki+(pkj−pki)∗k
pki

(1)

pki, pkj is the performance of a CPU in RMS ri, rj respectively. rti is the
estimated runtime of the sub-job with the resource configuration of RMS ri. k
is a speed-up control factor, which depends on the structure of the application.
In the experiment, k had three values: 0.5, 0.25, 0.1. We specified the workload
configuration as a vector of numbers of sub-jobs in the workflow with different
k. For example, the workload configuration 90-10-0 defines that 90% of sub-jobs
have a k = 0.5, 10% of sub-jobs have k = 0.25, 0% of sub-jobs have k = 0.1. In
this experiment, we use three workload configurations: (1) 30-10-60, (2) 60-10-30,
(3) 90-10-0.

The result of the experiment is presented in Table 1. As the runtime of each
algorithm is very small in few seconds, we only present the cost of the mapping
solution with each algorithm. Figure 5 presents the average cost in relative value
of each algorithm. From the experiment results in Table 1 and Figure 5, we can
see that the cost of executing a workflow is lower for workflows with a lower level
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of urgency. This is caused by the fact that the time reserved for each sub-job is
lower for workflows with lower urgency.

We can also see that in the case of the L-Map algorithm, the configuration
of the workflow also effects the cost of the solution. If the workflow has many
sub-jobs with large k (i.e. higher performance), the cost will be lower. The reason
is that a sub-job with a large k needs less time periods to finish. In 5, we can
see that the cost of using less-powerful resource is higher than the price of more
powerful resource multiplied by their runtime.

In 5, we can also notice that the difference in cost between medium-urgent
and low-urgent workflows varies depending on the configuration of the workflow.
If the workflow has a small number of sub-jobs with big k, the difference in cost
is not so much. This fact suggest that NL-Map algorithm can be applied even
to low urgency workflows with low number of large k.

The price to pay for preventive actions against failures of nodes within in
workflows of high urgency is high. As can be seen in 5, the cost for running the
EL-Map algorithm is about 15% higher than the cost of the L-Map algorithm.
However, it can be assumed that a user, who has to finish his workflow on time,
is willing to pay this extra cost to him. Therefore, this extra cost is acceptable.

5 Related Works

The literature records many efforts supporting QoS for workflow. Imperial Col-
lege e-Science Network Infrastructure (ICENI) is an end-to-end Grid middleware
system developed at the London e-Science Centre [9]. AgFlow is a middleware
platform that enables the quality-driven composition of Web services [10]. QoS-
aware Grid Workflow is a project, which aims at extending the basic QoS sup-
port to Grid workflow applications [11]. The work in [12] focuses on mapping
the sweep task workflow to Grid resource with deadline and budget constraints.
However, all of them do not define business model for the system. Therefore,
they just simply find a solution satisfying the deadline and optimizing the cost.
Recently, there are many Grid projects working on SLA issue [13,14,15]. Most
of them focus on single job and thus, only the direct relation between user and
service provider is considered. The business role of the broker in such systems
is not fully evaluated. More over, supporting SLAs for Grid-based workflows is
just at the initial phase and is not fully exploited.

6 Conclusion

This paper presents a business model to execute SLA-aware workflows in Grid
environments. In particular, we focused on the aspects related to Service Level
Objectives. Within the SLA context, end-user can negotiate different fining rates
with the service provider. Scoping with different levels of urgency, brokers have
to use different mapping algorithm to find solutions with different risk levels.
Our measurements have shown that using runtime adaptation gains only benefit
in some special cases, namely where workflows have many sub-jobs with a large
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speed-up factor. For workflows of high urgency, the extra cost of 15% is still
acceptable, if we consider that user with high urgency jobs are willing to pay
more for getting a higher quality.
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Abstract. This paper introduces the One-Click Grid resource, which
allows any computer with a Java enabled web browser to safely provide
resources to Grid without any software installation. This represents a vast
increase of the number of potential Grid resources that may be made
available to help public interest research. While the model does make
restrictions towards the application writer, the technology provides a real
Grid model and supports arbitrary binaries, remote file access and semi-
transparent checkpointing. Performance numbers show that the model
is usable even with browsers that are connected to the Internet through
relatively weak links, i.e. 512 kb/s upload speeds. The resulting system
is in use today, and freely available to any research project.

1 Introduction

Grid Computing and Public Resource Computing, PRC, provide increasingly in-
teresting means of obtaining computational resources. Grid Computing is mostly
used for connecting university supercomputers, while PRC is predominantly used
by research projects for harvesting PC based idle CPU-cycles for a small number
of research projects. However, even though the two fields appear closely related,
little effort has been made to combine them to a system that offers the flexibility
of Grid computing with the resource richness of the PRC model.

1.1 Motivation

Harvesting ‘free’ cycles through PRC is of great interest since a modern PC is
powerful and highly underutilized, and as such cycle harvesting provides a huge
calculation potential if one combines millions of them in a computing Grid[1].

Most known Grid systems such as ARC[2] which is based on the Globus
toolkit[3] and Condor[4] are unsuitable for PRC computing, as they work under
the underlying assumption that the resources are available at anytime, which
PRC resources by their very nature are not.

To extend the PRC concept to actual Grid computing, security and installation
of software on the donated resource are vital issues. All, to the authors known,
PRC projects requires the donor to install software on the resource that should
contribute, which alone eliminates users from donating resources from computers
that they do have administrative rights on. The software installation also opens
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for possible exploits and requires the donor to perform updates on that software.
This is not desirable and may reduce the amount of donated resources.

Ensuring the safety of a donated resource while it executes a Grid job in a PRC
context is an all important topic since all free resources will vanish if the model
proves harmful to the hosts. Contrary to standard PRC tasks, a Grid job may
take any form and include the execution of any binary. Thus it is necessary to
take precautions to ensure that the execution of Grid jobs cannot harm donated
resources neither from intention nor by accident.

This paper addresses some of the problems that need to be solved in order to
combine PRC computing and Grid Computing. Our goal is to design a Grid PRC
secure sandbox model, where Grid jobs are executed in a secure environment
and no Grid or application specific software is needed on the donated resource.
Furthermore we ensure that resources may be in a typical PRC context, i.e.
located behind a Network Address Translation router and a firewall and thus
that the model may be used without modifications to firewalls or the routers.

1.2 Related Work

BOINC[5] is a middleware system providing a framework, which has proved
the concept of PRC, and is widely used by scientific research projects such
as SETI@HOME[6] and FOLDING@HOME[7]. MiG-SSS[8] is a Screen Saver
Science model built to combine PRC with Minimum intrusion Grid, MiG[9][10].
Our work differs from BOINC by aiming at a full Grid model, and differs from
both BOINC and MiG-SSS by aiming at no Grid specific software installation
on the client.

2 Web Browsers and Java

To reach our stated goal of no Grid specific software installation and no modi-
fication of the donated machines firewall settings, we are forced to use software
which is an integrated part of a common Internet connected resource.

We found that amongst the most common software packages for any PC
type platform there is a Java enabled web browser. The web browser provide a
common way of securely communicating with the Internet, which is allowed by
almost all firewall configurations of the resources we target.1 The web browser
itself provides us with a communication protocol, but it does not by itself, provide
a safe execution environment, however all of the most common graphics enabled
web browsers have support for Java applets[11], that are capable of executing
Java byte-code located on a remote server.

The Java applet security model[12], ASM, prevents the Java byte-code exe-
cuted in the applet from harming the host machine and thereby provides the

1 Resources located behind firewalls that do not support outgoing HTTPS is consid-
ered out of range for this PRC, however it is not unseen that outbound HTTPS is
blocked.
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desired sandbox effect for us to trust the execution of unknown binaries on
donated resources.

The choice of web browsers and Java applets as the execution framework,
results in some restrictions on the type of jobs that may be executed in this
environment:

– Applications must be written in Java
– Applications must apply to ASM
– The total memory usage is limited to 64 MB including the Grid framework
– Special methods must be used to catch output
– Special methods must be used for file access

By accepting the limitations described above, a web browser may become a Grid
resource simply by entering a specific URL. This triggers the load and execution
of an applet which acts as our Grid gateway and enables retrieving and executing
a Java byte-code based Grid job. The details of this process is described next.

3 The Applet Grid Resource

Several changes to the Grid middleware are needed to allow Java applets to act
as Grid resources. First of all the Grid middleware must support resources which
can only be accessed through a pull based model, which means that all commu-
nication is initiated by the resource, i.e. the applet. This is required because the
ASM rules prevents the applet from initiating listening sockets, and to meet our
requirement of functioning behind a firewall with no Grid specific port modifica-
tions. Secondly, the Grid middleware needs a scheduling model where resources
are able to request specific type of jobs, e.g. a resource can specify that only jobs
which are tagged to comply to the ASM can be executed.

In this work the Minimum intrusion Grid[9], MiG, is used as the Grid mid-
dleware. The MiG system is presented next, before presenting how the Applet
Grid resource and MiG work together.

3.1 Minimum Intrusion Grid

MiG is a stand alone Grid platform, which does not inherit code from any earlier
Grid middlewares. The philosophy behind the MiG system is to provide a Grid
infrastructure that imposes as few requirements on both users and resources as
possible. The overall goal is to ensure that a user is only required to have a
X.509 certificate which is signed by a source that is trusted by MiG, and a web
browser that supports HTTP, HTTPS and X.509 certificates. A fully functional
resource only needs to create a local MiG user on the system and to support
inbound SSH. A sandboxed resource, which can be used for PRC, only needs
outbound HTTPS[8].

Because MiG keeps the Grid system disjoint from both users and resources,
as shown in Figure 1, the Grid system appears as a centralized black box[9]
to both users and resources. This allows all middleware upgrades and trouble
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Fig. 1. The abstract MiG model

shooting to be executed locally within the Grid without any intervention from
neither users nor resource administrators. Thus, all functionality is placed in a
physical Grid system that, though it appears as a centralized system in reality
is distributed. The basic functionality in MiG starts by a user submitting a job
to MiG and a resource sending a request for a job to execute. The resource then
receives an appropriate job from MiG, executes the job, and sends the result to
MiG that can then inform the user of the job completion. Since the user and the
resource are never in direct constant, MiG provides full anonymity for both users
and resources, any complaints will have to be made to the MiG system that will
then look at the logs that show the relationship between user and resource.

3.1.1 Scheduling
The centralized black box design of MiG makes it capable of strong scheduling,
which implies full control of the jobs being executed and the resource executing
them. Each job has an upper execution time limit, and when the execution time
exceeds this time limit the job is rescheduled to another resource. This makes
the MiG system very well suited to host PRC resources, as they by nature are
very dynamic and frequently join and leave the Grid without notifying the Grid
middleware.

3.2 The MiG Applet Resource

As explained above, all that is required for a PRC resource to join MiG is a sand-
box and support for outgoing HTTPS. However, the previous solution[8] requires
installation of non standard software to activate and execute the sandbox.

The Java applet technology makes it is possible to turn a web browser into a
MiG sandbox without installing any additional software. This is done automat-
ically when the user accesses “MiG One-Click”2, which loads an applet into the
web browser. This applet functions as a Grid resource script and is responsible
for requesting pending jobs, retrieving and executing granted jobs, and delivering
the results of the executed jobs to the MiG server.
2 The URL accessed to activate the web browser as a sandboxed MiG Java resource

is called “MiG One-Click”, as it requires one click to activate it.
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To make the applet work as a resource script, several issues must be addressed.
First of all ASM disallows local disk access. Because of this both executables and
input/output files must be accessed directly at the Grid storage. Secondly only
executables that are located at the same server as the initial applet are permitted
to be loaded dynamically. Thirdly text output of the applet is written to the web
browser’s Java console and not accessible by the Grid middleware.

Browser

One-Click Applet

Job-Control File-Access Checkpointing

Grid Job

Fig. 2. The structure of an One-Click job

When the applet is granted a job by the MiG server, it retrieves a specifi-
cation of the job which specifies executables and input/output files. The applet
then loads the executable from the Grid, this is made possible by the MiG server
which sets up an URL from the same site as the resource applet was originally
loaded which points to the location of the executables. This allows unknown
executables to be loaded and comply with the ASM restrictions on loading exe-
cutables. Figure 2 shows the structure of an One-Click job. Executables that are
targeted for the MiG One-Click model must comply with a special MiG One-
Click framework, which defines special methods for writing stdout and stderr
of the application to the MiG system3. Normally the stdout and stderr of the
executing job is piped to a file in the MiG system, but a Java applet, by de-
fault, writes the stdout and stderr to the web browsers Java console. We have
not been able to intercept this native output path. Input and output files that
are specified in the job description must be accessed directly at the Grid stor-
age unit since the ASM rules prohibits local file access. To address this issue
the MiG One-Click framework provides file access methods that transparently

3 The result of a MiG job is the stdout/stderr and the return code of the application
that is executed.
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provide remote access to the needed files. Note that the MiG system requires in-
put files and executables to be uploaded to the MiG server before job submission
which ensures that the files are available at the Grid storage unit.

In addition to the browser applet a Java console version of the MiG resource
has been developed, to enable the possibility of retrieving and executing MiG
One-Click jobs as a background process. This requires only a Java virtual ma-
chine. To obtain the desired security model, a customized Java security policy
is used, which provides the same restrictions as the ASM.

3.3 Remote File Access

The One-Click executing framework that was introduced above also provides
transparent remote file access to the jobs that are executed. The MiG storage
server supports partial reads and writes, through HTTPS, of any file that is
associated with a job. When the resource applet accesses files that are associated
with a job, a local buffer is used to store the parts of the file that are being
accessed. If a file position which points outside the local buffer is accessed, the
MiG server is contacted through HTTPS, and the buffer is written to the MiG
server if the file is opened in write mode. The next block of data is then fetched
from the server and stored into the buffer and finally the operation returns to
the user application. The size of the buffer is dynamically adjusted to utilize the
previously observed bandwidth optimally.

3.3.1 Block Size Estimation
To achieve the optimal bandwidth for remote file access it is necessary to find the
optimal block size for transfers to and from the server. In this case the optimal
block size is a trade off between latency and bandwidth. We want to transfer as
large a block as possible without excessive latency increment since the chance of
transferring data that will not be used increases with the block size.

We define the optimal block size bsopt as the largest block where a doubling
of the block size does not double the time to transfer it. This can be expressed
the following way:

t(x) ∗ 2 > t(x ∗ 2) ∀x < bsopt (3.1)

t(x) ∗ 2 < t(x ∗ 2) ∀x > bsopt (3.2)

t(x) = time to transfer block of size x

We do not want block sizes below bsopt as the time t used to transfer a block of
size x is less than doubled when the block size is doubled. On the other hand
we don’t want ‘too large’ block sizes as we do not know if the retrieved data
is going to be used or discarded due to a seek operation beyond the end of the
local buffer.

As the One-Click resources can be placed at any sort of connection, and
the bandwidth of the connection thus may differ greatly from one resource to



302 M. Rehr and B. Vinter

another, it is not possible to use a fixed block size and reach a good ratio between
bandwidth and latency at an arbitrary type of connection.

The simplest approach would be to use a fixed bsopt based on empirical tests
on the most common connections.

A less trivial, but still simple, approach would be to measure the time it takes
to connect to the server and then choose a block size which ensures the transfer
time of that block to be a factor of x larger than the time to connect, to make
sure that the connection overhead does not exceed the time of the actual data
transfer.

The chosen approach is to estimate bsopt from the time spent transferring
block x− 1 with the time of transferring block x, starting with an initial small4

block size bs0 and then doubling the block size until a predefined cutoff ratio
CR is reached. After each data transfer the bandwidth bwx is calculated and
compared to the bandwidth of the previous transfer bwx−1. If the ratio is larger
than the predefined CR:

bwx

bwx−1
> CR (3.3)

then the block size is doubled:

bsx+1 = bsx ∗ 2 (3.4)

As the block size is doubled in each step the theoretical CR to achieve bsopt

should be 2, since there is no incentive to increase block size once the latency
grows linearly with the size of the data that is transferred. However in reality,
one need to get a CR below 2 to achieve bsopt. This is due to the fact that all
used block sizes are powers of 2, and one cannot rely on the optimal block size
to match a power of 2.

Therefore to make sure to get a block size above bsopt you need a lower CR.
Empirical tests showed that a CR about 1.65 yields good results, see section 5.2

Additional extensions include adapting to the frequency of random seeks in
the estimation of the CR. A large amount of random seeks to data placed outside
the range of the current buffer will cause new blocks to be retrieved in each seek.
Therefore the block size should be lowered in those cases to minimize the latency
of each seek.

4 Checkpointing

PRC resources will join and leave the Grid dynamically, which means that
jobs with large running time have a high probability of being terminated be-
fore they finish their execution. To avoid wasting already spent CPU-cycles
a checkpointing mechanism is build into the applet framework. Two types of
checkpointing have been considered for inclusion, transparent checkpointing and
semi-transparent checkpointing.
4 An initial small block size gives a good result as many file accesses applies to small

text files such as configuration files.
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4.1 Transparent Checkpointing

All to the authors known transparent checkpoint mechanisms provided to work
with Java, require the JVM to be replacement or access to the /proc file system
on Linux/Unix operating system variants, as the default JVM does not support
storing program counter and stack frame. Since our goal is to use a web browser
with the Java applet as a Grid resource neither of those solutions are satisfactory,
since both the replacement of the JVM and access to the /proc file system
violates the Java applet security model. Furthermore most PRC resource will
be running the Windows operating system which do not support the /proc file
system.

4.2 Semi-transparent Checkpointing

Since transparent checkpointing is not applicable to the One-Click model, we
went on to investigate what we call semi-transparent checkpointing. Semi-trans-
parent checkpointing covers that the One-Click framework provides a checkpoint
method for doing the actual checkpoint, but the application programmer is still
responsible for calling the checkpoint method when the application is in a check-
point safe state.

The checkpoint method stores the running Java object on the MiG server
through HTTPS. Since it can only store the object state, and not stack in-
formation and program counters, the programmer is responsible for calling the
checkpoint method at a point in the application, where the current state of the
execution may be restored from the object state only. To restart a previously
checkpointed job, the resource applet framework first discovers that a checkpoint
exists and then loads the stored object.

To ensure file consistency as part of the checkpoint, the framework also sup-
ports checkpointing of modified files, which is done automatically without involv-
ing the application writer. Open files are checkpointed if the job object includes
a reference to the file.

5 Experiments

To test the One-Click model we established a controlled test scenario. Eight
identical Pentium 4, 2.4 GHz machines with 512 MB ram were used for tests.

5.1 One-Click as Concept

The test application used, is an exhaustive algorithm for folding proteins written
in Java. This was changed to comply with the applet framework.

A protein sequence of length 26 was folded on one machine, which resulted
in a total execution time of 2 hours, 45 minutes and 33 seconds. The search
space of the protein was then divided into 50 different subspaces using standard
divide and conqueror techniques. The 50 different search spaces were submitted
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as jobs to the Grid, which provides an average of 6 jobs per execution machine
and 2 extra jobs to prevent balanced execution. The search spaces on their own
also provide unbalanced execution as the valid protein configurations vary from
one search space to another and thus results in unbalanced execution times. The
experiment was made without checkpointing the application. The execution of
the 50 jobs completed in 29 minutes and 8 seconds, a speedup of 5.7 for 8
machines. While this result would be considered bad in a cluster context it is
quite useful in a Grid environment.

To test the total overhead of the model, a set of 1000 empty jobs was submitted
to the Grid with only one One-Click execution resource connected. The 1000 jobs
completed in 19935 seconds, which translates to an overhead of approximately
20 seconds per job.

5.2 File Access

To achieve the best bandwidth cutoff ratio CR several experiments has been
made. In the experiments a 16 MB file was read 100 times by the One-Click
resource on a 20 Mb/s broadband Internet connection. All experiments start
with an initial block size of 2048 (211) bytes. The first experiment was run with
a CR of 0, which means that the block size is doubled in every transfer. The
result is shown in figure 3.
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Fig. 3. The upper figure shows the latency as a function of the block size, the lower
figure shows the bandwidth ratio bwx

bwx−1
as a function of the block size. Between block

size 218 and 220 the latency starts to raise and the bandwidth ratio starts to fall. This
is where the cutoff is chosen to avoid excessive raise in latency.

The figure shows how that the latency starts to raise dramatically between
block size 218 and 220 and the bandwidth to latency ratio starts to fall at those
block sizes. The bandwidth to latency ratio between block size 218 and 220 lies
in the interval from 1.25 to 1.75. Based on these observations we performed the
same test with a CR of 1.5. The result is shown in figure 4.

This shows that a CR of 1.5 is too low as block sizes of 221 occur and we
want the block sizes to be between 218 and 220 to limit the maximum latency.
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Fig. 4. The latency as a function of the block size with CR 1.5

Therefore the CR must be between 1.5 and 1.75. The test was then run with
CR 1.55, 1.60, 1.65, 1.70 and 1.75. The result is shown in figure 5.

We observe that a CR of 1.75 is too high, as only a few block sizes of 219

occur and no block sizes of 220 occurs. A CR of 1.55 results in a few block sizes
of 221 which is above the block sizes we want. 1.60 represents the block sizes we
want and block size 220 is well represented. A CR of 1.65 represents block size
219 well and a few block sizes of 220 is reached as well, and a CR 1.70 represents
block size 220 but no block sizes of 221 are represented. We choose a CR of 1.65
as block size 220 is considered the braking point where the latency starts to grow
excessively, therefore we do not want it to be to well represented, but we want
it to be represented, which is exactly the case at a CR of 1.65.

To verify the previous finding that the CR value should be 1.65 a test applica-
tion, which traverses a 16MB file of random32bit integerswas developed.First the
application was tested against the framework, where fixed block sizes were used,
and then the application was tested against the framework, where the dynamic
block sizes with a CR of 1.65 were used. The results are shown i figure 6.

The experiment shows, as expected, that the execution time decreases as the
block sizes increase in the experiments with static block sizes. The execution time
in the experiments with the dynamic block sizes all reside around 256 seconds5

which are satisfactory, as this shows that compared to largest static buffer size of
interest6, the execution time loss using a dynamic buffer size is at most a factor
of four. The reader should note that this type of application is the worst case for
dynamic buffer sizing as all the data are read sequentially. If the integers were read
in random order, the dynamic buffer size execution would perform much better.

5.3 Checkpointing

The next obvious performance issue is to test the overhead of performing a
checkpoint operation within a process. This was tested by submitting jobs that

5 With the exception of 3 runs, which are classified as outliers.
6 The largest static buffer of interest is 217 as this is where the time gained by doubling

the buffer, levels out.
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Fig. 5. The latency as a function of the block size with CR 1.55, 1.60, 1.65, 1.70, 1.75

allocate heap memory in the range from 0 kB to 8192 kB. Each job first allocates
X kB, where X is in the order power of 2, and does 10 checkpoints, which saves
the entire heap space. The performance was first tested on a 20 Mb/s broadband
Internet connection. The test was then repeated using a more modest 2048/512
kb/s broadband Internet connection. The result of these tests is shown in figure 7.
In the first test, using the 20 Mb/s connection, the checkpoint time is constant
as the memory size grows. We can conclude from this, that the overhead of
serializing the Java object is dominating compared to the actual network transfer
time. The opposite is the case when we examine the results of the 2048/512 kb/s
connection. Here we see that the time spent grows linearly with the size of the
allocated memory, from which we may conclude that on a 512 kb/s connection
the bandwidth is, not surprisingly, the limiting factor.
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dynamic block sizes and a CR of 1.65
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Fig. 7. The time spend checkpointing on a 20 Mb/s and a 2048/412 kb/s Broadband
Internet

6 Conclusion

In this work we have demonstrated a way to combine Grid computing with PRC,
the One-Click framework, without the need to install any PRC client software
on the donating resource.

The use of Java applets provides a secure sandboxed executing environment
that prevents the executing Grid jobs from harming the donated machine. The
disadvantage of this approach is that all jobs must be written in Java and in
addition comply with the presented framework, including the Java Applet Secu-
rity Model. However the modifications that are needed to port an existing Java
application are limited to using special methods for stdout and stderr, applying
to the Java applet security model, and using the One-Click framework for re-
mote file access. The One-Click framework also includes the means to provide
semi-transparent checkpointing of the applications at runtime.

The Minimum intrusion Grid supports the required pull-job model for retriev-
ing and executing Grid jobs on a resource located behind a firewall without the
need to open any ingoing ports. By using the One-Click approach any computer
with a web browser that can execute Java applets can become a Grid resource
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for PRC simply by entering the MiG One-Click URL. Once the user of the
donated computer wishes to stop the execution, the browser is simply closed
down or pointed to another URL, and the execution stops. The MiG system
detects this event, by a timeout, and resubmits the job to another resource,
where the job is resumed from the latest checkpoint that was made.

Experiments have been performed to find the optimal block size for the remote
file transfer that the framework includes. The experiments show that doubling
the block size in each transfer gives the optimal tradeoff between bandwidth and
latency as long as the CR is below 1.65.

The experiments also show that the dynamic block sizes approach increases
the execution time by of factor of four compared to the execution time reached
with the largest static block size in a worst case scenario.

The building checkpointing mechanism has an overhead of 15 seconds per
checkpoint on a 2.4GHz P4 and the One-Click framework overall is causing
approximately 20 seconds of overhead to each execution, compared to local exe-
cution. Despite of this a considerable speedup is reached in the presented protein
experiment.
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Abstract. Automatic execution time prediction of the Grid applica-
tions plays a critical role in making the pervasive Grid more reliable and
predictable. However, automatic execution time prediction has not been
addressed due to the diversity of the Grid applications, usability of an
application in multiple contexts, dynamic nature of the Grid, and con-
cerns about result accuracy and time expensive experimental training.
We introduce an optimized, low-cost, and efficient yet automatic training
phase for automatic execution time prediction of Grid applications. Our
approach is supported by intra- and inter-platform performance sharing
and translation mechanisms. We are able to reduce the total number of
experiments from an polynomial complexity to a linear complexity.

1 Introduction

Automatic execution time prediction of the Grid applications plays a critical
role in making the pervasive Grid more reliable and predictable. Application
execution time prediction based on historical data is a generic technique used
for application performance prediction of scientific and business applications in
the Grid infrastructures [14]. Historical data obtained through carefully de-
signed experiments can minimize the need and cost of performance modeling.
Controlling number of experiments to get the historical/training data, in or-
der to control the complexity of training phase is challenging. Methods from
the field of experimental design have been applied to similar control problems in
many scientific and engineering fields for several decades. However, experimental
design to support automatic training phase and performance prediction in the
Grid has been largely ignored due to diversity of the Grid applications, usability
of applications in different contexts and heterogeneous environments, and con-
cerns about the result accuracy and time expensive experimental training. There
may be some applications whose scientific phenomenon of performance behav-
ior could be well understood, and useful results including performance models
can be developed, but, this is not possible for all applications because of expen-
sive performance modeling, which makes it almost impractical to serve several
predictions using these models at run time. Moreover, the size, diversity, and
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extensibility of heterogeneous resources make it even harder for the Grid. These
challenging issues lead to the requirement of a generic and robust experimental
design for automatic training phase that maximizes the amount of information
gained in minimum number of experiments by optimizing the combinations of
independent variables.

To overcome this situation, we present a generic experimental design EXD
(Extended Experimental Design) for compute intensive applications. EXD is
formulated by modifying the traditional experimental design steps to eliminate
time taking modeling and optimization steps that make it inefficient and appli-
cation specific. We also introduce inter- and intra-platform performance sharing
and translation mechanisms to later support EXD. Through EXD, we are able to
reduce the polynomial complexity of training phase to a linear complexity, and
to show up to a 99% reduction in total number experiments for three scientific
applications, while maintaining an accuracy of more than 90%. We have imple-
mented a prototype of the system based on the proposed approach in ASKALON
project [12], as a set of Grid services using Globus Toolkit 4.

The rest of the paper is organized as follows: Section 2 describes an intro-
duction to Automatic Training Phase and System Architecture of automatic
training phase is presented in Section 3. Section 4 describes the performance
sharing and translation mechanisms, which support our design of experiments.
Section 5 narrates design and composition of EXD. Section 6 explains the Auto-
matic Training phase based on EXD. Application performance prediction based
on the training set is described in Section 7, and experimental results with anal-
ysis are summarized in Section 8. Finally we describe related work in Section 9.

2 Training Phase on the Grid

The training phase for an application consists of the application executions for
different setups of problem-size and machine-size on different Grid-sites, to ob-
tain execution times (training set or historical data) for those setups. Automatic
performance prediction based on historical data needs enough amounts of data
present in database. The historical data needs to be generated for every new ap-
plication ported to a Grid environment, and/or for every new machine (different
from existing machines) added to the Grid. To support the automatic applica-
tion execution time prediction process experiments should be made against some
experimental design and the generated training data be archived automatically.
However, to automatize this whole process is a complex problem and we address
it in Section 2.1. Here, we describe some of the terms that we use in this paper.

- Machine-size: The total number of processors on a Grid site.
- Grid-size: The total number of Grid-sites in the Grid.
- Problem-size: Set of input parameter(s) effecting performance of application.

2.1 Problem Description

Conducting an automatic training for application execution time predictions on
the Grid is a complex problem due to complexity of the factors involved in it.
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Generally speaking, automatic training phase is the execution of E experiments,
for a set of applications α, on a selected set of Grid sites β each with a scarce
capacity (e.g. number of processors pi), for a set of problem-sizes λ. Execution of
each experimental e ∈ E for a Grid application α ∈ αi , for a problem-size r ∈ λ,
on a Grid site g ∈ β, at a certain site capacity p ∈ γ yields the execution time
interval (duration) T (e) = endt(e) − startt(e). More formally, the automatic
training phase comprises of:

– A set of Grid applications: α = {α1, ..., αn}|n ∈ N.
– A set of selected non-identical Grid sites:

β = ∪m
i=1gi | β ⊆ GT , |β| = m

where GT represents set of all the Grid sites. Thus the total Grid capacity
in terms of processors is γ =

∑m
i=1 pi, where pi is number of processor on

the Grid-site i.
– A set of different machine-sizes ω, encompassing different machine sizes for

z different (heterogeneous) types of CPUs on each of the Grid-sites gi, where
ωi =

⋃z
k=1{1, ..., Sk}. Here Sk represents maximum number of CPUs of type

k. We categorize CPUs to be different if their architecture and/or speed
is/are different.

– A set of problem-sizes λ = {r1, r2, ..., rx} | ri = ∪y
j=1paramj , |λ| = x, here

paramj represents value of an input parameter j of the Grid application α
having y parameters in total, which depends upon the Grid application.

In this way, for n applications, m Grid-sites, zi different types of CPUs
on a Grid-site i where maximum number of CPUs of category k is Sk, the
total number of experiments N is given by:

N =
n∑

h=1

m∑
i=1

zi∑
k=1

Sk∑
s=1

pi
k,s × xh

Where pi
k,s denotes s processors of type k on Grid-site i, and xh denotes the

number of different problem sizes of application h.
The size of each of α, β, γ, λ and ω has a significant effect on the overall

complexity of the automatic training phase.The goal is to come up with a
set of execution times from E experiments ψ : ψ = {t1, ..., tE}||ψ| < N , such
that utility U of execution times

∑E
e=1 U(ti) is maximized, N is minimized,

and the accuracy ξ is maximized.

3 System Architecture

The Architecture of the system is simple and shown in Figure 1. Application
specific information (the different parameters affecting execution time of the
application, their ranges and effective step sizes) is provided to Experiment De-
sign Manager, which plans experiments through Extended Experimental Design
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experimental design

(EXD) (see Section 5). The Training Manager executes these experiments on
the set of the selected Grid sites. It dynamically decides the detailed execution
of minimum number of experiments on different Grids-sites. The information
Manager orchestrates the experimental information and, according to configura-
tion policy, either archives this information directly in experimental performance
repository or uses the performance sharing and translation mechanisms (see
Section 4) to calculate the remaining values (not in the experimental informa-
tion) before archiving the information. The prediction engine of application ex-
ecution time prediction service (G-Prophet) gets the archived information from
performance repository to serve application execution time predictions to differ-
ent Grid middleware services.

4 Performance Sharing and Translation (PST)

We introduce PST to share execution times within one Grid-site (for scalability)
and among different Gridsites. PST mechanism is based on our experimental
observation of inter- and intra-platform performance relativity (rate of change
of performance) of compute intensive applications, across different problem-sizes.
We explain them as under.

4.1 Inter-platform PST

Inter-platform PST specifies that the normalized execution time ρ of an appli-
cation for the different problem-sizes in α, is preserved on different Grid sites.
More specifically, the normalized execution time ρ for a problem-size ri relative
to another problem-size rj on a Grid-site g is similar to that on another Grid-site
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h. If ρg(α, ri) represents the execution time of application α for problem-size ri

on Grid-site g then:
ρg(α, ri)
ρg(α, rj)

≈ ρh(α, ri)
ρh(α, rj)

, i �= j (1)

This phenomenon is based on the fact that rate of change in execution time of an
application across different problem-sizes is preserved on different Gridsites, i.e.
the rate of change in execution time of an application �ρ for the problem-size ri

(the target problem-size) with respect to another problem-size rj (the reference
problem-size) on Grid-site g is equal to the rate of change in execution time for
the problemsize ri with respect to the problem-size rj on Grid-site h.

�ρg(α, ri)
�ρg(α, rj)

≈ �ρh(α, ri)
�ρh(α, rj)

, i �= j

4.2 Intra-platform PST

Intra-platform PST specifies that the normalized execution time ρ of an ap-
plication α, on a Grid-site g for a machine-size l ∈ ωg (the target machine-
size) relative to another machine-size m ∈ ωg (the reference machine-size), for a
problem-size ri is similar that for another problem-size rj . If ρg(α, ri, l) repre-
sents the execution time of an application for problem-size ri and machine-size
l then:

ρg(α, ri, l)
ρg(α, rj , m)

≈ ρg(α, ri, l)
ρg(α, rj , m)

, i �= j, l �= m (2)

This phenomenon is based on the fact that rate of change in execution time of an
application across different problem-sizes is preserved for different machine-sizes,
i.e. the rate of change in execution time of an application for the problem-size
ri and machinesize l on Grid-site g with respect to that for machinesize m will
be equal to the rate of change in execution time for the problem-size rj and
machine-size l with respect to that for a machine-size m on the same Grid-site:

�ρg(α, ri, l)
�ρg(α, rj , m)

≈ �ρg(α, ri, l)
�ρg(α, rj , m)

, i �= j, l �= m

Similarly, rate of change in executions time of the application across different
machine sizes is also preserved for different problem-sizes. i.e.

�ρg(α, rj , m)
�ρg(α, ri, m)

≈ �ρg(α, rj , l)
�ρg(α, ri, l)

, i �= j, l �= m

We use this phenomenon to share execution times with in one Grid-site for
scalability. The accuracy of inter- and intra-platform similarity of normalized
behaviors, for embarrassingly parallel applications, does not depend upon the
selection of reference point. However, for the parallel applications exploiting
inter-process communications during their executions, this accuracy increases as
the reference point gets closer to the target point the closer the reference point,
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the greater the similarity (of interprocess communication) it encompasses. Thus
in case of inter-platform PST the reference problem-size closer to the target
problem-size, and in case of intra-platform PST, the reference problem-size closer
to the target problem-size as well as the reference machine-size closer to target
machine-size. i.e. For inter-platform PST:

lim
r→p

[
ρg(α, ri)
ρg(α, rj)

− ρh(α, ri)
ρh(α, rj)

] = 0

Similarly, for intra-platform PST:

lim
l→m

[
ρg(α, ri, l)
ρg(α, rj , m)

− ρg(α, ri, l)
ρg(α, rj , m)

] = 0

For normalization from the minimum training set only, we select the maximum
problem size (in normal practice of user of the application) and maximum ma-
chine size (for which application scales good) as reference point, to incorporate
the maximum effects of inter-process communications in the normalization. The
distance between the target point and the reference point for inter- and intra-
platform PST on one Grid site is calculated respectively as:

d =
{√

(ρ(ri) − ρ(rj))2 + (ri − rj)2√
(ρ(l) − ρ(m))2 + (l −m)2

Note that, in the presented work, ρg(α, p) = ρg(α, p, 1).

5 Experimental Design

Specifically in our work, the general purpose of the experimental design phase is
to set a strategy for experiments to get the execution time of an application to
support its performance prediction later on, in minimum number of experiments.
A typical experimental design has specific sequence of steps, which is shown in
Figure 2. For experimental design, one of our objectives is to eliminate/minimize
the modeling and optimization phases in this model to make the training phase
and performance prediction system robust. Among other key objectives are, to:

a) reduce/minimize training phase time;
b) minimize/eliminate the heavy modeling requirements after the training phase;
c) develop and maintain the efficient scalability of ED with respect to Grid-size;
d) make it generalizable to a wide range of applications on heterogeneous Grid-

sites.

To address these objectives, we design our experimental design EXD in the
light of guide lines given by Montgomery et al. in [1]. These are as follows:

a) Recognition of statement of problem: We describe our problem state-
ment as: To obtain maximum execution time information of the application at
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different problem-sizes on all heterogeneous Grid-sites with different possible
machine-sizes in minimum number of the experiments.

b) Selection of response variables: In our work the response variable is the
execution time of the application.

c) Choice of factors, levels and ranges: The factors affecting the response
variable are the problem-size of the application, the Grid-size and the machine-
size. The range of problem-size incorporates ranges of each of input variables
and the levels consist of their values at effective step sizes specified by the user
of the application. The range of the Grid-size is {1, 2, , m}, and the levels include
numeration of non-identical Grid-sites gi. The range of machine-size spans over
all different subsets of number of (heterogeneous) processors on a Grid-site and
its levels include of all these individual subsets. Consider a simple case, for one
Grid application with x different problem sizes and m Grid sites with pi machine
sizes. If we include all the respective levels of the above described factors, then
the total number of possible experiments N is given by:

N =
∑m

i (pi × x)

For single processor Grid-sites the above formula reduces to N = x × m. The
objective function f of the experimental design is:

f : R × N
+ × N

+ → N
+

f(β, γ, λ) = MinN : ξ ≥ 90%

where ξ represents accuracy.

d) Choice/Formulation of Experimental Design: In our Extended Exper-
imental Design (EXD), we minimize the combinations of Grid-size with problem-
size and then, combinations of Gridsize with machine-size. By minimizing the
combinations of Grid-size with problem-size, we actually minimize number of
experiments against different problem-sizes across the heterogeneous Grid-sites.
Similarly, by minimizing the Grid-size combinations with machine-size factor, we
actually minimize number of experiments against different problem-sizes across
different number of processors. To meet these objective, we employ PST [2]
mechanisms (see Section 4.2).

In our design, we choose one Grid-site (the fastest one, based on the ini-
tial runs) as a base Grid-site and make a full factorial of experiments on it.
Later, we use its execution times as reference values to calculate predictions for
other platforms (the target Grid-sites) using inter-platform PST and thus min-
imize problem-size combinations with Grid-size. We also make one experiment
on each of other different Grid-sites to make PST work. Similarly, to minimize
machine-size combinations with Grid-size, we need a full factorial of experiments
with one machine-size, the base machine-size (which we already have while min-
imizing problem-size combinations with Grid-size), and later use these values
as reference values. We make one experiment each for all other machine-sizes,
to translate the reference execution times to that for other machine-sizes using
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intraplatform PST. The approach of making full factorial design of experiments
is also necessary because we neither make any assumptions about the perfor-
mance models of different applications, nor we make their analytical models at
run time, because making analytical performance models for individual appli-
cations is more complex and less efficient than making full factorial design of
experiments for once. In initial phase, we restrict the full factorial design of
experiments to the commonly used range of problem-size.

By means of inter-platform PST, the total number of experiments N reduces
from a polynomial complexity of p×x×m to p×x+(m−1) for parallel machines,
and from a polynomial complexity of x×m to a linear complexity of x− 1 + m
for single processor machines. Introducing intra-platform PST, we are able to
reduce total number of experiments for parallel machines (Grid-sites) further to
a linear complexity of p + (x − 1) + (m − 1) or p + m + x − 2.

e) Performing of experiments: We address performing of experiments under
automatic training phase as described in Section 6.

We design above step d to eliminate the need of next two steps presented
by Montgomery et. al. the statistical analysis & modeling and conclusions, to
minimize the serving costs on the fly.

6 Automatic Training Phase Based on EXD

If we consider the whole training phase as a process then, in executing the de-
signed experiments, the process variables are application problem-size, machine-
size and Grid-size. Our automatic training phase is a three layered approach;
layer 1 for the initial test runs, layer 2 for the execution of experiments designed
in experimental design phase, and layer 3 for the PST mechanism. In the initial
test runs of the training phase, we need to make some characterizing or screening
to establish some conjectures for the next set of experiments. This information is
used to decide the base Grid-site. In layer 2, execution of experiments on differ-
ent Grid-sites is planned according to the experimental design, and the training
manager executes these experiments on the selected Grid-sites. The collected
information is passed through layer 3, the PST mechanism, to store in a per-
formance repository. First, the training manager makes one initial experiment
on all non-identical Grid-sites G from Grid-site sample space GT for maximum
values of problem-sizes. Second, it selects the Gridsite with minimum execution
time as base Grid-site and makes a full factorial design of experiments on it.
We categorize two Grid-sites to be identical if they have same number of pro-
cessors, processor architecture, processor speed, and memory. We also exclude
those identical Grid-sites with i processors gi for which gi ⊂ gj for i ≤ j, i.e.
if a cluster or a sub-cluster is identical to another cluster or sub-cluster then
only one of them will be included in training phase. Similarly, if a cluster or a
sub-cluster is a subset of another cluster or sub-cluster then only the super set
cluster is included in the training phase

The information from these experiments is archived to serve prediction pro-
cess. For applications having a wide range of problem-size, we have support of
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distributed training phase. In distributed training phase we split the full fac-
torial design of experiments from one machine to different Grid-sites which are
included in the training phase. Distributed training phase exploits opportunistic
load balancing [15] for executing experiments to harness maximum paralleliza-
tion of training phase.

7 Application Performance Prediction System:
G-Prophet

The ultimate goal of automatic training phase is to support performance predic-
tion service, to serve automatic execution time predictions. To serve application
performance prediction prediction system G-Prophet (Grid- Prophet), imple-
mented under ASKALON, utilizes the inter- and intra-platform PST mecha-
nisms to furnish the predictions using Equation 1 as:

ρg(α, ri) =
ρh(α, ri)
ρh(α, rj)

× ρg(α, ri)

and/or Equation 2 as:
ρg(α, ri, l) =

ρg(α, ri, l)
ρg(α, rj , m)

× ρg(α, ri, m)

G-Prophet uses the the nearest possible reference values for serving the predic-
tions, available from the training phase or actual run times. From the minimum
training set, we observe a prediction accuracy of more than 90% and a standard
deviation of 2% in the worst case.

8 Experiments and Analysis

In this section, we describe the experimental platform and real world applica-
tions used for our experiments, the scalability and performance results from our
proposed experimental design against the different changes in the factors in-
volved (as defined in Section 5). For our results presented here, each result is
taken as an average of five repetitions of the experiment to guard against the
anomalous results.

8.1 Experimental Platform

We have conducted all of our experiments on the Austrian Grid environment.
The Austrian Grid consortium combines Austria’s leading researchers in ad-
vanced computing technologies with well-recognized partners in Grid-dependant
application areas. The description of Austrian test bed sites for our experi-
ments is given in Table 2. Our experiments are conducted on three real world
applications Wien2k [3], Invmod [2] and meteoAG [4]. Wien2k application
allows performing electronic structure calculations of solids using density func-
tional theory based on the full-potential augmented planewave ((L)APW) and
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local orbital (lo) method. Invmod application helps in studying the effects of cli-
matic changes on the water balance through water flow and balance simulations,
in order to obtain improved discharge estimates for extreme floods. MeteoAG
produces meteorological simulations of precipitation fields of heavy precipitation
cases over the western part of Austria with RAMS, at a spatially and temporally
fine granularity, in order to resolve most alpine watersheds and thunderstorms.

8.2 Performance and Scalability Analysis

The EXD scales efficiently against the changes in different factors involved in
ED. During our experiments we obtain quite promising results. The scalabil-
ity analysis is shown in Figure 3. We analyzed the scalability of EXD w.r.t.
problem-size, by varying the problem-size factor for fixed remaining factors; 10
parallel Grid-sites with machine-size 20 and 50 single processor machines. The
problem-size was varied from 10 to 200 and the reduction in the total number
of experiments was observed from 96% to 99%. In another setup for analyzing
scalability w.r.t machine-size, a reduction of 77% to 97% in the total number of
experiments was observed when machine-size was varied from 1 to 80, for fixed
factors of 10 parallel machines, 50 single processor Grid-sites and problem-size
of 5. From another perspective, we observed that total number of experiments
increased from 7% to 9% when Grid-size was increased from 15 to 155, for the
fixed factors of 5 parallel machines with machine-size of 10 and problem-size 10.
We observed an overall reduction of 78% to 99% when all the factors we varied
simultaneously: 5 parallel machines with machine-size from 1 to 80, single pro-
cessor Grid-sites from 10 to 95, and problem-size from 10 to 95. Performance and
normalization results for interplatform PST are shown for Wien2k and Invmod
in Figure 4, 5 and 6, 7 respectively. Figure 4 shows the measured performance
of Wien2k on 5 different Grid-sites, and Figure 5 shows the normalized per-
formance on these Grid-sites. For Wien2k the normalization is made with the
execution time against the problem-size of 9.0. Figure 6 shows the measured
execution time of Invmod on 5 different Grid-sites, and Figure 7 shows the nor-
malized performance on these Grid-sites. The normalization for Invmod is made
with execution time against the problem-size of 20.0. Automatic training phase
made only 49 experiments out of total 492 for Wien2k (approx. 10%), and for
Invmod conducted only 24 experiments out of total 192 (approx. 14%) on the
test bed described above. Identical curves of normalized execution times exhibit
the realization of inter-platform PST for these applications. Performance nor-
malization results for interaplatform PST are shown in Figure 8, 9 and 10, 11.
Figure 8 and 10 show the measured performance of MeteoAG for different values
of problem-sizes and machine-sizes on two different Grid-sites hcma and zid-cc.
Figures 9 and 11 show normalized performance of MeteoAG on these Grid-sites.
The normalization is performed with the execution time against machine-size
of 1. The training phase conducted only 162 out of total 6669 experiments (ap-
prox. 2.2%). The identical normalized performance curves show the realization
of intera-platform PST.
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sis of EXD
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9 Related Work

There have been some attempts to get reactive training set for performance
prediction of Grid application through Analytical benchmarking and templates
[5,6], but to our knowledge we are the first to attempt to make a proactive train-
ing phase with proper experiment management and control through a step by
step experimental design. Many multi-platform performance studies like [11]
evaluated their approaches with data collected at multiple Grid-sites. However,
data from each Grid-site are processed individually. Our approach, instead, uti-
lizes benchmark performance results from one platform (base Grid-site) to share
this information for other platforms (target Grid-sites). Iverson et al. [5] and
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Marin et al. [13] use parameterized models to translate execution times across
the heterogeneous platforms but their models need human interaction to param-
eterize all machines performance attributes. In contrast, we make our models on
the basis of normalized/relative performance, which does not need any source
code and manual intervention. Moreover it is difficult to use their approach for
different languages. Leo et al. [7] use partial executions for cross platform per-
formance translation. Their models need source code instrumentation and thus
require human intervention. To contrast, our approach does not require source
code and code instrumentation. Systems like Prophesy [9], PMaC [8], and
convolution methods to map hand-coded kernels to Grid-site profiles [10] base
on modeling computational kernels instead of complex applications with diverse
tasks. In contrast, we develop observation-based performance translation, which
does not require in-depth knowledge of parallel systems or codes. This makes
our approach application- , language- and platform-independent. Reducing the
number of experiments in adaptive environments dedicated to applications, by
tuning parameters at run time have been applied by couple of works like AT-
LAS [15] (tuning performance of libraries by tuning parameters at run time).
Though this technique improves the performance, yet is very specific to the ap-
plications. Unlike this work, we do not do run time modeling/tuning at run
time, as modeling individual applications is more complex and less efficient than
making the proposed experiments.
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Abstract. Effective and efficient mapping algorithms for multisite
parallel applications are fundamental to exploit the potentials of grid
computing. Since the problem of optimally mapping is NP–complete,
evolutionary techniques can help to find near–optimal solutions. Here a
multiobjective Differential Evolution is investigated to face the mapping
problem in a grid environment aiming at reducing the degree of use of
the grid resources while, at the same time, maximizing Quality of Service
requirements in terms of reliability. The proposed mapper is tested on
different scenarios.

1 Introduction

Grid [1] is a decentralized heterogeneous multisite system which aggregates
geographically dispersed and multi–owner resources (CPUs, storage system,
network bandwidth,...) and can be profitably used to execute MPI computational
intensive applications [2]. In fact, a grid represents a collaborative computational–
intensive problem–solving environment, in which MPI applications, each made up
of multiple message–passing subtasks, can be submitted without knowing where
the resources are or even who owns these resources.

When the execution of an MPI grid application must satisfy user–dependent
requirements [3], such as performance and Quality of Service (QoS) [4], single
sites resources could be insufficient for meeting all these needs. Thus, a multisite
mapping tool, able to obtain high throughput while matching applications needs
with the networked grid computing resources, must be conceived.

In this work we deal with the mapping problem from the grid manager’s
point of view, so our aim is to find the solution which uses at the minimum
the grid resources it has to exploit at the most and respects the user QoS
requests. Naturally, in absence of information about the communication timing,
the job execution on grid is possible only if the co–scheduling of all its subtasks is
guaranteed [5]. In this hypothesis, we distribute the application subtasks among
the nodes minimizing execution time and communication delays, and at the same
time optimizing resource utilization. QoS issues are investigated only in terms
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of reliability. This means that our mapper maximizes reliability by preferring
solutions which make use of devices, i.e. processors and links connecting the
sites to internet, which only seldom are broken.

As the mapping is an NP–complete problem [6], several evolutionary–based
techniques have been used to face it in a heterogeneous or grid environment
[7,8,9,10,11]. To provide the user with a set of possible mapping solutions, each
with different balance for use of resources and reliability, a multiobjective version
of Differential Evolution (DE) [12] based on the Pareto method [13] is here
proposed. Unlike the other existing evolutionary methods which simply search
for one site onto which map the application, we deal with a multisite approach.
Moreover, as a further distinctive issue with respect to other approaches
proposed in literature [14], we consider the nodes making up the sites as the
lowest computational unit taking into account its reliability and its actual load.

Paper structure is as follows: Section 2 illustrates our multiobjective mapper,
Section 3 reports on the test problems experienced and shows the results achieved
and Section 4 contains conclusions and future works.

2 DE for Mapping Problem

The technique. Given a minimization problem with q real parameters, DE faces
it starting with a randomly initialized population consisting of M individuals
each made up by q real values. Then, the population is updated from a generation
to the next one by means of different transformation schemes. We have chosen
a strategy which is referenced as DE/rand/1/bin. In it for the generic i–th
individual in the current population three integer numbers r1, r2 and r3 in
[1, . . . ,M] differing one another and different from i are randomly generated.
Furthermore, another integer number s in the range [1, q] is randomly chosen.
Then, starting from the i–th individual a new trial one i′ is generated whose
generic j–th component is given by xi′j

= xr3j
+ F · (xr1j

− xr2j
), provided that

either a randomly generated real number ρ in [0.0, 1.0] is lower than the value
of a parameter CR, in the same range as ρ, or the position j under account
is exactly s. If neither is verified then a simple copy takes place: xi′j

= xij . F
is a real and constant factor which controls the magnitude of the differential
variation (xr1j

− xr2j
). This new trial individual i′ is compared against the

i–th individual in the current population and, if fitter, replaces it in the next
population, otherwise the old one survives and is copied into the new population.
This basic scheme is repeated for a maximum number of generations g.

Definitions. To focus the mapping problem in a grid we need information on the
number and on the status of both accessible and demanded resources. We assume
to have an application task subdivided into P subtasks (demanded resources)
to be mapped on n nodes (accessible resources) with n ∈ [1, . . . , N ], where P is
fixed a priori and N is the number of grid nodes. We need to know a priori the
number of instructions αi computed per time unit on each node i. Furthermore,
we assume to have cognition of the communication bandwidth βij between any
couple of nodes i and j. Note that βij is the generic element of an N × N
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symmetric matrix β with very high values on the main diagonal, i.e., βii is the
bandwidth between two subtasks on the same node. This information is supposed
to be contained in tables based either on statistical estimations in a particular
time span or gathered tracking periodically and forecasting dynamically resource
conditions [15,16]. In the Globus Toolkit [4], which is a standard grid middleware,
the information is gathered by the Grid Index Information Service (GIIS) [16].

Since grids address non dedicated–resources, their own local workloads must
be considered to evaluate the computation time. There exist several prediction
methods to face the challenge of non–dedicated resources [17, 18]. For example,
we suppose to know the average load i(Δt) of the node i at a given time span
Δt with i(Δt) ∈ [0.0, 1.0], where 0.0 means a node completely discharged and
1.0 a node locally loaded at 100%. Hence (1 − i(Δt)) · αi represents the power
fraction of the node i available for the execution of grid subtasks.

As regards the resources requested by the application task, we assume to
know for each subtask k the number of instructions γk and the number of
communications ψkm between the k–th and the m–th subtask ∀m �= k to be
executed. Obviously, ψkm is the generic element of a P ×P symmetric matrix ψ
with all null elements on the main diagonal. All this information can be obtained
either by a static program analysis, or by using smart compilers or by other tools
which automatically generate them. For example the Globus Toolkit includes an
XML standard format to define application requirements [16].

Finally, information must be provided about the degree of reliability of any
component of the grid. This is expressed in terms of fraction of actual operativity
πz for the processor z and λw for the link connecting to internet the site w to
which z belongs. Any of these values ranges in [0.0, 1.0].

Encoding. In general, any mapping solution should be represented by a vector μ
of P integers ranging in the interval [1, N ]. To obtain μ, the real values provided
by DE in the interval [1, N + 1[ are truncated before evaluation. The truncated
value �μi� denotes the node onto which the subtask i is mapped.

For all mapping problems in which also communications ψkm must be taken
into account, the allocation of a subtask on a given node can cause that the
optimal mapping needs that also other subtasks must be allocated on the same
node or in the same site, so as to decrease their communication times and thus
their execution times, taking advantage of the higher communication bandwidths
existing within any site compared to those between sites. Such a problem is a
typical example of epistasis, i.e. a situation in which the value taken on by a
variable influences those of other variables. This situation is also deceptive, since
a solution μ1 can be transformed into another μ2 with better fitness only by
passing through intermediate solutions, worse than both μ1 and μ2, which would
be discarded. To overcome this problem we have introduced a new operator,
named site mutation, applied with a probability pm any time a new individual
must be produced. When this mutation is to be carried out, a position in μ is
randomly chosen, let us suppose its contents refers to a node in site Ci. Then
another site, say Cj , is randomly chosen. If this latter has Nj nodes, the position
chosen and its next Nj − 1 are filled with values representing consecutive nodes
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of Cj , starting from the first one of Cj . If the right end of the chromosome
is reached, this process continues circularly. If Nj > P this operator stops
after modifying the P alleles. If site mutation does not take place, the classical
transformations typical of DE must be applied.

Fitness. Given the two goals described in Section 1, we have two fitness
functions, accounting one for the time of use of resources and the other for
their reliability.

Use of resources. Denoting with τcomp
ij and τcomm

ij respectively the computation
and the communication times requested to execute the subtask i on the node j it
is assigned to, the generic element of the execution time matrix τ is computed as:

τij = τcomp
ij + τcomm

ij

In other words, τij is the total time needed to execute the subtask i on
the node j. It is evaluated on the basis of the computation power and of the
bandwidth which remain available once deducted the local workload. Let τs

j be
the summation on all the subtasks assigned to the j–th node for the current
mapping. This value is the time spent by node j in executing computations
and communications of all the subtasks assigned to it by the proposed solution.
Clearly, τs

j is equal to zero for all the nodes not included in the vector μ.
Considering that all the subtasks are co–scheduled, the time required to

complete the application execution is given by the maximum value among all
the τs

j . Then, the fitness function is:

Φ1(μ) = max
j∈[1,N ]

{τs
j } (1)

The goal of the evolutionary algorithm is to search for the smallest fitness
value among these maxima, i.e. to find the mapping which uses at the minimum,
in terms of time, the grid resource it has to exploit at the most.

Reliability. In this case the fitness function is given by the reliability of the
proposed solution. This is evaluated as:

Φ2(μ) =
P∏

i=1

π�μi	 · λw (2)

where �μi� is the node onto which the i–th subtask is mapped and w is the site
this node belongs to.

It should be noted that the first fitness function should be minimized, while the
second should be maximized. We face this two–objective problem by designing
and implementing a multiobjective DE algorithm based on the Pareto–front
approach. It is very similar to the DE scheme described in Sect. 2, apart from
the way the new trial individual i′ is compared to the current individual i. In
this case i′ is chosen if and only if it is not worse than i in terms of both the
fitness functions, and is better than i for at least one of them. By doing so, a set
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Algorithm 1
randomly initialize population
evaluate fitness Φ1 and Φ2 for any individual x
while (maximal number of generations g is not reached) do

begin
for i = 1 to M do

begin
choose a random real number psm ∈ [0.0, 1.0]
if (psm < pm) apply site mutation
else

begin
choose three integers r1, r2 and r3 in [1,M], with r1 	= r2 	= r3 	= i
choose an integer number s in [1, q]
for j = 1 to q do

begin
choose a random real number ρ ∈ [0.0, 1.0]
if ( (ρ < CR) OR (j = s) ) xi′

j
= xr3j

+ F · (xr1j
− xr2j

)

else xi′
j

= xij

end
if ( ((Φ1(xi′) < Φ1(xi)) AND (Φ2(xi′) ≥ Φ2(xi))) OR

((Φ1(xi′) ≤ Φ1(xi)) AND (Φ2(xi′) > Φ2(xi))) )
insert xi′ in the new population

else insert xi in the new population
end

end
end

of “optimal” solutions, the so–called Pareto optimal set, emerges in that none of
them can be considered to be better than any other in the same set with respect
to all the single objective functions. The pseudocode of our DE for mapping is
shown in the following Algorithm 1.

3 Experiments and Results

We assume to have a multisite grid architecture composed of N = 116 nodes
divided into five sites (Fig. 1). Hereinafter the nodes are indicated by means of
the external numbers, so that 37 in Fig. 1 is the fifth of 16 nodes in the site B.
Without loss of generality we suppose that all the nodes belonging to the same
site have the same power α expressed in terms of millions of instructions per
second (MIPS). For example all the nodes belonging to B have α = 900.

We have considered for each node three communication bands: the band-
width βii available when subtasks are mapped on the same node (intranode
communication), the bandwidth βij between the nodes i and j belonging to the
same site (intrasite communication) and the bandwidth βij when the nodes
i and j belong to different sites (intersite communication). For the sake of
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Fig. 1. The grid architecture

simplicity we presume that βij = βji and that all the βiis have the same very
high value (100 Gbit/s) so that the related communication time is negligible
with respect to intrasite and intersite communications (Table 1).

Table 1. Intersite and intrasite bandwidths expressed in Mbit/s

A B C D E

A 10
B 2 100
C 6 3 1000
D 5 10 7 800
E 2 5 6 1 100

Moreover we assume to know the local average load i(Δt) · αi of available
grid nodes and, as concerns the reliability, we suppose that λw = 0.99 ∀w ∈
{A, B, . . . , E}, while in any site the nodes have different π values (Table 2).

Table 2. Reliability for the nodes

Sites A B C D E

nodes 1–12 13–32 33–40 41–48 49–58 59–64 65–72 73–84 85–100 101–116
π 0.99 0.96 0.97 0.99 0.97 0.99 0.99 0.97 0.98 0.96

Since a generally accepted set of heterogenous computing benchmarks does
not exist, to evaluate the effectiveness of our DE approach we have conceived
and explored four scenarios of increasing difficulty: one without communications
among subtasks, one in which communications are added, another in which lo-
cal node loads are also considered and a final in which reliability of a link is
decreased. To test the behavior of the mapper also as a function of P , two
cases have been dealt with: one in which P = 20 and another with P = 35.
Given the grid architecture, P = 20 has been chosen to investigate the ability
of the mapper when the number of subtasks is lower than the number of nodes
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of some of the sites, while P = 35 has been considered to evaluate it when this
number is greater than the number of nodes in any site.

After a preliminary tuning phase, DE parameters have been set as follows:
M = 100, g = 1000, CR = 0.8, F = 0.5, pm = 0.2. All the tests have been made
on a 1.5 GHz Pentium 4. For each problem 20 DE runs have been performed.
Each execution takes about 1 minute for P = 20 and 2 minutes for P = 35. Note
that these times are negligible since the mapping is related to computationally
intensive grid applications which require several hours to be executed.

Henceforth we shall denote by μΦ1 and μΦ2the best solutions found in terms
of lowest maximal resource utilization time and of highest reliability, respectively.

Experiment 1. It has regarded an application of P = 20 subtasks with γk = 90
Giga Instructions (GI), ψkm = 0 ∀k, m ∈ [1, . . . , P ], i(Δt) = 0 for all the nodes
and λw = 0.99 ∀w ∈ {A, B. . . . , E}. Any execution of the DE mapper finds
out several solutions, all being non–dominated in the final Pareto front. The
solutions at the extremes of the achieved front are:

μΦ1 = {62, 63, 64, 65, 66, 78, 68, 69, 81, 70, 71, 72, 74, 75, 76, 57, 58, 59, 60, 61}

which has fitness values of Φ1 = 52.94, Φ2 = 0.579 and uses, as expected, the
most powerful nodes of the sites C and D, and

μΦ2 = {47, 43, 63, 63, 64, 59, 60, 61, 62, 59, 64, 61, 66, 62, 68, 69, 70, 71, 48, 46}

which has Φ1 = 100.00, Φ2 = 0.668 and uses the most reliable nodes contained
in the sites B, C and D. Furthermore, the system proposes some other non–
dominated solutions better balanced in terms of the two goals, like for instance:

μ = {71, 59, 68, 61, 76, 60, 60, 70, 69, 61, 63, 65, 51, 64, 63, 75, 62, 72, 56, 67}

with Φ1 = 90.0, Φ2 = 0.616. It is up to the user to choose, among the proposed
solutions, the one which best suits his/her needs.

Experiment 2. In it all the parameters remain unchanged, but we have added
a communication ψkm = 10 Mbit ∀k, m ∈ [1, . . . , P ]. In this case we have:

μΦ1 = {72, 73, 74, 75, 66, 77, 78, 69, 80, 81, 82, 83, 84, 65, 76, 67, 68, 79, 70, 71}

with Φ1 = 53.17 and Φ2 = 0.523. It is worth noting that the presence of
communications yields that all the subtasks are mapped on the same site D,
differently from the previous test case. In fact, C is the site with the fastest
processors, but if the mapper used the 16 nodes of C only, then on some
of them two subtasks should be placed, which would require a computation
time on those nodes of (90000 · 2)/2000 = 90s, higher than that needed to
execute one subtask on a node of D, i.e. (90000/1700) = 52.94s. Furthermore,
communications between C and D nodes are quite slower than those within the
same site due to communication bandwidths. Moreover, we have:

μΦ2 = {70, 71, 64, 65, 62, 67, 71, 69, 70, 66, 72, 68, 72, 65, 66, 67, 68, 69, 60, 61}
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with Φ1 = 117.66, Φ2 = 0.668. Also in this case many intermediate solutions are
provided, which cannot be shown here for the sake of brevity.

Experiment 3. It is based on the same scenario as in the previous one, but
we have taken into account the node loads as well, namely (Δt) = 0.9 for all
the nodes of the sites B and D, while for the site C we assume i(Δt) = 0.8 for
i ∈ [49, . . . , 52] and i(Δt) = 0.6 for i ∈ [53, . . . , 64]. The best mappings are:

μΦ1={85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104}

with Φ1 = 130.47, Φ2 = 0.502, and

μΦ2 = {63, 1, 5, 4, 60, 5, 1, 7, 3, 12, 2, 6, 3, 6, 2, 8, 9, 10, 8, 11}

with Φ1 = 398.66, Φ2 = 0.668. As concerns μΦ1 it is to remark that all
subtasks have been placed on the nodes of E. This might seem strange, since
nodes 53 − 64 in C, being loaded at 60%, are capable of providing an available
computation power of 800 MIPS, so they are anyway more powerful than those
in E. Nonetheless, since P = 20, those nodes would not be sufficient and four
less powerful would be needed. The most powerful after those in C are those
in E, and, in terms of Φ1, these two solutions are equivalent, since the slowest
resources utilized are in both cases nodes in E, yielding a resource use due to
computation of 128.57s. Moreover, the communications within E are faster than
those between C and E, hence the μΦ1 proposed. As regards μΦ2 , instead, it
correctly chooses among the most reliable nodes in the grid, and strongly uses
the nodes 1− 12 of A.

Experiment 4. It is as the third, but we have supposed that λA = 0.97. This
should cause that, as far as reliability is concerned, solutions containing nodes
of A should not be preferred, unlike the previous experiment. The best solutions
found are:

μΦ1 ={85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104}

with Φ1 = 130.47, Φ2 = 0.502 and

μΦ2 = {59, 60, 69, 60, 62, 64, 67, 59, 63, 61, 61, 63, 62, 65, 61, 71, 60, 66, 60, 72}

with Φ1 = 549.47, Φ2 = 0.668. We can see that μΦ1 is the same as before, while
μΦ2 has optimally shifted to the most reliable nodes in C and D. This confirms
that our mapper correctly deals with low reliability issues.

Experiment 5. It has regarded an application of P = 35 subtasks with γk = 90
Giga Instructions (GI), ψkm = 0 ∀k, m ∈ [1, . . . , P ], i(Δt) = 0.0 for all the
nodes and λw = 0.99 ∀w ∈ {A, B. . . . , E}. The best mappings provided by our
tool are:

μΦ1 = {72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 50, 51, 52, 53, 54,

55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71}
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with Φ1 = 52.94s, Φ2 = 0.32 and uses the most powerful nodes in C and D, and

μΦ2 = {66, 59, 60, 56, 59, 41, 61, 62, 69, 71, 65, 63, 62, 72, 67, 68, 53, 72,

44, 61, 62, 66, 71, 47, 74, 66, 63, 65, 63, 68, 71, 70, 43, 61, 65}

with Φ1 = 158.82s, Φ2 = 0.465 and picks the most reliable nodes among the
sites B, C and D. Furthermore, the system proposes some other non–dominated
solutions which are better balanced in terms of the two goals.

Experiment 6. It is like the fifth but we have added a communication ψkm = 10
Mbit ∀k, m ∈ [1, . . . , P ]. The best solutions are:

μΦ1 = {81, 82, 83, 84, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80}

with Φ1 = 74.60s, Φ2 = 0.322 and

μΦ2 = {60, 66, 73, 61, 61, 66, 69, 59, 66, 65, 69, 72, 70, 48, 60, 76, 61, 42,

71, 67, 59, 41, 67, 65, 70, 65, 65, 62, 70, 68, 64, 64, 60, 69, 54}

with Φ1 = 293.14s, Φ2 = 0.465. The mapping μΦ1 uses only nodes in sites C
and D, i.e., the most powerful ones. In fact, in this case the increase in execution
time due to communications between sites is lower than that which would be
obtained by using just one site and mapping two subtasks on a same node.

Experiment 7. It is like the sixth but we have taken into account the node
loads as well, namely (Δt) = 0.9 for all the nodes of the sites B and D, while
for the site C we assume i(Δt) = 0.8 for i ∈ [49, . . . , 52] and i(Δt) = 0.6 for
i ∈ [53, . . . , 64]. This time we have:

μΦ1 = {93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,
110, 111, 112, 113, 114, 115, 116, 59, 60, 61, 85, 86, 87, 88, 89, 90, 91, 92}

with Φ1 = 165.85s, Φ2 = 0.257 and

μΦ2 = {1, 6, 63, 8, 9, 2, 5, 1, 2, 6, 7, 5, 6, 7, 8, 9, 10, 24, 12, 1, 2,

3, 9, 57, 4, 5, 6, 7, 8, 9, 10, 11, 64, 65, 66}

with Φ1 = 860.01s, Φ2 = 0.47. In this case μΦ1 maps 32 subtasks on the site
E and 3 on the nodes 59, 60 and 61 of C. This might seem strange, since
nodes 53 − 64 in C, being loaded at 60%, are capable of providing an available
computation power of 800 MIPS, so they are anyway more powerful than those
in E. Nonetheless, since P = 35, those nodes would not be sufficient and 23
less powerful would be needed. The most powerful after those in C are those
in E, and, in terms of Φ1, these two solutions are equivalent since the slowest
resources utilized are in both cases nodes in E, yielding a resource use due to
computation of (90000/700) = 128.57s. Moreover, the intrasite communications
of E are faster than the intersite between C and E, hence the μΦ1 proposed.
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It is to note that a number of subtasks on E greater than 32 would imply that
more than one subtask should be placed per node. This would heavily increase
the computation time. On the contrary, a number of subtasks on C greater than
3 and lower or equal to 12 would leave the computation time unchanged but
would increase the amount of intersite communication time.

As regards μΦ2 , instead, the suboptimal solution chooses all the nodes with
π = 0.99 apart from node 24 with π = 0.96 and node 57 with π = 0.97.

Experiment 8. The scenario is the same as in the previous case, but we have
supposed that the reliability λA = 0.97. The best solutions found are:

with Φ1 = 165.85s, Φ2 = 0.257 and

μΦ2 = {65, 57, 58, 59, 79, 61, 68, 62, 65, 65, 66, 67, 63, 69, 70, 71, 72, 73,

60, 62, 58, 48, 60, 61, 71, 63, 64, 41, 66, 38, 68, 69, 70, 71, 72}

with Φ1 = 1653.55s, Φ2 = 0.437. Here μΦ1 uses heavily site E and some nodes
from C. This solution is slightly different from that in the previous experiment,
but has the same fitness value. The solution μΦ2 instead uses the most reliable
nodes in sites B, C and D and, as it should be, avoids nodes from A which has
λA = 0.97. Moreover, the five non optimal nodes (38, 57, 58, 73 and 79) in the
solution are not in E because E, at parity of reliability, has inferior performance
due to its minor intrasite bandwidths.

In Fig. 2 we report the final Pareto front of the alternative mapping solutions,
equivalent from an evolutionary point of view, found out for one of the runs
for this last test. In this case, the solutions range between those with a good
reliability Φ2 and with a high time of use of resources Φ1 to those with a lower
reliability but with a minor use time. As it can be easily perceived from the
figure, the solutions which yield better balance in satisfying both goals are those
in the intermediate region of the front. In fact such solutions are geometrically
closer to the theoretically optimal solution for which Φ1 → 0 and Φ2 → 1.

Table 3 shows for each test (Exp. no) for both fitnesses the best final value
Φb, the average of the final values over the 20 runs 〈Φ〉 and the variance σΦ.
The tests have evidenced a high degree of efficiency of the proposed model
in terms of goodness for both resource use and reliability. In fact, efficient
solutions have been provided independently of work conditions (heterogenous
nodes diverse in terms of number, type and load) and kind of application
tasks (computation or communication bound). Moreover, we have that often,
especially as regards the problems with P = 20 subtasks, σ(Φ1) = 0 which
means that in all the 20 runs the same final solution, i.e. the globally best one,
has been found.
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Fig. 2. The solutions on the Pareto front for experiment 8

Table 3. Findings for each experiment

P=20 P=35

Exp. no. 1 2 3 4 5 6 7 8

Φb
1 52.94 53.17 130.47 130.47 52.94 74.60 165.85 165.85

〈Φ1〉 52.94 53.17 130.47 130.47 93.61 94.93 224.33 165.85
σΦ1 0 0 0 0 17.86 15.02 31.44 0

Φb
2 0.668 0.668 0.668 0.668 0.465 0.465 0.470 0.437

〈Φ2〉 0.668 0.668 0.660 0.652 0.443 0.448 0.436 0.419
σΦ2 0 0 0.008 0.008 0.009 0.008 0.013 0.011

4 Conclusions and Future Works

This paper faces the grid multisite mapping problem by means of a
multiobjective DE considering two goals: the minimization of the use degree
of the grid resources and the maximization of the reliability of the proposed
mapping. The results show that DE is a viable approach to the important
problem of grid resource allocation.

Due to the lack of systems which operate in the same conditions as ours,
at the moment, a comparison to ascertain the effectiveness of our multisite
mapping approach is difficult. In fact some of these algorithms, such as Min–min,
Max–min, XSuffrage [14], are related to independent subtasks and their
performance are affected in heterogenous environments. In case of dependent
tasks, the classical approaches apply the popular model of Direct Acyclic
Graph differently from ours in which no assumptions are made about the
communication timing among the processes since we have hypothesized the
subtasks co–scheduling.

In addition to reliability, we intend to enrich our tool to manage multiple QoS
requirements (performance, bandwidth, cost, response time and so on).
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Abstract. Optical burst switching (OBS) has been proposed as the next 
generation optical network for grid computing. In this paper, we envision a 
heterogeneous Grid served by an Optical Burst Switching framework, where 
grid traffic co-exists with IP and/or a 10 GE based traffic to achieve economy 
of scale. This paper addresses the latency that Grid jobs experience in OBS 
networks.  The injection of jumbo size grid jobs can potentially affect the 
latency experienced by IP/10GE traffic. Simulation results have shown that in 
Grids served by an optical burst switch, grid jobs consistently have lower 
latency than co-existing IP/10GE traffic, with a slightly elevated latency of 
IP/10GE traffic when the size of grid jobs increases. We conclude that given the 
fact that OBS can efficiently handle the enormous amount of bandwidth made 
available by DWDM technology, Grid over Optical Burst Switching is a cost 
effective way to provide grid services, even for latency sensitive grid 
computing applications. 

1   Introduction 

Grid computing [1][2] is a potential approach to making the rapidly growing world 
wide information resources available when and where they are needed, without the 
need to physically duplicate those resources. Information resources can be 
characterized as processing and storage resources. The vehicle that makes these 
resources available remotely is, of course, the communication facility. Design issues 
associated with communication facility are critically important because the facility 
must meet the requirements of the specific application; for example, in terms of the 
needed bandwidth, while at the same time meeting the latency and availability 
requirements within the price parameters of the intended application.  

The global telecommunication infrastructure is rapidly evolving to make grid 
computing a reality. The Dense Wavelength Division Multiplexing (DWDM) 
technology provides enormous bandwidth at declining transmission costs making it 
ubiquitous for long haul transmission. Optical switching techniques, especially, 
optical wavelength switching or lambda switching techniques are emerging for large 
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bandwidth switching or cross connect applications. Because of the enormous 
bandwidth (10 gigabits per second or higher) associated with a wavelength, lambda 
switching by itself is not suitable for most end-user applications. The two 
complementary switching techniques — optical burst switching (OBS) [3][4] and 
optical packet switching — will fill in the needs of lower bandwidth granularity 
applications. Of these two, optical burst switching, has reached a degree of maturity 
and is the target technology for complementing lambda switching in the near term.   

Optical burst switching has been proposed as the next generation optical network 
for grid computing [5][6][7]. However, in order to achieve economy of scale, grid 
jobs will co-exist with IP and/or 10GE (Gigabit Ethernet) traffic in the OBS 
networks.  It is important to understand the latency that grid jobs experience in the 
OBS networks since grid jobs are usually associated with a job completion time, 
especially for latency sensitive grid computing applications. In addition, the injection 
of jumbo size grid jobs can potentially affect the latency experienced by IP/10GE 
traffic. 

The rest of the paper is organized as follows. Section 2 provides the background of 
OBS networks. We present the grid over optical burst switching network architecture 
in Section 3. In Section 4, the latency of grid jobs and how grid jobs affect the latency 
of co-existing IP/10GE traffic are discussed in detail. We conclude our work in 
Section 5. 

2   Optical Burst Switching (OBS) Background 

We first give a brief introduction to optical burst switching (OBS). Figure 1 illustrates 
the basic concept for an optical burst switching network. The network consists of a set 
of OBS routers connected by DWDM links. The transmission links in the system 
carry tens or hundreds of DWDM channels, any one of which can be dynamically 
assigned to a user data burst. One (or possibly more than one) channel on each link is 
used as a control channel to control the dynamic assignment of the remaining 
channels to data bursts. 

WDM link

Edge Router

Core Router

OBS Network

 

Fig. 1. OBS router architecture 
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Fig. 2. Bursts and burst headers 

An OBS network works as follows. Shortly before the transmission of a data burst 
on a data channel, a burst header is sent on the control channel, specifying the 
channel on which the burst is being transmitted and the destination of the burst. The 
burst header also carries an offset field and a length field. The offset field defines the 
time between the transmission of the burst header and the data burst. The length field 
specifies the time duration of the burst on a DWDM channel. The offset and the 
length fields are used by the OBS routers to schedule the setup and release of optical 
data paths on-the-fly. Figure 2 shows an example of burst headers sharing the same 
control channel, while the corresponding data bursts are sent on separate data 
channels. 

An OBS core router, on receiving a burst header, selects an idle channel on the 
outgoing link leading toward the desired destination. Shortly before the arrival of the 
data burst, the OBS router establishes a lightpath between the incoming channel that 
the burst is arriving on and the outgoing channel selected to carry the burst. The data 
burst can stay in optical domain and flow through the OBS router to the proper 
outgoing channel. The OBS router forwards the burst header on the control channel of 
the outgoing link, after modifying the channel field to specify the selected outgoing 
channel. This process is repeated at every OBS router along the path to the 
destination.  
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Fig. 3. OBS edge router architecture 
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Fig. 4. OBS core router architecture 

Figure 3 illustrates the architecture of an OBS edge router. In the ingress direction, 
packets received on different line interfaces such as IP and Gigabit Ethernet (GE)/10 
GE are sent to the Burst Assembler. The burst assembler classifies the data according 
to their destinations and QoS levels, and assembles data into different bursts. Once a 
burst is formed, the burst assembler generates a burst header, which is transmitted on 
the control channel. After holding the burst for an offset time, the burst assembler 
releases the data burst to be transmitted on one of the data channels. The control 
channel and the data channels are combined onto the outgoing DWDM link using a 
passive optical multiplexer (MUX). The outgoing DWDM link is connected to the 
OBS core router. In the egress direction, the wavelengths on the incoming DWDM 
link are separated using an optical demultiplexer (DEMUX). The burst headers 
received on the control channel and the data bursts received on data channels are 
forwarded to the Burst Disassembler. The burst disassembler converts bursts back to 
packets and forwards them to the appropriate line interfaces. 

Figure 4 shows the key components of an OBS core router. The architecture 
consists of two parts, an optical datapath and an electrical control path. The 
datapath has optical interconnects with/without wavelength conversion capability. 
The control path includes O/E/O conversion, an electronic switch and a set of Burst 
Schedulers (BSs). Each BS is responsible for making DWDM channel scheduling 
decisions for a single outgoing link. The electronic switch routes the burst headers 
received on the control channels of the incoming DWDM links to the corresponding 
BS according to the destination of the data burst. The BS selects an outgoing 
channel for the burst and configures the optical switching matrix such that bursts 
arriving on incoming data channels can pass through to the desired outgoing 
channels directly without buffering.   
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Fig. 5. Grid over optical burst switching architecture 

3   Grid over Optical Burst Switching Network Architecture 

In this section, we describe a decentralized Grid over Optical Burst Switching 
architecture that consists of grid aware edge routers and transparent core routers as 
shown in Fig. 5. In the decentralized architecture, grid resources can be connected to 
the grid aware edge router directly, or they can be connected through intermediate 
networks such as IP network or GE/10GE. Distributed grid resource discovery is 
achieved as an overlay that can potentially affect the states in all or a subset of the 
edge routers. 

The major rational behind the proposed architecture as oppose to the intelligent 
OBS router described in [3] is scalability. With the grid computing shifting from 
scientific computing oriented grids to consumer oriented grids, the grid resources will 
be owned and managed by many entities, each with their own policy and privilege. If 
grid resource management is implemented as part of the OBS core router functions, 
the resource discovery and management can easily become the performance 
bottleneck. In addition, it is relatively cheap to add grid resources such as hundreds of 
Terabits of storage, or a server bank, than to gain access to the precious control 
resources in the OBS network.  

The general edge router model shown in Fig. 3 still applies to the grid aware edge 
router, except that the capability of the Burst Assembler block is different, which we 
call the Grid Aware Burst Assembler. Figure 6 shows the functional blocks inside the 
Grid Aware Burst Assembler. The inputs to the burst assembler are from the line card 
interfaces.  

The Traffic Classifier block separates traditional IP/10GE traffic, grid jobs and grid 
management packets. The traditional IP/10GE traffic is forwarded to the Router  
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Fig. 6. Grid aware burst assembler 

Lookup/Classification block. Grid jobs which arrive in jumbo size, whether or not 
encapsulated in IP/10GE packets, are sent to the grid job buffer while the grid job 
control information is processed by the Grid Specific Classification Block. The grid 
management packets are directed to the Grid Management Packet Processor, which 
in turn configures the states in the Grid Specific Classification block when necessary.  

When the traditional IP/10GE packets determine the destination edge router and 
possibly the Quality-of-Service (QoS) level, they are routed to proper burst assembly 
queues. The grid specific classification block will determine the destination of the 
grid job and forwards the jumbo size grid job to the burst assembly queue. When the 
conditions to form a burst (maximum burst length or maximum timeout) are met, the 
burst is sent to the next block for burst header generation. 

As we can see, grid jobs will merge with traditional IP/10GE traffic into the burst 
assembly queue. For simplification purpose, from this point on, we use IP traffic with 
the understanding that IP and 10GE belong to the same category. In the next section, 
we will investigate the latency performance of the Grid over OBS model under 
heterogeneous traffic conditions. 

4   Latency Analysis with Heterogeneous Traffic 

When grid jobs co-exist with traditional IP traffic, the jumbo size grid job can 
potentially affect the latency of the IP traffic. It is also important to understand the 
latency characteristics of grid jobs when grid jobs are transported over OBS networks 
because a time constraint is usually placed on the grid job, especially for latency 
sensitive grid computing applications. 

The latency that packets (both IP packets and grid job jumbo packets) experience 
in OBS networks is determined by (1) the burst formation latency formT ; (2) the 
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transmission latency tranT ; (3) the propagation delay propT ; and (4) the offset time 

offsetT between the burst header and the burst.   

The burst formation latency formT  is the time that a packet spends at the ingress 

edge router before the burst of which it is a part is formed. The transmission latency 

tranT  is the time that the burst experiences in the process of exiting the ingress edge 

router. The propogation delay tranT  is the time that burst takes to traverse the core 

OBS network and is determined by the fiber miles between the ingress edge router 
and egress edge router. The offset time offsetT  accounts for the burst header processing 

time in the core OBS network and is equal to a pre-set per hop offset multiplied by the 
number of hops a burst is going to traverse in the OBS network. 

Therefore, the total latency 
total_latencyT  that a packet experiences is 

form tran offset proptotal_latencyT T T T T= + + + . (1) 

In this paper, we focus on the factors that can potentially affected by the injection 
of jumbo size grid jobs. Since the propagation delay propT  and the offset time 

offsetT can be calculated for both IP packets and grid job jumbo packets once the 

destination edge router is determined, we do not include these two terms in the 
following discussion. For the rest of the section, we investigate the latency that a 
packet (IP or grid job) experiences during the burst formation time and the 
transmission latency that a packet experiences after the burst is launched. 

We formulate the problem as follows. 
Assume a burst contains m  IP packets and n  grid jobs before it is launched. 

Denote the i-th IP packet in the burst 
ip

i
p  with arrival time 

ip

i
t  and length 

ip

i
l , 1, ,i m= " . Denote the j-th grid job jumbo packet in the burst 

grid

jp  with arrival 

time 
grid

jt  and length 
grid

jl , 1, ,j n= " . Without loss of generality, we have 

ip ip ip ip ip

1 2 1i m mt t t t t +< < < < < <" "  , 1, ,i m= " , (2) 

and 

1 2 1

grid grid grid grid grid

n njt t t t t
+

< < < < < <" " , 1, ,j n= " . (3) 

At an OBS edge router, a burst is formed when the maximum burst length maxL  is 

reached, or the maximum timeout maxT  is reached [8]. Therefore, based on the above 

definition, a burst is formed under either of the following conditions: 

1 1
maxip grid

m n

i j

ji
l l L

= =
+ ≥∑ ∑  , (4) 
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or 

max

max

ip grid ip grid

ip grid ip grid

1 1

1 1 1 1

max( , ) min( , )

min( , ) min( , )

m n

m n

t t t t T

t t t t T+ +

⎧ − ≤
⎪
⎨

− >⎪
⎩

  .   (5) 

For an IP packet 
ip

i
p , the burst formation latency it experiences is  

maxform_ip ip grid ip grid ip

1 1max( , , min( , ))
m n iiT t t T t t t+ −= .     (6) 

Similarly, the burst formation latency that a grid job 
grid

j
p  experiences is 

maxform_grid ip grid ip grid grid

1 1max( , , min( , ))
jm njT t t T t t t+ −= . (7) 

Once a burst is launched, a packet (either IP or grid) has to wait for all packets 
(both IP and grid) in the burst that arrive earlier to be transmitted on the channel.  

For an IP packet 
ip

i
p that satisfies the following condition 

1

grid ip grid

k i k
t t t

−
< <  ,   (8) 

the transmission latency 
tran_ip

i
T  is 

1 1

s=0 t=0
tran_ip ip grid

i ki s t
T l l

− −

= +∑ ∑ .    
(9) 

Similarly, for a grid job 
grid

j
p  that satisfies the following condition:  

1

ip grid ip

jl l
t t t

−
< <  ,    (10) 

the transmission latency 
tran_grid

j
T  is 

11

s=0 t=0
tran_grid ip grid

jlj s tT l l
−−

= +∑ ∑ .      (11) 

The latency 
latency_ip

i
T  that an IP packet 

ip

i
p  experiences is 

latency_ip form_ip tran_ip

i i i
T T T= + , (12) 
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and the latency 
latency_grid

j
T  that a grid job 

grid

j
p  experiences is 

latency_grid form_grid tran_grid

j j j
T T T= + .      (13) 

The average latency 
avg_latency_ipT  of the IP packets in the burst is  

1
avg_latency_ip latency_ip

1 m

i

iT T
m =

= ∑ .         (14) 

The average latency 
avg_latency_gridT  of the grid jobs in the burst is 

1
avg_latency_grid latency_grid

1 n

j

jT T
n =

= ∑ .                 (15) 

Based on the above model, we have conducted simulations to study the effect of 
grid jobs on the latency in grid over optical burst switching under heterogeneous 
traffic conditions.  

Figure 7 illustrates the variation in latency as a function of the grid job load. The 
grid job load is expressed as a fraction of occupancy of the trunk on which the burst is 
sent out. The IP packet load is similarly expressed as a fraction of the trunk 
occupancy. IP packets are assumed to be exponentially distributed with a mean length 
of 1.5 kBytes. The mean grid job size is 1.5 Mbytes with exponential distribution. As 
noted earlier, bursts can be formed either due to the maximum timeout interval or due 
to the maximum allowable burst length. The reduction in latency as the load increases 
is somewhat anti-intuitive. It is, however, explained by the fact that as the load 
increase, the maximum allowable burst is quicker to form, thus expediting its exit. 
The correlation in the latency reduction for both the IP packet and grid job is similarly 
explained. The average latency is the weighted latency of the two kinds of traffic 
considered, namely, the packet traffic and the grid job traffic. 
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Fig. 7. Latency with fixed IP packet traffic load 
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Fig. 8. Latency with fixed grid job traffic load 
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Fig. 9. Latency with fixed total traffic load 

Figure 8 presents latency as a function of the grid job load under the condition that 
the packet load is varied to keep the overall load constant at 0.8. The scenario would 
imply that as the grid job load increases (as shown on the X-axis), the packet load 
would correspondingly reduce to keep the overall load constant. The figure clearly 
indicates the relatively low sensitivity of the average latency to the mixture of traffic 
as long as the total traffic is kept constant.  

Figure 9 shows the variation of latency to the IP packet load, when the grid job 
load is kept constant at 20% of the trunk capacity. As in Fig. 7, the latency falls as the 
load increases because a higher level of load implies a quicker exit of the burst 
because of the maximum allowable burst size.  

Figure 10 illustrates the impact of the grid job size on latency when both the packet 
load and the grid job load are kept constant at occupancies of 0.6 and 0.2 respectively. 
As shown in Fig. 8, latency is largely insensitive to the grid job size as long as the 
overall load is kept constant. However, the packet load latency does increase because  
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Fig. 10. Latency with varying grid job sizes 

packets are crowded out by longer grid jobs. The grid jobs experience lower latency 
because larger grid jobs utilize the bandwidth more efficiently. 

5   Conclusion 

In this paper, we have envisioned that grid jobs co-exist with IP/10GE traffic in 
optical burst switching networks in order to achieve economy of scale. We have 
investigated the latency of grid jobs when transported over optical burst switching 
networks. We have also studied the impact of jumbo size grid jobs on the co-existing 
IP/10GE traffic. Simulation results have shown that in a Grid over OBS, grid jobs 
consistently have lower latency than co-existing IP/10GE traffic, with a slightly 
elevated latency for IP/10GE traffic when the size of grid jobs increases. We conclude 
that given the fact that OBS can efficiently handle an enormous amount of bandwidth 
made available by DWDM technology, Grid over Optical Burst Switching is a cost 
effective way to provide grid services, even for latency sensitive grid computing 
applications. 
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Abstract. This paper presents a new algorithm for computing the singular value 
decomposition (SVD) on multilevel memory hierarchy architectures. This 
algorithm is based on one-sided JRS iteration, which enables the computation 
of all Jacobi rotations of a sweep in parallel. One key point of our proposed 
block JRS algorithm is reusing the loaded data into cache memory by 
performing computations on matrix blocks (b rows) instead of on strips of 
vectors as in JRS iteration algorithms. Another key point is that on a reasonably 
large number of processors the number of sweeps is less than that of one-sided 
JRS iteration algorithm and closer to the cyclic Jacobi method even though not 
all rotations in a block are independent. The relaxation technique helps to 
calculate and apply all independent rotations per block at the same time. On 
blocks of size b×n, the block JRS performs O(b2n) floating-point operations on 
O(bn) elements, which reuses the loaded data in cache memory by a factor of b. 
Besides, on P parallel processors, (2P-1) steps based on block computations are 
needed per sweep. 

1   Introduction 

Singular value decomposition (SVD) is an extremely powerful and useful tool in 
Linear Algebra. There are many applications of the SVD in scientific computing and 
digital signal processing. See [1] for some applications. SVD problem is a very 
computationally intensive problem that needs to exploit the growing availability of 
parallel hardware. Thus, many researchers have worked on designing efficient 
techniques to compute SVDs in parallel to reduce the execution time especially for real 
time applications. This paper presents our proposed algorithm block JRS, which is 
based on the one-sided JRS iteration algorithm proposed in [2]. The JRS iteration 
algorithms enable the computation of all Jacobi rotations of a sweep in parallel. Each 
sweep of this algorithm consists of several rotations and in each rotation, the value of an 
off-diagonal element is decreased to a fraction of its current value (instead of to zero). 

The well-known sequential bidiagonalization-based Golub-Kahan-Reinsch SVD 
algorithm [3] takes O(mn2) time on an n×m matrix. For large matrices the execution 
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time may be unacceptable. Thus, it is essential to develop efficient parallel 
algorithms. The bidiagonalization-based SVD algorithm has been found to be difficult 
to parallelize and hence most works on parallel SVD focus on Jacobi-based 
techniques. Both two-sided Jacobi and one-sided Jacobi techniques have been studied 
in this context. Brent and Luk [4] presented a parallel one-sided SVD algorithm using 
a linear array of n processors, with a run time of O(mnS), where S is the number of 
sweeps. They also presented an O(nS) time algorithm to compute the singular values 
of a symmetric matrix using an array of n2 processors. Zhou and Brent [5] described 
an efficient parallel ring ordering algorithm for one-sided Jacobi. 

Becka and Vajtersic [6] presented a parallel block two-sided Jacobi algorithm on 
hypercubes and rings with a run time of O(n2S). They also gave an O(nS) time 
algorithm on meshes with n2 processors [7]. Becka et al. [8] proposed a dynamic 
ordering algorithm for a parallel two-sided block-Jacobi SVD with a run time of 
O(n2S). Oksa and Vajtersic [9] designed a systolic two-sided block-Jacobi algorithm 
with a run time of O(nS). Strumpen et al. [10] presented a stream algorithm for one-
sided Jacobi that has a run time of O(n3S/p2), where p is the number of processors (p 
being O(n1/2)). They created parallelism by computing multiple Jacobi rotations 
independently and applying all the transformations thereafter. Rajasekaran et al. [2] 
employed the idea of separating rotation computations and transformations. They 
used a novel scheme to reduce the number of sweeps.  

We propose a new algorithm for computing SVDs based on the relaxation 
technique proposed by Rajasekaran et al. [2]. This algorithm is fundamentally 
different from all the algorithms that have been proposed for SVD. The proposed 
block JRS algorithm employs the same idea of decreasing (relaxing) the off-diagonal 
elements proposed by Rajasekaran et al. [2]. However, it differs from the JRS 
algorithms in the partitioning strategy of the input matrix among processors. Besides, 
it is a highly parallel algorithm designed to exploit the memory hierarchy by 
processing blocks to reuse the loaded data into cache memories. However, JRS 
iteration algorithms are working on strips of vectors. On the block JRS, the input 
matrix Am×n is divided into blocks of size b×n, where ⎣m/2P⎦ ≤ b ≤ ⎡m/2P⎤ and P is 
the number of available processors. This means that not all block sizes are necessarily 
the same, which is more flexible. One of the key points of the block JRS is reusing the 
loaded data into cache memory by performing the computations on blocks (b rows) 
instead on strips of vectors. To be specific, it performs O(b2n) floating-point 
operations on O(bn) elements, which reuses the loaded data in cache memory by a 
factor of b. Another key point is the number of sweeps is less than one-sided JRS 
iteration algorithm and closer to the cyclic Jacobi method even though not all 
rotations in a block are independent. The relaxation technique helps to calculate and 
apply multiple rotations per block at the same time.  

This paper is organized as follows. The following section reviews the singular 
value decomposition. Two-sided and one-sided Jacobi as well as one-sided JRS 
algorithms are explained. Section 3 describes the proposed block JRS iteration 
algorithms. Our results are shown in Section 4. Finally, Section 5 concludes our 
paper. 
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2   Singular Value Decomposition  

A singular value decomposition of a real matrix Am×n is defined as the computation of 
three matrices Um×m, Σm×n, and Vn×n such that: 

Am×n = Um×m Σm×n V
T

n×n, (1) 

where Um×m and Vn×n are orthogonal matrices (i.e. UTU = Im and VTV = In), and Σm×n is 
a diagonal matrix diag(σ0, σ1, σ2, ……,σn-1) on top of (m-n) rows of zeros, assuming 
that m ≥ n. The σi are the singular values of Am×n. Matrix Um×m contains n left singular 
vectors, and matrix Vn×n consists of n right singular vectors. The singular values and 
singular (column) vectors of Um×m and Vn×n form the relations 

Avi = σi ui   and   ATui = σi vi. (2) 

All the existing parallel algorithms use the Jacobi iteration as the basis. The Jacobi 
iteration algorithm attempts to diagonalize the input matrix Am×n by a series of Jacobi 
rotations where each rotation tries to zero-out an off-diagonal element. It needs to 
perform n(n-1)/2 rotations (in the case of a symmetric n×n matrix) attempting to zero-
out all the off-diagonal elements. These n(n-1)/2 transformations constitute a sweep. 
It can be shown that after each sweep the norm of the off-diagonal elements decreases 
and hence the algorithm converges. It is believed that the number S of sweeps needed 
for convergence of the sequential Jacobi iteration algorithm is O(log n) [3]. There are 
two variants of Jacobi based algorithm, namely, one-sided and two sided.  

2.1   Two-Sided Jacobi SVD 

The two-sided Jacobi iteration algorithm transforms a symmetric matrix An×n into a 
diagonal matrix Σn×n by a sequence of Jacobi rotations (J), where each transform 
attempts to zero-out a given off-diagonal element of An×n.  

Σn×n = (Jn
T · · · (J3

T (J2
T (J1

T AJ1)J2)J3) · · · Jn
T) = (J1J2J3 · · · Jn)

TA(J1J2J3 · · · Jn) (3) 

The Jacobi rotation J(i, j, θ) for an index pair (i, j) and a rotation angle θ is a square 
matrix that is equal to the identity matrix I plus four additional entries at the 
intersections of rows and columns i and j: 

J(i, j, θ) = 
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where c = cos(θ) and s = sin(θ). It is clear that the Jacobi rotation is an orthogonal 
matrix (i.e. J(i, j, θ)T J(i, j, θ) = I) from the fact of cos2(θ) + sin2(θ) = 1. The c and s 
are computed as follows. Consider one of the transformations: B = JTAJ, c and s are 
chosen such that the resultant matrix B is diagonal, i.e., bij = bji = 0. 
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By solving this equation and taking the smaller root (see [3] for more detail), c and s 
are obtained by: 

21

1

t

c

+
=    and   s = t*c, (6) 

where  

1

)(

2 ++
=

ττ

τsign
t    and   

ij

jjii

a

aa

2

−
=τ  (7) 

Depending on the order of choosing the element to be zeroed, there are classic 
Jacobi and cyclic Jacobi algorithms. In the classic Jacobi iteration algorithm, each 
transformation chooses the off-diagonal element of the largest absolute value. 
However, searching for this element requires expensive computations. Cyclic Jacobi 
algorithm sacrifices the convergence behavior and steps through all the off-diagonal 
elements in a row-by-row fashion. For example, if n = 3, the sequence of elements is 
(1, 2), (1, 3), (2, 3), (1, 2), … . The computation is organized in sweeps such that in 
each sweep every off-diagonal element is zeroed once. Note that when an off-
diagonal element is zeroed it may not continue to be zero when another off-diagonal 
element is zeroed. After each sweep, it can be shown that, the norm of the off-
diagonal elements decreases monotonically. Thus the Jacobi algorithms converge. 

2.2   One-Sided Jacobi SVD 

The two-sided Jacobi algorithms are computationally more expensive than the one-
sided algorithms. Moreover, to implement the two-sided Jacobi method, it needs to 
traverse both row and column of the given matrix; however, matrices are stored either 
in row-major or column-major format. Thus, one of the two traversals will be less 
efficient on conventional memory architectures. In other words, one of the two 
traversals accesses the elements of the input m×n matrix with unit stride, which is 
efficient; however, the other traversal performs stride n accesses, which is expensive 
because of cache miss handling time. On the other hand, the one-sided rotation 
modifies rows only, which is more suitable for memory hierarchy architectures. Thus 
to achieve efficient parallel SVD computation the best approach may be to adapt the 
Hestenes one-sided Jacobi transformation method [11] as advocated in [4, 12]. 

Hestenes one-sided Jacobi algorithm first produces a matrix Bm×n whose rows are 
orthogonal by premultiplying Am×n with an orthogonal matrix Um×m: 
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Um×m Am×n = Bm×n, (8) 

where rows of Bm×n satisfy bi
Tbj = 0 for i ≠ j. Followed by this Bm×n is normalized by: 

Vn×n = S−1Bm×n, (9) 

where Sn×n = diag(s1, s2, . . . , sn), and si = bi
Tbi. It can be easily shown that Am×n = 

UT
m×m Sm×n Vn×n, which is equivalent to the definition of SVD. 
One-sided Jacobi is also realized by a series of Jacobi rotations, but on one side. 

For a given i and j, rows i and j are orthogonalized by Bm×n = JTAm×n where J = J(i, j, 
θ) is the same matrix as in the two-sided Jacobi (see equation 4) and: 
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here c and s are chosen such that bi
Tbj = 0. The solution of them is: 
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As we could see, there is a close similarity between one-sided and two sided versions 
of the Jacobi algorithm.  

2.3   One-Sided JRS Iteration Algorithm 

Since any rotation in the one-sided Jacobi algorithm changes only the corresponding 
(two) rows, there exists inherent parallelism in the Jacobi iteration algorithms. For 
example, the n(n - 1)/2 rotations in any sweep can be grouped into (n − 1) non-
conflicting rotation sets each of which contains n/2 rotations. The idea of the JRS 
iteration algorithms is to perform each set of rotations in parallel. One can think of the 
Jacobi algorithm as consisting of two phases. In the first phase all the rotation 
matrices are computed. In the second phase the rotation matrices are multiplied to get 
B, and then S and V are calculated. Consider any rotation operation. JRS performs all 
the n(n - 1)/2 rotations of a sweep in parallel even though not all of these rotations are 
independent. Followed by this the second phase has to be completed. This involves 
the multiplication of O(n2) rotation matrices.  

The JRS iteration algorithm also has sweeps and in each sweep we perform 
rotations. The only difference is that in a given rotation, however, the norm of two 
rows does not zero-out but rather the value of this norm is decreased by a fraction of 
its current value. Given two column vectors ui and uj, the norm of them is reduced to a 
fraction of it. In the relaxation technique, c and s are chosen such that vT

i vj = λuT
iuj 

instead of vT
i vj = 0. 
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From the following transformation  
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it is easily to get 

vT
i = c uT

i - s uT
j   and   vT

j =  s uT
i + c uT

j, (14) 

then 

vT
i vj = (c ui - s uj)

T (s uT
i + c uT

j) = uT
i uj (c

2 − s2) + (uT
i ui − uT

i uj)cs = λ uT
i uj, (15) 

where λ is in the interval [0, 1). When λ = 0, the JRS algorithm gives the same result 
of the original Jacobi iteration algorithm. The above equation can be solved for s and 
c as follows:  
If uT

i uj = 0, then set c = 1 and s = 0;  
Otherwise 
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According to [3], the smaller root should be chosen, so 
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Like in the regular Jacobi rotation, c and s can be computed as: 

21
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+
=    and    s = t*c. (20) 

3   Block One-Sided JRS Iteration Algorithm  

Any parallel algorithm for computing SVD on n×n matrix partitions the n(n - 1)/2 
rotations of a sweep into rotation sets. Each rotation set consists of some number of 
independent rotations. All the rotations of a rotation set are performed in parallel 
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because they are independent. Most of the parallel SVD algorithms in the literature 
employ (n - 1) rotation sets, where each rotation set consists of n/2 independent 
rotations. The streaming and JRS iteration algorithms are exceptions, where all the 
rotations can be calculated in parallel even though they are dependent. 

For computers with memory hierarchy, it is often preferable to partition the input 
data and to perform the computation on the blocks. This approach provides for full 
reuse of data while the block is held in cache memory. It avoids excessive movement 
of data to and from memory and gives a surface-to-volume effect for the ratio of 
arithmetic operations to data movement, i.e., O(n3) arithmetic operations to O(n2) data 
movement. In addition, on architectures that provide for parallel processing, 
parallelism can be exploited by performing operations on distinct blocks in  
parallel [13].  

The proposed block JRS algorithm divides the rows of the input matrix An×n into 
2P blocks, where P is the number of parallel processors. Not all the blocks should 
have the same size; the number of rows per block varies from ⎣n/2P⎦ to ⎡n/2P⎤. The 
computations of the block JRS algorithm are done in two main parts. In the first part, 
each processor calculates all the rotations in the given block even though they are 
dependent and store them into 1-D arrays c[] and s[]. The length of these arrays is 
(n/2P)(n/2P-1)/2 or (n2/8P2 - n/4P), assuming that P divides n. (Each block is of the 
same size, namely, n/2P rows). For example if n/2P = 4, the first processor calculates 
the values of c[] and s[] for the following sequence of rows (1, 2), (1, 3), (1, 4), (2, 3), 
(2, 4), and (3, 4), which are six rotations. After calculating the arrays for c[] and s[], 
each processor applies these rotations to the corresponding block. The same is done 
for the second block (each processor works on the two blocks). This means that the 
total number of rotations in the first part of the proposed algorithm equals 2P*(n2/8P2 
- n/4P), which equals (n2/4P- n/2) rotations.  

The second part of our proposed block JRS iteration algorithm calculates then 
applies the rotations between blocks, where each processor works on two blocks. This 
part iterates (2P - 1) steps. The well-known round-robin technique is used for 
generating (2P - 1) orders. Figure 1 shows an example of generating seven orders 
needed for executing the second part of the block JRS on four processors. In each 
iteration (step) of the second part, each processor computes arrays of rotation 
parameters (c[] and s[]) for two blocks. Each row of the first block should be 
orthogonalized with all rows of the second block. A total of (n/2P)2 rotations are 
computed per processor working on two blocks. For example, assume that (n/2P) = 4. 
For a processor working on blocks 1 and 2, the following sequences are done to 
calculate c[1:16] and s[1:16]: (1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 
5), (3, 6), (3, 7), (3, 8), (4, 5), (4, 6), (4, 7), and (4, 8), which are sixteen rotations. 
After calculating arrays of rotation parameters (c[1:(n/2P)2] and s[1:(n/2P)2]), each 
processor applies (n/2P)2 rotations on its blocks. Then the round-robin routine is 
called for generating a new order, as shown in Figure 1. The number of rotations in 
the second part of the algorithm is P*(2P - 1)*(n/2P)2, which equals n2/2 - (n2/4P) 
rotations. Thus the total number of iterations in the block JRS algorithm equals n2/2 - 
n2/4P + n2/4P- n/2 = n(n - 1)/2. 
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Listing 1 depicts the proposed block JRS algorithm in detail. The first line 
calculates δ, which is used as a termination parameter of the repeat-until loop. It 
equals the norm of the input matrix times the machine epsilon (ε = 10-15). Line 2 of 
the proposed algorithm initializes up[] and dn[] arrays, which are used by the 
round-robin routine. Initially up[] array has even numbers (2, 4, 6, …) and dn[] 
array has odd numbers (1, 3, 5, …). These numbers indicate the block numbers 
associated with the processors at each step; processor i computes and applies the 
rotations of blocks up[i] and dn[i]. Figure 1 shows how the contents of the up[] and 
dn[] arrays are changed by calling the round-robin routine. Part one of the block 
JRS algorithm is depicted in lines 5 to 26, where the size of each block is stored in 
an array of data structure called SOB[]. SOB[i].low and SOB[i].high stores the 
number of the beginning row and last row of the block i. Besides, part two is 
depicted in lines 27 to 51. The last line computes the singular values form the 
orthogonal vectors.  
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Fig. 1. Round-robin method for generating seven orders on four processors 
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Listing 1: The proposed block JRS algorithm  
 
01. δ = ε ∑ A[i]TA[i], 1 ≤ i ≤ n 
02. for i = 1 to P { up[i]=2*i , dn[i]=2*i–1 } 
03. repeat { 
04.  converged = true 
05.  for s = 1 to (2*P) { 
06.   ind = 0 
07.   for i = SOB[s].low to SOB[s].high-1 { 
08.    for j = i+1 to SOB[s].high { 
09.     dii=A[i]TA[i] , djj=A[j]TA[j] , dij=A[i]TA[j]  
10.     if |dij| > δ then converged = false 
11.     if dij ≠ 0 then  
12.      τ=(djj-dii)/(2*dij),t=sgn(τ)/(|τ|+ sqrt(τ2+1)) 
13.      c[ind]=1.0/sqrt(t2+1) , s[ind]=t*c[ind] 
14.     else c[ind] = 1 , s[ind] = 0 
15.     ind = ind + 1 
16.   } } 
17.   ind = 0 
18.   for i = SOB[s].low to SOB[s].high-1 { 
19.    for j = i+1 to SOB[s].high { 
20.     for k = 1 to n {   
21.      temp = c[ind] * A[i][k] - s[ind] * A[j][k] 
22.      A[j][k]= s[ind] * A[i][k] + c[ind] * A[j][k] 
23.      A[i][k] = temp 
24.     } 
25.     ind = ind + 1 
26.  } } } 
27.  for iteration = 1 to (2*P – 1) { 
28.   for s = 1 to P { 
29.    ind = 0 
30.    for i = SOB[up[s]].low to SOB[up[s]].high { 
31.     for j = SOB[dn[s]].low to SOB[dn[s]].high { 
32.      dii=A[i]TA[i] , djj=A[j]TA[j] , dij=A[i]TA[j]  
33.      if |dij| > δ then  converged = false 
34.      if dij ≠ 0 then  
35.       τ=(djj-dii)/(2*dij),t=sgn(τ)/(|τ|+sqrt(τ2+1)) 
36.       c[ind]=1.0/sqrt(t2+1) , s[ind]=t*c[ind] 
37.      else c[ind] = 1 , s[ind] = 0 
38.      ind = ind +1 
39.    } } 
40.    ind = 0 
41.    for i = SOB[up[s]].low to SOB[up[s]].high { 
42.     for j = SOB[dn[s]].low to SOB[dn[s]].high { 
43.      for k = 1 to n {    
44.       temp=c[ind]*A[i][k] - s[ind]*A[j][k] 
45.       A[j][k]=s[ind]*A[i][k] + c[ind]*A[j][k] 
46.       A[i][k]=temp 
47.      } 
48.      ind = ind + 1 
49.   } } }  
50.   call round-robin(up[], dn[]) 
51.  } 
52. } until converged = true 
53. for i = 1 to n { σ[i] = sqrt(A[i]TA[i]) } 
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4   Experimental Results 

The proposed block JRS algorithm has been implemented and tested on matrices with 
sizes varying form 50×50 up to 1000×1000 in steps of 50. The contents of these 
matrices were generated randomly to have a value in the interval [1, 10]. Besides, the 
number of processors varies form 4 to 20 in steps of 2. We use the norm of the input 
matrix times 10-15 as the convergence parameter. 

Figure 2 shows the number of sweeps needed by the bock JRS algorithm. As we 
can see, the number of sweeps is close to that needed for the cyclic one-sided Jacobi 
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Fig. 2. The number of sweeps for the proposed algorithm 

Table 1. The number of sweeps for the block JRS algorithm 

 # Processors in Block JRS Matrix 
Size Native 4 6 8 10 12 14 16 18 20 

50 10 11 10 10 10 10 10 10 9 9 
100 11 13 12 12 12 11 11 11 11 10 
150 12 15 13 12 12 12 12 12 12 11 
200 12 17 14 13 13 13 13 13 13 12 
250 13 21 16 14 14 13 13 13 13 12 
300 13 24 17 14 15 14 14 14 14 14 
350 13 26 19 16 16 15 14 14 14 14 
400 13 27 21 16 16 15 14 14 14 14 
450 14 29 23 17 16 15 15 14 14 15 
500 14 30 23 18 17 16 15 15 15 15 
550 14 33 25 21 18 17 16 15 15 15 
600 14 33 26 22 18 17 16 15 14 15 
650 14 35 27 23 18 20 16 17 17 15 
700 15 35 28 24 19 18 19 16 15 16 
750 15 37 28 25 21 17 16 16 17 16 
800 14 38 30 25 22 19 17 16 17 17 
850 15 39 30 26 24 19 17 17 17 16 
900 15 39 32 27 24 20 18 17 18 17 
950 15 40 32 27 24 21 18 18 16 16 

1000 14 43 33 28 24 22 20 18 18 20 
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algorithm when the number of processor is reasonably large. Besides, Table 1 shows 
the same result.  

We have also studied the effect of the relaxation parameter λ on the performance of 
block JRS. The results are shown in Figure 3. When the number of processors is small 
the performance of the algorithm is very sensitive to the value of λ. A choice of 0.45 
or more for λ seems to be the best the processor range [4:20] tried. When the number 
of processors is 10 or more even a small value of λ seems to yield good performance. 
One could identify an optimal value of λ empirically using the ideas given in [2].  

Block JRS has also been tested for up to 250 processors and the numbers of 
sweeps for various values of the relaxation parameter λ are shown in Figure 4. The 
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Fig. 3. The effect of λ on the number of sweeps 
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matrix size used was 500×500. As we could see from this figure, when the number of 
processors is large, a value of zero or a small value for λ yields the best performance. 

5   Conclusion 

A new version of JRS iteration algorithm is proposed in this paper for the parallel 
computation of SVDs, which employs the same idea of decreasing (relaxing) the off-
diagonal elements instead of zeroing them out. The block JRS algorithm is a highly 
parallel algorithm designed to exploit the memory hierarchy by processing blocks to 
reuse the loaded data into cache memories. It differs form the JRS algorithms in the 
partitioning strategy of the input matrix among processors. One of the key points of 
the block JRS is reusing the loaded data into cache memory by performing the 
computations on blocks. It performs O(b2n) floating-point operations on O(bn) 
elements, which reuses the loaded data in cache memory by a factor on b. Another 
key point of the proposed algorithm is that on reasonably large number of processors, 
the number of sweeps is close to the cyclic Jacobi method even though not all the 
rotations in a block are independent. The relaxation technique helps to calculate and 
apply multiple rotations per block at the same time. 
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Abstract. A wide class of geometry processing and PDE resolution methods
needs to solve a linear system, where the non-zero pattern of the matrix is dic-
tated by the connectivity matrix of the mesh. The advent of GPUs with their
ever-growing amount of parallel horsepower makes them a tempting resource for
such numerical computations. This can be helped by new APIs (CTM from ATI
and CUDA from NVIDIA) which give a direct access to the multithreaded com-
putational resources and associated memory bandwidth of GPUs; CUDA even
provides a BLAS implementation but only for dense matrices (CuBLAS). How-
ever, existing GPU linear solvers are restricted to specific types of matrices, or use
non-optimal compressed row storage strategies. By combining recent GPU pro-
gramming techniques with supercomputing strategies (namely block compressed
row storage and register blocking), we implement a sparse general-purpose linear
solver which outperforms leading-edge CPU counterparts (MKL / ACML).

1 Introduction

1.1 Motivations

In the last few years, graphics processors have evolved from rendering simple 2D ob-
jects to rendering real-time realistic 3D environments. Their raw power and memory
bandwidth have grown so quickly that they significantly overwhelm CPU specifications.
For instance, a 2GHz CPU has a theoretical peak performance of 8 GFlops (4 floating
point operations per cycle using SSE), whereas modern GPUs have an observed peak
performance of 350 GFlops [1].

Moreover, graphics card manufacturers have recently introduced new APIs dedicated
to general purpose computations on graphics processor units (GPGPU [2]): CUDA
from NVIDIA [3] and CTM from ATI [4]. These APIs provide low-level or direct access
to GPUs, exposing them as large arrays of parallel processors.

Numerical solvers play a central role in many optimization problems that can be
strongly accelerated by using GPUs. The key point is parallelizing these algorithms in a
way that fits the highly parallel architecture of modern GPUs. As shown in Figure 1, our
GPU-based Concurrent Number Cruncher (CNC) accelerates optimization algorithms

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 358–371, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Fig. 1. Our CNC applied to mesh smoothing. Left: initial mesh; Center: smoothed mesh; Right:
geometry processing with irregular meshes yield matrices with arbitrary non-zero patterns. There-
fore, classic GPGPU techniques cannot be used. Our CNC implements a general solver on the
GPU that can process these irregular matrices.

and Partial Differential Equations (PDE)s solvers. Our CNC can solve large irregular
problems, based on a very general sparse storage format of matrices, and is designed to
exploit the computational capabilities of GPUs to their full extent.

As an example, we demonstrate our solver on two different geometry processing
algorithms, namely LSCM [5] (mesh parameterization) and DSI [6] (mesh smoothing).
As a front-end to our solver, we use the general OpenNL API [7].

In this work, we focus on iterative methods since they are easier to parallelize and
have a smaller memory footprint than direct solvers, they can be applied to very large
sparse matrices, and only a few iterations are needed in interactive contexts. Hence, our
CNC efficiently implements on the GPU using the CTM API a Jacobi-preconditioned
conjugate gradient solver [8] with a Block Compressed Row Storage (BCRS) of sparse
matrices (section 1.2 and 2.1). The BCRS format is much more efficient than the simple
Compressed Row Storage format (CRS) by enabling register blocking strategies, which
reduce the required memory bandwidth [9].

Moreover, we compare our GPU-CTM implementation of vector operations with
the CPU ones from the Intel Math Kernel Library (MKL) [10] and the AMD Core
Math Library (ACML) [11], which are highly multithreaded and SSE3 optimized. For
sparse matrix operations, we compare our GPU implementation with our SSE2 op-
timized CPU one since neither the MKL nor the ACML handle the BCRS format.
Note that the CUDA BLAS library (CuBLAS) does not provide sparse matrix storage
structures.

1.2 The Preconditioned Conjugate Gradient Algorithm

The preconditioned Conjugate Gradient algorithm is a well known method to itera-
tively solve a symmetric definite positive linear system [8] (extensions exist for non-
symmetric systems, see [12]). As it is iterative, it can be used to solve very large sparse
linear systems where direct solvers cannot be used due to their memory consumption.

Given the inputs A, b, a starting value x, a preconditioner M, a maximum number
of iterations imax and an error tolerance ε < 1, the linear system expressed as Ax =
b can be solved using the preconditioned conjugate gradient algorithm described as
follows:
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i ← 0; r ← b−Ax; d ← M−1r;
δnew ← rT d; δ0 ← δnew;
while i < imax and δnew > ε2δ0 do

q ← Ad; α ← δnew
dT q ;

x ← x + αd; r ← r−αq;
s ← M−1r; δold ← δnew;
δnew ← rT s; β ← δnew

δold
;

d ← r + βd; i ← i+ 1;
end

In this paper, we present an efficient implementation of this algorithm using the
Jacobi-preconditioner (M = diag(A)) for large sparse linear systems using hardware
acceleration through the CTM-API [4].

1.3 Previous Works on GPU Solvers

Depending on the discretization of the problem, solving PDEs involves band, dense or
general sparse matrices. Naturally, the different types of matrices lead to specific solver
implementations. Most of these methods rely on low-level BLAS APIs.

Band matrices
The first type of solver developed on GPUs were band solvers [13]. This is due to the
natural and efficient mapping of band matrices into 2D textures. Most of the work done
in this field was for solving the pressure-Poisson equation for incompressible fluid flow
simulation applied to textures.

Dense matrices
Direct solvers for dense matrices were also implemented on GPUs for a Cholesky de-
composition [14], and for both Gauss-Jordan elimination and LU decomposition [15].

General sparse matrices
PDEs discretized on irregular meshes leads to solve irregular problems, hence call for
a general representation for sparse matrices. Two authors showed the feasibility of im-
plementing the Compressed Row Storage format (CRS). Bolz et al. [16] use textures
to store non-zero coefficients of a matrix and its associated two-level lookup table. The
lookup table is used to address the data and to sort the rows of the matrix according
to the number of non-zero coefficients in each row. Then, an iteration is performed on
the GPU simultaneously over all rows of the same size to complete, for example, a
matrix-vector product operation. Another approach was proposed by Krüger and West-
erman [13], based on vertex buffers (one vertex is used for each non-zero element).
Our CNC method also implements general sparse matrices on the GPU, but uses a
more compact representation of sparse matrices, and replaces the CRS format with
BCRS (Block Compressed Row Storage) [9] to optimize cache usage and enable regis-
ter blocking and vector computations.

New APIs, New Possibilities
Previous works on GPGPU used APIs such as DirectX [17] or OpenGL 2.0 [18] to ac-
cess GPUs and use high-level shading languages such as Brook [19], Sh [20] or Cg [21]
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to implement operations. Using such graphics-centric programming model devoted to
real-time graphics limits the flexibility, the performance, and the possibilities of modern
GPUs in terms of GPGPU.

Both ATI [4] and NVIDIA [3] recently announced or released new APIs, respec-
tively CTM and CUDA, designed for GPGPU. They provide policy-free, low-level
hardware access, and direct access to the high-bandwidth latency-masking graphics
memory. These new drivers hide useless graphical functionalities to reduce overheads
and simplify GPU programming. In addition to our improved data structures, we use
the CTM API to improve performance.

1.4 Contributions

The Concurrent Number Cruncher is a high-performance preconditioned conjugate gra-
dient solver on the GPU using the new ATI-CTM API dedicated to GPGPU which re-
duces overheads and provides fine controls for optimizations. The CNC is based on a
general optimized implementation of sparse matrices using BCRS blocking strategies,
and optimized BLAS operations through massive parallelization and vectorization of
the processing. To our knowledge, this is the first linear solver on the GPU that can be
efficiently applied to unstructured optimization problems.

2 The Concurrent Number Cruncher (CNC)

The CNC is based on two components: an OpenGL-like API to iteratively construct a
linear system (OpenNL [7]) and a highly efficient implementation of BLAS functions.
The following sections present some usual structures in supercomputing used in the
CNC, how we optimized them for modern GPUs and important implementation fea-
tures, which proved critical for efficiency.

2.1 Usual Data Structures in Supercomputing

Compressed Row Storage (CRS)
Compressed row storage [9] is an efficient method to represent general sparse matrices
(Figure 2). It makes no assumptions about the matrix sparsity and stores only non-zero
elements in a 1D-array, row by row. It uses an indirect addressing based on two lookup-
tables to retrieve the data: (1) a row pointer table used to determine the storage bounds
of each row of the matrix in the array of non-zero coefficients, and (2) a column index
table used to determine in which column the coefficient lies.

The Sparse Matrix-Vector Product Routine (SpMV)
The implementation of a conjugate gradient involves a sparse matrix-vector product
(SpMV) that takes most of the solving time [12]. This product y ← Ax is expressed as:

for i = 1 to n, y[i] = ∑
j

ai, jx j

Since this equation traverses all rows of the matrix sequentially, it can be implemented
efficiently by exploiting, for example, the CRS format (code for a matrix of size n×n):
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for i = 0 to n−1 do
y[i]← 0
for j = row_pointer[i] to row_pointer[i+ 1]−1 do

y[i] ← y[i]+ values[ j]× x[column_index[ j]]
end

end

The number of operations involved during a sparse product is two times the number
of non-zero elements of A [12]. Compared to a dense product that takes 2n2 operations,
the CRS format significantly reduces processing time.

2.2 Optimizing for the GPU

The massively parallel Single Instruction/Multiple Data (SIMD) architecture of modern
GPUs calls for specific optimization and implementation of algorithms. GPUs offer two
main levels of parallelism through multiple pipelines and vector processing, and several
possibilities of optimizations presented in this subsection.

Multiple Pipelines
Multiple pipelines can be used to process data with parallelizable algorithms. In our
implementation, each element of y is computed by a separate thread when computing
the y ← Ax sparse operation (SpMV). This way, each thread iterates through a row of
elements of the sparse matrix A to compute the product.

To maximize performance and hide memory-latencies, the number of threads used
must be higher than the number of pipelines. For example, on an NVIDIA G80 that has
128 pipelines, y size should be an order of magnitude higher than 128 elements.

Similarly, operations on vectors, as the SAXPY computing the equation y←α×x+y,
are parallelized by computing a unique element of the result y per thread.

To parallelize the vector dot product operation, the CNC implements an iterative
sum-reduction of the data as in [13]: at each iteration, each thread reads and processes
4 scalars and writes one resulting scalar. The original n-dimensional vector is hence
reduced by 4 at each iteration until only one scalar remains, after log4(n) iterations.

Vector Processing
Some GPU architectures (e.g. ATI X1k series) process the data inside 4-element vector-
processors. For such architectures, it is essential to vectorize the data inside 4-element
vectors to maximize efficiency. Since our implementation targets a vector GPU archi-
tecture (ATI X1k series), all operations are vectorized. On a scalar architecture like the
NVIDIA G80, data do not need to be vectorized. However, for random memory ac-
cesses, it is better to read one float4 than four float1 since the G80 architecture is able
to read 128bits in one cycle and one instruction. Note that on a CPU it is possible to use
SSE instructions to vectorize data processing.

Register Blocking: Block Compressed Row Storage (BCRS)
Unlike previous approaches which investigate, at best, only CRS format [16, 13], our
CNC uses an efficient GPU implementation of the BCRS format. Note that, even on the
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Fig. 2. Compressed Row Storage (CRS) and Block Compressed Row Storage (BCRS) examples
for the same matrix. The number of stored elements counts all stored elements, useful or not. The
number of fetches required to achieve a sparse matrix-vector product (SpMV) is provided for a 4-
vector architecture, less fetches being better for memory bandwidth. The filling ratio indicates the
average rate of non-zero data in each block, higher filling ratio being better for the computations.

CPU, BCRS is faster than CRS [9]. The BCRS groups non-zero coefficients in blocks of
size BN×BM to use the maximum memory fetch bandwidth of GPUs, take advantage
of registers to avoid redundant fetches, and reduce the number of indirections thanks to
the reduced size of the lookup tables.

When computing a product of a block spanned over more than one row, it is possible
to read only once the associated values from x of the block, store these values in regis-
ters, and reuse them for each row of the block, saving several texture-fetches. Figure 2
illustrates the influence of the block size on the number of fetches. For 4-component
vector architectures, fetching and writing scalars 4 by 4 maximizes both read and write
bandwidth. It is therefore useful to process all four elements of y at the same time, and
use blocks of size 4x4. Once the double indirection to locate a block using the lookup-
tables is solved, 4 fetches are required to read a 4x4 block, 1 to read the corresponding
4-scalars of x, and 1 write to output the 4-scalars of the product result into y. Values of
x are stored in registers, and reused for each row of the block, which results in fewer
fetches than in a classical CRS implementation.

The reduced sizes of the lookup tables reduce memory requirements and, more im-
portantly, the number of indirections to be solved during a matrix operation (each indi-
rection results in dependent memory fetches, which introduces memory latencies).

Although a large block size is optimal for register and bandwidth usage, it is adapted
only to compact matrices to avoid sparse blocks (Figure 2). The CNC implements 4x4
blocks, and also 2x2 blocks to handle cases where the 4x4 blocks present a very low



364 L. Buatois, G. Caumon, and B. Lévy

filling ratio. In the SpMV operation for a vector architecture, this 2x2 block size is
optimal regarding memory read of the coefficients of the block, but not to read the
corresponding x values and to write the resulting y values since only two scalars are
read from x and written in y.

2.3 Technicalities

The CTM (Close-To-Metal) device is a dedicated driver for ATI X1k graphics cards [4].
It provides low-level access to both graphics memory and graphics parallel processors.
The memory is exposed through pointers at the base addresses of the PCI-Express-
memory (accessible from both the CPU and GPU), and of the GPU-memory (only
accessible from the GPU). The CTM does not provide any allocation mechanism, and
lets the application fully manage memory. The CTM provides functions to compile and
load user assembly codes on the multiprocessors and functions to bind memory pointers
indifferently to inputs or outputs of the multiprocessors.

Our CNC implements a high-level layer for the CTM hiding memory management
by providing dynamic memory allocation for both GPU and PCI-Express RAM.

As shown in Figure 3, the CNC rolls vectors into 2D memory space to benefit from
the 2D memory-cache of GPUs, and hence can store very large vectors in one chunk (on
an ATI-X1k, the maximum size of a 2D array of 4-component vectors is 40962). The
BCRS matrix format uses three tables to store the column indices, the row pointers and
the non-zero elements of the sparse matrix. The row pointer and column index tables are
rolled as simple vectors, and the non-zero values of the matrix are rolled up depending
on the block size of the BCRS format. Particularly, the CNC uses strip mining strategies
to efficiently implement various BCRS formats. For the 2x2 block size, data are rolled
block by block on one 2D-array. For the 4x4 block size, data are distributed into 4 sub-
arrays fulfilled alternatively with 2x2 sub-blocks of the original 4x4 block as in [22].
Retrieving the 16 values of a block can be achieved by four memory fetches from the
four sub-arrays at exactly the same 2D index, maximizing the memory fetch capabilities
of modern GPUs and limiting address translation computations.

The CNC provides a high-level C++ interface to create and manipulate vectors and
matrices on the GPU. Vector or matrix data is automatically uploaded to the GPU mem-
ory at their instantiation for later use in BLAS operations. The CNC also pre-compiles
and pre-allocates all assembly codes to optimize their execution. To execute a BLAS
operation, the CNC binds the inputs and outputs of data on the GPU and calls the cor-
responding piece of assembly code.

The assembly code performing a BLAS operation is made of very “Close-To-Metal”
vector instructions as multiply-and-add or 2D memory fetch. It is finely tweaked using
semaphore instructions to asynchronously retrieve data, helping in a better paralleliza-
tion/masking of the latencies. The assembly code implementing a sparse matrix-vector
product counts about a hundred lines of instructions, and uses about thirty registers. The
number of used registers closely impacts performance, so we minimized their use.

The SpMV routine executes a loop for each row of blocks of a sparse matrix that can
be partially-unrolled to process blocks by pair. This allows to asynchronously pre-load
data and better mask the latencies of the graphics memory, especially for consecutive
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Fig. 3. Vector and BCRS sparse matrix storage representations on the GPU

dependent memory lookups. We increase the SpMV performance of about 30% by pro-
cessing blocks two by two for both 2x2 and 4x4 block sizes.

As the GPU memory is managed by pointers, outputs of an assembly code can be
bound to inputs of the next one, avoiding large overheads or useless data copy. In the
conjugate gradient algorithm, the CPU program only calls the execution of assembly
codes on the GPU in order, and binds/switches the inputs and outputs pointers. At the
end of each iteration, the CPU retrieves only one scalar value (δ) to decide to exit the
loop if necessary. Finally, the result vector is copied back to the PCI-Express memory
accessible to both the GPU and the CPU. Hence, the whole main loop of the conjugate
gradient is fully performed on the GPU.

3 Performance

The preconditioned conjugate gradient algorithm for sparse matrices requires BLAS
primitives for which this section provides comparisons in GFlops and percentage of
efficiency for CPU and GPU implementations in the CNC. See Table 1 to get the list of
implementations used for each operation on each hardware device.

For the SAXPY and SDOT benchmarks on the CPU, we used the Intel Math Kernel
Library (MKL) [10] and the AMD Core Math Library (ACML) [11] which are highly
multithreaded and optimized using SSE3 instructions. The CPU performance was, on
average, close between the MKL and the ACML, hence we choose to only present
the results from the former. The SpMV benchmark on the CPU is based on our multi-
threaded SSE2 optimized implementation, since both the MKL and the ACML do not
support the BCRS format.

To be absolutely fair, GPU results take into account all overheads introduced by
the graphics cards (cf. section 3.4). All benchmarks were performed on a dual-core
AMD Athlon 64 X2 4800+, with 2GB of RAM and an AMD-ATI X1900XTX with
512MB of graphics memory.

Benchmarks were performed at least 500 times to average the results, use synthetic
vectors for the SAXPY and SDOT cases, synthetic matrices for the SGEMM case (given
for reference), and real matrices built from the set of meshes described in Table 2 for
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Table 1. Implementations used according to the operation and computing device: CNC is our,
MKL is the Intel one, and CTM-SDK the ATI one

Device
Operation CPU GPU

SAXPY MKL CNC
SDOT MKL CNC
SpMV CNC CNC
Pre-CG MKL+CNC CNC

SGEMM (for reference) MKL CTM-SDK

Fig. 4. Parameterization of the Girl Face 3 and smoothing of the Phlegmatic Dragon using our
CNC solver on the GPU

Table 2. Meshes used for testing matrix operations. This table provides: the number of unknown
variables computed in case of a parameterization or a smoothing of a mesh, denoted by #var,
and the number of non-zero elements in the associated sparse-matrix denoted by #non-zero (data
courtesy of Eurographics for the Phlegmatic Dragon)

Parameterization Smoothing
Mesh #var #non-zero #var #non-zero

Girl Face 1 1.5K 50.8K 2.3K 52.9K
Girl Face 2 6.5K 246.7K 9.8K 290.5K
Girl Face 3 25.9K 1.0M 38.8K 1.6M
Girl Face 4 103.1K 4.2M 154.7K 6.3M

Phlegmatic Dragon 671.4K 19.5M 1.0M 19.6M

other cases. Figure 4 shows parameterization and smoothing examples of respectively
the Girl Face 3 and Phlegmatic Dragon models, both computed using our CNC on the
GPU.

3.1 BLAS Vector Benchmarks

Figure 5 presents benchmarks of SAXPY (y ← α× x + y) and SDOT/sum-reduction
operations on both CPU and GPU respectively using the MKL and our CNC. While
the performance curve of the CPU stays steady, the GPU performance increases with
the vector size. Increasing the size of vectors, hence the number of threads, helps the
GPU in masking the latencies when accessing the graphics memory. For the SDOT,
performances increase not as fast as for the SAXPY due to its iterative computation
that introduces more overheads and potentially more latencies which need to be hidden.
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Fig. 5. SAXPY (y ← α×x+y) and SDOT (sum-reduction of a vector) performances comparison
in function of the processed vector size between the CPU MKL implementation and our GPU
implementation

At best, our GPU implementation is 12.2 times faster than the CPU implementation of
the MKL for the SAXPY and 7.4 times faster for the SDOT.

3.2 SpMV Benchmarks

Testing operations on sparse-matrices is not straightforward since the number and lay-
out of non-zero coefficients strongly govern performance. To test sparse matrix-vector
product (SpMV) operations and preconditioned conjugate gradient, we choose five
models and two tasks (parameterization and smoothing) which best reflect typical situ-
ations in geometry processing (Figure 4 and Table 2).

Figure 6 shows the speed of the SpMV for various implementations and applica-
tions. Four things can be noticed: (1) CPU performance stays relatively stable for both
problems while the GPU performance increases according to the increasing size of the
matrices, (2) thanks to register blocking and vectorization, BCRS 4x4 is faster than 2x2
(which is also faster than CRS) for CPUs and GPUs, (3) GPU is about 3.1 times faster
than CPU with SSE2 for significant mesh sizes, and (4) multithreaded-SSE2 implemen-
tation enabling vector processing on the CPU is about 2.5 times faster than standard
implementation. For very small matrices, the CNC just compares to CPU implementa-
tions, but, in that case, a direct solver would be more appropriate.

3.3 Preconditioned Conjugate Gradient Benchmarks

Performance of the main loop of a Jacobi-preconditioned conjugate gradient is provided
in Figure 6. Since most of the solving time, about 80%, is spent within the SpMV
whatever hardware device is used, the SpMV governs the solver performance, and the
comments for the SpMV are also applicable here. GPU solver runs 3.2 times faster than
the CPU-SSE2, and CPU-SSE2 solver runs 1.8 times faster than the non-SSE2. As for
the SpMV routine, the CNC is inefficient for very small matrices where direct solvers
are anyway better.
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Fig. 6. Performance comparison of the SpMV (sparse matrix-vector product) and the Jacobi-
Preconditioned Conjugate Gradient Main Loop between CPU standard, CPU multithreaded-SSE2
optimized, and GPU implementations in case of computing a mesh parameterization or smooth-
ing for CRS (no blocking), BCRS 2x2 and BCRS 4x4

3.4 Overheads and Efficiency

Overheads introduced when copying, binding, retrieving data or executing shader pro-
grams on the GPU were the strong bottlenecks of all previous works. New GPGPU
APIs like CTM or CUDA can increase performance if well used (cf. section 2.3). Dur-
ing our tests, the total time spent for the processing on the GPU was always higher
than 93%, meaning that less than 7% percents were for the overheads, showing a great
improvement as compared to previous works.

CPU and GPU architectures are bound by their maximum computational perfor-
mance and maximum memory bandwidth. Their efficiency mainly depends on the im-
plemented operations (Figure 7). For example, low computation operations like the
SAXPY or the SDOT are limited by the memory bandwidth, and not by the theoret-
ical computational peak power. The SAXPY achieves high bandwidth efficiency on
GPUs, near 91%, but very low computational efficiency, near 3.1%. Conversely, for
reference, a dense matrix-matrix product (SGEMM) on the GPU can achieve a good
computational efficiency, near 18.75%, and a very good memory bandwidth efficiency,
near 91% (used SGEMM implementation comes from the ATI CTM-SDK). In the case
of SpMV operations, both computational and memory bandwidth efficiency are low
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Fig. 7. Percentage of computational and memory bandwidth efficiency of different operations
implemented on the CPU and the GPU for 10242 vector size, 10242 dense matrix size and
Girl Face 4 model to test the SpMV in case of a parameterization. See Table 1 to determine
used implementations.

on GPUs and CPUs (although SSE2 greatly helps). This is due to the BCRS format
that implies strong cache-miss and several dependent memory fetches. Nevertheless, as
previously written, our CNC on the GPU performs the SpMV 3 times faster than on
the CPU.

4 Conclusions

The Concurrent Number Cruncher aims at providing the fastest possible sparse linear
solver through hardware acceleration using new APIs dedicated to GPGPU. It uses
block compressed row storage, which is faster and more compact than compressed row
storage, enabling register blocking and vector processing on GPUs and CPUs (through
SSE2 instructions). To our knowledge, this makes our CNC the first implementation
of a general symmetric sparse solver that can be efficiently applied to unstructured
optimization problems.

Our BLAS operations on the GPU are 12.2 and 8 times faster for respectively
SAXPY and SDOT operations than on the CPU using SSE3-optimized Intel MKL li-
brary. As compared to our CPU SSE2 implementation, the SpMV is 3.1 times faster,
and the Jacobi-preconditioned conjugate gradient 3.2 times. We show that on any de-
vice BCRS-4x4 is significantly faster than 2x2, and 2x2 significantly faster than CRS.
Note that our benchmarks include all overheads introduced by the computations on the
GPU.

While the GPGPU community is waiting for GPU double floating point precision,
graphics cards only provide single precision for the moment. Hence, our CNC targets
applications that do not require very fine accuracy but very fast performance.

As previously shown, operations on any device are limited either by the memory
bandwidth (and its latency), or by the computational power. In most BLAS operations,
the limiting factor is the memory bandwidth, which was limited to 49.6 GB/s for our
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tested GPU. According to ATI announces, the memory of their next graphics card -
the high-end R600- will handle between 110 to 140 GB/s, which will surely strongly
increase the performance of our CNC and the gap with CPU implementations.

We plan to extend the parallelization of the CNC across multi-GPUs within a PC
(based on SLI or CrossFire configurations), across PC clusters, or within new visual
computing systems like the NVIDIA Quadro Plex containing multiple graphics cards
with multiple GPUs inside one dedicated box. Thus, we will use the CUDA API from
NVIDIA in the CNC to be compatible with the largest possible panel of GPUs. We
will build and release a general framework for solving sparse linear systems, including
full BLAS operations on sparse matrices and vectors, accelerated indifferently by an
NVIDIA with CUDA, or by an ATI with CTM. Note also that iterative non-symmetric
solvers (Bi-CGSTAB and GMRES) can be easily implemented using our framework.
We will experiment them in future works.
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Abstract. Computing ”in-place and in-order”FFT poses a very difficult
problem on hierarchical memory architectures where data movement can
seriously degrade the performance. In this paper we present recursive
formulation of a self sorting in-place FFT algorithm that adapts to the
target architecture. For transform sizes where an in-place, in-order exe-
cution is not possible, we show how schedules can be constructed that
use minimum work-space to perform the computation efficiently. In or-
der to express and construct FFT schedules, we present a context free
grammar that generates the FFT Schedule Specification Language. We
conclude by comparing the performance of our in-place in-order FFT
implementation with that of other well known FFT libraries. We also
present a performance comparison between the out-of-place and in-place
execution of various FFT sizes.

1 Introduction

The Fast Fourier Transform (FFT) is one of the most widely used algorithms. It
is used in many fields of science and engineering, especially in the field of signal
processing. Since 1965, various algorithms have been proposed for computing
DFTs efficiently. However, the FFT is only a good starting point if an efficient
implementation exists for the architecture at hand. Scheduling operations and
memory accesses for the FFT for modern platforms, given their complex archi-
tectures, is a serious challenge compared to BLAS-like functions. It continues to
present serious challenges to compiler writers and high performance library de-
velopers for every new generation of computer architectures due to its relatively
low ratio of computation per memory access and non-sequential memory access
pattern.

FFTW[8,7], SPIRAL[13,6] and UHFFT[12,11,1,2] are three current efforts
addressing machine optimization of algorithm selection and code optimization
for FFTs. SPIRAL is a code generator system that generates optimized codes
for specific size transforms. Both UHFFT and FFTW generate highly optimized
straight-line FFT code blocks (micro-kernels) called codelets, at installation time.
These parametrized code blocks adapt to microprocessor architecture and serve

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 372–383, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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as building blocks in the computation of a larger size transform. The final opti-
mization, specific to a FFT problem, is carried out at run-time by searching the
best schedule (plan) among an exponential number of factorizations.

Once the factors are determined, the FFT computation can be carried out in
a recursive “cache oblivious” fashion, which derives naturally from the Cooley
Tukey Mixed Radix Algorithm [5]. For an input vector x of size N , where N =
r ×m, the recursive Cooley Tukey formulation of FFT can be written as:

X = (Wr ⊗ Im)T N
m (Ir ⊗Wm)ΠN,rx

where T N
m is a diagonal“twiddle factors”matrix and ΠN,ris a mod−r sort permu-

tation matrix. Although these algorithms reduce the complexity of DFT compu-
tation from O(n2) to O(n log n), the resulting vector is in “digit-reversed”order,
requiring non-trivial amount of work to bring the output back in order. Stock-
ham’s Autosort framework[10] performs the sorting inside the FFT “butterfly”,
thereby avoiding an explicit reordering. When an output vector is available (out-
of-place FFT), the permutations can be performed in the first rank of butterfly
[16] as illustrated in Figure 1(a). This is the most commonly used algorithm
for self sorting out-of-place FFT computation in both FFTW and UHFFT. Per-
forming the computation “in-place”, i.e., without a separate output vector or
temporary array, poses a very difficult problem for self-sorting FFTs. For most
transform sizes data reordering is unavoidable in computing in-place and in-order
FFTs due to lack of a separate work-space. For sizes that can be factorized in
co-prime numbers, Prime Factor Algorithm (PFA) [3,18,17] computes in-place
in-order FFT without requiring an additional work-space using special rotated
DFT modules (PFA codelets). For more prevalent sizes, e.g., powers of 2, [14]
and later [19,4] developed the algorithm that was both self sorting and in-place.
The algorithm avoids explicit sorting by performing implicit ordering inside the
first

⌊
log N

2

⌋
ranks as shown in Figure 1(b). However this algorithm can be used

only if the factorization of N is a “palindrome”, i.e., N = r×m× r or N = r× r.
The algorithm was later formulated by [9] in a recursive fashion that is suited
to parallel and vector architectures. In this paper, we present a recursive for-
mulation of the algorithm that is suited to hierarchical memory architectures
because it maintains both temporal as well as spatial locality. We discuss the
efficiency of our implementation by comparing it with an alternative factoriza-
tion strategy. In fact, many different schedules could be constructed to adapt to
different architectures. To that end, we have designed a language that is used
to construct these schedules dynamically at run-time without requiring to write
specific implementations for different FFT sizes.

Expressing the FFT Schedules

Before we discuss the various solutions to the computation of in-place and in-
order FFTs, we need to be able to express them in a compact representation.
The most commonly used, “Kronecker product” formulation of FFT is an effi-
cient way to express sparse matrix operations. SPIRAL[13], generates optimized
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(b) In-place

Fig. 1. Butterflies showing the execution of self sorting FFT of size N = 8. (a) The
transform is stored to output array in “digit-reversed” order in the first rank. (b) The
result is ordered in the first

⌊
log 8

2

⌋
= 1 ranks by performing partial transposed codelet

transforms on square blocks[19,4].

DSP codes using a pseudo-mathematical representation that is based on the
Kronecker product formulation. FFTW [8], uses an internal representation of
DFT problems using various data structures, i.e., I/O tensors and I/O dimen-
sions etc. Although they offer an efficient design to solve a complex problem,
these representations do not provide sufficient abstraction to the mathematical
and implementation level details of FFT algorithms. One of the standard ways
to visualize a FFT problem is through a signal flow diagram called the “butter-
fly” representation. This representation has been adopted across the board by
various disciplines of science. However, visualizing large FFT problems through
the butterfly is not practical. In this paper we present a language called FFT
Schedule Specification Language (FSSL), which is generated from a set of con-
text free grammar productions. The grammar provides a direct and compact
translation of the FFT butterfly representation and is easy to understand for
computer scientists.

The grammar of FSSL is given in Section 2; where we briefly mention the
design overview of UHFFT. We discuss our recursive formulation of self-sorting
in-place FFT algorithm in Section 3. And in Section 4, we compare the perfor-
mance results of our implementation in UHFFT with that of FFTW and Intel’s
MKL library. Both these libraries are known to perform well on hierarchical
memory architectures.

2 UHFFT

UHFFT comprises of two layers, i.e., the code generator (fftgen) and the run-
time framework. The code generator generates highly optimized small DFT,
straight line “C” code blocks called codelets at installation time. These codelets
are combined together by the run-time framework to solve large FFT problems
on Real and Complex data. Block diagram of UHFFT2 run-time is given in
Figure 2.
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Fig. 2. UHFFT2 block diagram. Codelets specified by user are generated at instal-
lation time. At run-time the code blocks are used by planner to compose best FFT
computation schedules. UHFFT2 supports Intel’s DFT API [15] with some extensions.

2.1 Code Generator

UHFFT contains a number of codelets, which are generated at installation time.
Each codelet sequentially computes a part of the transform and overall efficiency
of the code depends strongly on the efficiency of these codelets. Therefore, it is
essential to have a highly optimized set of DFT codelets in the library. Apart from
the normal DFT codelets, fftgen generates a few specialized sets of codelets that
are used in the FFT computation at various stages of the algorithm. Two types of
such codelets that are relevant to our discussion of self-sorting in-place algorithms
are: the “coupled transposed codelets” and the “rotated PFA codelets”. The code
generator adapts to the platform, i.e., compiler and hardware architecture by
empirically tuning the codelets using iterative compilation and feedback [1].

2.2 Planner

A FFT problem is given by a DFTi descriptor [15], which describes various
characteristics of the problem, i.e., size, precision, placement, input and output
data type, number of threads etc. Once the descriptor is submitted, planner
selects the best plan, which may be used repeatedly to compute the transforms
of same size. Our current implementation supports two strategies for searching
the best plan. Both strategies are based on dynamic programming to search
the space of possible factorizations and algorithms, given by a tree as shown
in Figure 3. The first approach empirically evaluates the sub-plans and avoids
the re-evaluation of identical sub-plans by maintaining a lookup table of their
performances. This scheme is called Context Sensitive Empirical Search. In the
second approach, the cost of search is significantly reduced at the expense of
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Fig. 3. Search space for size 16 FFT (out-of-place). There are 8 possible plans shown
here. Codelets are called with different input and output strides at different levels of
tree (recursion) also known as ranks.

quality of plan. In this scheme, the cost of a sub-plan is estimated by empirically
evaluating only the root of sub-plan (codelet) that is encountered in a bottom up
traversal. This search strategy is called Context Free Hybrid Search as it does not
take into account the contextual state of cache due to prior factors of sub-plan.
In this paper, we use the first approach because it generates good quality plans
at reasonable cost of search.

2.3 FFT Schedule Specification Language (FSSL)

An execution plan specifies the codelets that will be used for the FFT computa-
tion and also the order (schedule) in which they will be executed. A FFT plan
is described in concise language using the grammar given in Table 1. It allows
different algorithms to be mixed to generate a high performance execution plan
based on properties of the input vector and its factors. Indeed, by implementing
a minimal set of rules, adaptive schedules can be constructed dynamically that
suit different types of architectures.

3 Self Sorting In-Place FFT Implementation

Our implementation of self-sorting in-place FFTs is based on the algorithms
given in [19,4]. These algorithms factorize a given FFT of size N in a palin-
drome to couple the sorting step with the butterfly computation. However, many
alternative factorizations exist for a given transform size that fulfill this require-
ment. Figure 4 illustrates two factorization schemes for an example of size 48
transform. Even though the two factorizations ultimately use the same factors
(codelets), their index mapping or data access pattern can be significantly dif-
ferent. An illustration of the memory blocking resulting from the two schedules
is given in Figure 5. Notice that the scheme (a) recurses outward by first select-
ing the largest square factors, while scheme (b) recurses inward by choosing the
largest factor to be in the middle of two small factors. The outward recursion
generates larger blocks that can be executed independently or in large vectors



Adaptive Computation of Self Sorting In-Place FFTs 377

Table 1. FFT Schedule Specification Language grammar rules

# CFG Rules

1-2 root−→multid fft | smpfft

3-4 multid fft−→fft | [ ndfft , fft ]
5-6 ndfft−→ndfft , fft | fft

7 smpfft−→( mrPZ block , multid fft ) Z

8-9 fft−→fft mr module | module

10-11 module−→codelet | ordered fft

12 | ( rader , fft ) Z

13 ordered fft−→( inplaceZ, fft )
14 | ( outplaceZ, fft )
15 | ( pfaZ, pfafft pfa rot codelet)
16 codelet−→n ∈ DFT codelets
17 rot codelet−→n ∈ Rotated DFT codelets
18 block−→b Z : Z

2
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22
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Fig. 4. Two factorization schemes that form a palindrome. Factoriza-
tion scheme (a) (inplace48, (inplace4, 2mr2)mr3mr(inplace4, 2mr2)) and (b)
(inplace48, 2mr(inplace12, 2mr3mr2)mr2). Assuming, only two codelets have been
generated in the library, namely 2 and 3.
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Fig. 5. Data Access pattern using the two factorization schemes shown in Figure 4.
Each block shows the vector indices accessed in Matlab vector representation.
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at unit strides. However, in order to maintain spatial locality, the blocks will
need to be executed in a breadth first fashion thereby reducing the potential
for temporal locality between successive ranks. On the other hand, the inward
recursion allows better blocking that maintains both temporal and spatial local-
ity in a cache oblivious manner. In UHFFT, the planner uses inward recursion
strategy to factorize and execute the self-sorting in-place algorithm. Following,
we give the simple steps that the planner follows to select the best palindrome
factorization of size N :

1. Find the factors with odd exponent to construct the middle rank.
(a) Factorize size N in powers of prime factors, i.e., N =

∏
i=0

pri

i , where all

the factors pi are co-primes and ri is the exponent.
(b) Based on the above factorization, divide the size N = q × s in two sets

q =
∏
i=0

pei

i and s =
∏
i=0

poi

i , where ei is even and oi is either 0 or 1.

(c) Construct the largest possible PFA plan ρmid for middle rank of size
nmid, from all factors of s and optionally only p2×j

i factors of q.
(d) If all the factors of s were not used (rotated codelets are not generated

for all prime factors), then the middle rank will be solved using extra
buffers.

(e) If (d) is true then construct the best out-of-place planρmid using one of
the search schemes.

2. Finally, construct the rest of in-place plan of size N
nmid

by recursively factor-
izing it inwards:

N = m0 × nmid ×m0

⇒ N = r0 ×m1 × nmid ×m1 × r0

3. The search methods implemented in UHFFT can be used to find the best
inplace plan:

ρ = (inplaceN, r0mrr1mr . . .mr ρmidmr . . . mrr1mrr0)

In the above algorithm, we start by finding the odd factor to fit in the middle
of palindrome. Since PFA algorithm is both self sorting and in-place, we try to
construct the middle rank from co-prime factors. In case, there are remaining
factors that do not have even exponent, we will need to use a self-sorting out-
of-place algorithm that uses a work-space equal to the size of middle rank. Once
the middle rank is factorized, rest of the factorization follows recursively in a
straightforward manner. To illustrate the algorithm, lets take an example of
size N = 48. If the library contains rotated codelet of size 16, then the largest
PFA plan ρ = (inplace48, (pfa48, 3pfa16)) of size 48 is constructed which is both
self sorting and in-place. Assuming that the rotated codelet for size 16 was not
generated at installation time. In that case, the plan will use the middle rank of
size 12: ρ = (inplace48, 2mr(pfa12, 3pfa4)mr2).

In the above discussion, we omitted the details of “twiddle factors” multipli-
cation, which is performed after each rank. In UHFFT, we have implemented
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specialized codelets that perform the “twiddle factors” multiplication inside the
codelets thereby avoiding the extra loads and stores. The loads and stores are
further reduced by implementing “coupled codelets”[19] that perform r small
DFTs of size r. These square blocks r2 are then transposed using registers and
written back to the input vector. Notice that this kind of optimization is not
possible if outward recursion is used because for a large size N = m × r × m,
square matrix m×m will be too large to fit in the registers.

4 Results

We performed the benchmarking of our self-sorting in-place FFT implementation
in UHFFT on Itanium 2 machine and compared its performance against FFTW
and Intel’s Math Kernel Library (MKL). Specification of the experimental setup
is given in Table 2. The performance numbers in this paper, are derived from

Table 2. Experimental Setup

Feature Description

Architecture Itanium 2 1.5 Ghz, Cache: 16K/256K/6M, FP Registers=128
CacheLine: 64B/128B/128B, Associativity: 4/8/12

Compiler Intel C Compiler icc 9.1, Flags=-O3

Libraries UHFFT-2.0.1beta, FFTW-3.2alpha, MKL-9.1

Data Sets Powers of 2, Small Co-prime factor sizes, Mixed

the total execution time of a FFT problem. The performance measure, Million
Floating Point Operations Per Second (mflops), is calculated from the execu-
tion time and commonly used algorithm complexity of FFT, i.e., 5N log N . The
results were collected for double precision complex FFT of various sizes, ranging
from 2 to 16M.

4.1 Performance Comparison of FFT Libraries

UHFFT and FFTW are open source adaptive libraries for computing FFTs
efficiently. Intel’s MKL is the vendor library that is tuned to Intel’s architectures.
All the three libraries support both in-place and out-of-place executions of FFT.
Figure 6 shows the performance comparison of our implementation of self sorting
in-place FFT computation with that of FFTW and MKL for powers of two size
FFTs. For very small sizes (2− 25) the FFT is performed within registers using
optimized codelets, which is why all the three libraries perform equally well.
One of the main differences between our strategy in UHFFT and the other
two libraries is that FFTW (and quite possibly MKL) would trade memory for
performance; extra buffers can be used for improving the performance of code.
On the other hand, UHFFT uses buffers only when an in-place in-order plan is
not possible. Notice that for sizes larger than Level 2 cache capacity, i.e., 214,
UHFFT performs better than FFTW. Indeed, for data (N = 218) that do not fit
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not use any extra buffers (except the “twiddle factors” array) in the in-place execution
of powers of 2 sizes.
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Fig. 7. Sizes with small co-prime factors. Complex in-place in-order FFT. UHFFT uses
PFA algorithm, which is known to have lower complexity and produces ordered results.
FFTW and MKL are not tuned for the sizes that have co-prime factors.

in any level of cache, our implementation performs consistently better because of
superior cache management. Another advantage that UHFFT has over the other
two libraries is its support for fast execution of sizes that have co-prime factors.
In Figure 7, we computed the in-place FFT of sizes that have co-prime factors.
Neither FFTW nor MKL support Prime Factor Algorithm (PFA). Hence, the two
libraries have relatively lower performance on sizes that have co-prime factors.
In Figure 8, we compared the performance of the three libraries on randomly
sampled sizes that have both powers of 2 and prime factors. These results show
that UHFFT is equally good at performing in-place self-sorting FFT on non-
powers of two sizes, which are less straightforward to factorize in a palindrome.
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FFT Computation. Not all the sizes presented here result in palindrome of factors,
which means that small buffers may be required to compute in-place in-order FFT
efficiently.

4.2 Performance Comparison of In-place and Out-of-place FFT

We compared the performance of our in-place implementation of self sorting FFT
schedules with that of out-of-place execution. Even though in-place schedules
perform many small transposes, overall their performance is quite similar to
out-of-place executions as shown in Figures 9(a) & 9(b). The reason that there
is no drastic degradation of performance in case of in-place execution is that the
transposes are performed inside the codelets, i.e., using registers. This avoids the
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Fig. 9. Comparison of out-of-place and in-place FFT performance in UHFFT. (a) The
performance for small size (N ≤ 26) transforms is identical because the sorting is
performed in the registers for both executions. (b) Non Powers of 2 sizes include 6,
14, 120, 968, 8320, 32760, 131040, 915200, 1921920. For sizes 6 and 14, codelets are
used directly and for sizes 120 and 32760, pfa plans are used for both out-of-place and
in-place execution.
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extra cost of loads and stores when the re-ordering is performed out of cache.
The performance of out-of-place schedules starts dropping slightly earlier than
in-place schedules around the L3 cache size mark (218), because of its extra
bandwidth requirement (both input and output vector need to be fetched in
the cache).

5 Conclusion

Computing self-sorting in-place FFTs poses a challenge when the execution needs
to be carried out without use of additional work-space. The re-ordering per-
formed inside the butterfly can seriously degrade the performance on current
hierarchical memory architectures if the problem is not carefully factorized. In
this paper we presented a recursive cache oblivious formulation of self-sorting
in-place FFT algorithm that is suited to hierarchical memory architectures. De-
spite requiring the re-orderings to be performed in-place, the performance of self
sorting in-place FFT was shown to be at par with out-of-place FFT. This is
achieved through careful factorization of the problem such that the partial or-
dering can be performed within registers when the data has already been loaded
for butterfly computation; this avoids extra loads and stores. In order to ex-
press FFT algorithms and factorizations, we presented a language, i.e., FFT
Schedule Specification Language (FSSL), that defines the schedules in compact
representation. To evaluate and validate the efficacy of our recursive strategy,
we compared the performance of our implementation with the in-place in-order
FFT performance of FFTW and Intel’s MKL on Itanium 2. For Powers of two
sizes, UHFFT performs competitively against FFTW, without using any extra
buffers. For non-powers of two sizes, the performance is much better than that
of the other two libraries because UHFFT planner adaptively selects the PFA
algorithm for sizes that have co-prime factors.
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Abstract. In this work, the Parallel Hierarchical Interface Decomposition Algo-
rithm (PHIDAL) and a hybrid parallel programming model were applied to  
finite-element based simulations of linear elasticity problems in media with het-
erogeneous material properties using parallel preconditioned iterative solvers. 
Reverse Cuthill-McKee reordering with cyclic multicoloring (CM-RCM) was 
applied for parallelism on each SMP node through OpenMP. The developed 
code has been tested on the IBM p5-575 and the TSUBAME Grid Cluster using 
up to 512 cores. Preconditioners based on PHIDAL provide a superior scalable 
performance and robustness on both architectures in comparison to conven-
tional block Jacobi-type localized preconditioners. 

1   Introduction 

1.1   Parallel Programming Models on SMP Cluster Architectures 

In order to achieve minimal parallelization overheads on SMP (symmetric multiproc-
essors) clusters, a multi-level hybrid parallel programming model is often employed 
(Fig. 1). In this method, coarse-grained parallelism is achieved through domain de-
composition by message passing among SMP nodes, while fine-grained parallelism is 
obtained via loop-level parallelism inside each SMP node using compiler-based 
thread parallelization techniques, such as OpenMP [1,2]. Another often-used pro-
gramming model is the single-level flat MPI model (Fig. 1), in which separate single-
threaded MPI processes are executed on each processing element (PE) [1,2]. The 
efficiency of each model depends on hardware performance (CPU speed, communica-
tion bandwidth, memory bandwidth, and the balance between these), application fea-
tures, and problem size [3].  

In previous works [1,2], the author developed an efficient parallel iterative solver 
for finite-element applications on the Earth Simulator (ES) [4] using a three-level 
hybrid parallel programming model with MPI, OpenMP and vectorization. Multi-
color-based reordering methods were applied to distributed data sets on each SMP 
node in order to achieve an optimum parallel performance of Krylov iterative solvers 
with ILU/IC (Incomplete LU/Cholesky Factorization) preconditioners. The developed  
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Fig. 1. Parallel programming models on SMP cluster architecture [1,2] 

method attained 3.8 TFLOPS with 176 SMP nodes of ES, corresponding to more than 
33% of the peak performance (11.3 TFLOPS) [1]. Because of the relatively high sus-
tained memory bandwidth of ES, flat MPI and hybrid parallel programming models 
are competitive, but the hybrid model outperforms flat MPI, if the number of proces-
sors exceeds 1,000. In general, hybrid parallel programming models provide a better 
performance the larger the number of nodes.   

For cases using many colors, fewer numbers of iterations are required for conver-
gence, because there are fewer incompatible nodes [5]. However, performance de-
clines for these cases due to the smaller loop length and greater overhead on vector 
processors. For the ES, the hybrid parallel programming model was found to be very 
sensitive to the number of colors.  

1.2   Parallel Preconditioned Iterative Solvers 

Block Jacobi-type localized preconditioners are widely used for parallel iterative 
solvers [1,2]. They provide excellent parallel performance for well-defined problems, 
although the number of iterations required for convergence gradually increases ac-
cording to the number of processors. However, this preconditioning technique is not 
robust for ill-conditioned problems with many processors, because it ignores the 
global effect of external nodes in other domains [1.2]. The generally used remedy is 
the extension of overlapped elements between domains [6,7]. Usually, this approach 
reduces the number of iterations required for convergence, but at the expense of re-
quiring additional computations and communications, and so the final elapsed time of 
the computation is not necessarily reduced.  

Table 1 shows the convergence of a parallel iterative solver with block Jacobi-type 
localized preconditioners for 3D linear elasticity problems in media with heterogene-
ous material properties on AMD Opteron clusters with 64 cores. In these computa-
tions the GPBi-CG (Generalized Product-type methods based on Bi-CG) solver [8] 
 

Table 1. Convergence of parallel iterative solver using a block Jacobi-type localized precondi-
tioner (GPBi-CG solver with localized SGS preconditioner) applied to 3D linear elasticity 
problems in media with heterogeneous material properties with 1,000,000 elements (3,090,903 
DOF). AMD Opteron cluster with 64 cores 

Average Size per Core  
Depth of 
Overlap 

 
Iterations for 
Convergence 

 
sec. Communication 

Table 
Non-Zero Compo-
nents in Coef. Ma-
trix 

0 1004 94.0 3,474 410,009 
1 940 99.9 3,474 468,015 
2 909 115.5 7,116 496,670 
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with localized SGS (Symmetric Gauss-Seidel) preconditioner [1,2] has been applied. 
The minimum and maximum values of Young’s modulus are 10-3 and 103, respec-
tively, with an average value of 1.0. It may be seen that the extension of overlapped 
elements provides better convergence, but at the expense of increasing the elapsed 
computation time somewhat.  Selective-overlapping [7] may improve this situation, 
but the benefits of developing more general preconditioners for scalable and robust 
computations are clear. 

1.3   Overview of PHIDAL 

The Parallel Hierarchical Interface Decomposition Algorithm (PHIDAL) algorithm 
provides robustness and scalability for parallel ILU/IC preconditioners [9]. PHIDAL 
is based on defining “hierarchical interface decomposition (HID)”. The HID process 
starts with a partitioning of the graph, with one layer of overlap. The “stages” are 
defined from this partitioning, with each stage consisting of a set of vertex groups. 
Each vertex group of a given stage is a separator for vertex groups of a lower stage. 
The incomplete factorization process proceeds by “stage” from lowest to highest. Due 
to the separation property of the vertex groups at different stages, this process can be 
carried out   in a highly parallel manner. In [9], the concept of connectors (small con-
nected sub-graphs) of different levels and keys are introduced for the purposes of 
applying this idea to general graphs as follows:  
 

• Connectors of level-1 (C1) are the sets of interior points. Each set of interior 
points is called a sub-domain. 

• A connector of level-k (Ck) (k>1) is adjacent to k sub-domains 
• No Ck is adjacent to any other connector of level-k 
• Key(u) is the set of sub-domains (connectors of level-1, C1) connected to 

vertex u.  

(a) Initial entire grid (b) Connectors and levels

C1: sub-domains
C2

C4

C1: sub-domains
C2

C4

 

Fig. 2. Partitioning of a 9-point grid into 4 sub-domains  

Fig.2 shows the example of the partition of a 9-point grid into 4 domains. In this case, 
there are 4 connectors of level-1 (C1, sub-domain), 4 connectors of level-2 (C2) and 1 
connector of level-4 (C4). Note that different connectors of the same level are not 
connected directly, but are separated by connectors of higher levels. These properties 
provide the block structure of the coefficient matrix A through reordering the un-
knowns by this decomposition. If the unknowns are reordered according to their level 
numbers, from the lowest to highest, the block structure of the reordered matrix would  
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(a) Domain decomposition (connectors and keys)            (b) matrix and non-empty blocks 

Fig. 3. Domain/block decomposition of the matrix according to the HID reordering 

 

 
 

 
 
 
 
 
 
 
 

 

Fig. 4. Algorithms for HID processes [9] 

be as shown in Fig.3. This block structure leads to natural parallelism if ILU/IC de-
compositions or forward/backward substitution processes are applied.  Fig.4 provides 
algorithms for constructing independent connectors [9]. Thus, PHIDAL-based ILU/IC 
preconditioners can consider the global effect of external domains in parallel compu-
tations, and are expected to be more robust than block Jacobi-type localized ones.  

1.4   Overview of the Present Work 

In the present work, a hybrid parallel programming model has been applied to finite-
element based simulations of 3D linear elasticity problems in media with heterogene-
ous material properties using parallel preconditioned iterative solvers based on 
“PHIDAL”. Reverse Cuthill-McKee reordering with cyclic multicoloring (CM-RCM) 
has been applied for parallelism in ill-conditioned problems on each SMP node 
through OpenMP. The developed code is tested on the IBM p5-575 [10] and the 
TSUBAME Grid Cluster [11] using up to 512 cores. The rest of this study is organ-
ized as follows: In section 2 we outline the details of the present   application, and 
describe the reordering procedures. In section 3 preliminary results of the computa-
tions are described, while some final remarks are offered in section 4. 
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Initialization:
for each vertex u∈V

Key(u) := list of subdomains containing vertex u
end
for each vertex u∈V

Kdegu := |{v∈Vl(u) / Key(v)≠Key(u)}|
end
for l = 1, to p do:

Ll= {u∈V / |Key(u)| = = l}
end

Main Loop:
for l = 2 to p do:

for each vertex u∈Ll do:

end
while all vertices in Ll have not been processed;

get u the vertex in Ll such that Kdegu is maximum.

m = |Key(u)|
if m > l  then

Ll := Ll＼ {u}
Lm := Lm∪ {u}
for each vertex v∈Vl(u)

Kdegv := Kdegv - 1
end

endif
end

end
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get u the vertex in Ll such that Kdegu is maximum.

m = |Key(u)|
if m > l  then

Ll := Ll＼ {u}
Lm := Lm∪ {u}
for each vertex v∈Vl(u)

Kdegv := Kdegv - 1
end

endif
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Terms:
• p number of sub-domains
• |Key(u)| number of sub-dommains in  Key(u)
• Ll set of vertices whose keys have a 

cardinality equal to l
• Vl(i) set of vertices belonging to Ll and 

adjacent to vertex i
• Kdegu number of neighbors in Vl(i) that have a 

key different from Key(u)
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2   Implementations 

2.1   Finite-Element Applications 

In the present work, linear elasticity problems in simple cube geometries of media 
with heterogeneous material properties (Fig.5(a)) are solved using a parallel finite-
element method (FEM). Tri-linear hexahedral elements are used for the discretization. 
Poisson’s ratio is set to 0.25 for all elements, while a heterogeneous distribution of 
Young’s modulus in each element is calculated by a sequential Gauss algorithm, 
which is widely used in the area of geostatistics [12]. The minimum and maximum 
values of Young’s modulus are 10-3 and 103, respectively, with an average value of 
1.0. The boundary conditions are described in Fig.5(b). The GPBi-CG (Generalized 
Product-type methods based on Bi-CG) solver with SGS (Symmetric Gauss-Seidel) 
preconditioner (SGS/GPBi-CG) was applied. Since the present application concerns 
linear elasticity problems, the coefficient matrices for this application are symmetrical 
positive definite. Although GPBi-CG is designed for general unsymmetrical matrices, 
this method is adopted in the present study due to its robustness for ill-conditioned 
problems [1,2]. In SGS preconditioning, the original matrix A is used as a precondi-
tioning matrix, therefore no factorization processes occur. 

The code is based on the framework for parallel FEM procedures of GeoFEM [13], 
and the GeoFEM’s local data structure is applied. The local data structures in 
GeoFEM are node-based with overlapping elements [13]. In FEM-type applications, 
most communication between processors occurs via information exchange at domain 
boundaries. The ratio of communication to computation is usually small [1,2]. In the 
present work, GeoFEM’s original partitioner for domain decomposition has been 
modified so that it can create a distributed hierarchical data structure for PHIDAL. 
Each sub-domain (interior vertices, connectors of level-1) is assigned to an individual 
SMP node, which corresponds to each MPI process in the hybrid parallel program-
ming model [1,2]. Higher-level connectors are distributed to each domain so that 
load-balancing can be attained and communications can be minimized. Fig.6 shows 
an example of the final partition of a 9-point grid into 4 domains. 
In each local data set, vertices are renumbered according to their level numbers, from 
the lowest to highest. During forward/backward substitution processes in SGS precondi-
tioning, global communications are required for consistency, when computations at 
each level have been completed. Hierarchical communication tables for these special 
communications are also created by the modified partitioners. 

 
 

 
 
 
 
 
 

 (a) Heterogeneous distribution of material property          (b) Boundary conditions 

Fig. 5. Simple cube geometries with heterogeneity as domains for 3D linear elasticity problems 
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(a) Final partition (number’s correspond to ID            (b) Distributed local data sets with 

of partition (0-3))                                                          external vertices 

Fig. 6. The final partition of a 9-point grid into 4 domains 

2.2   Reordering Procedures 

In the hybrid parallel programming model, multithreading, such as OpenMP, is ap-
plied to each partitioned domain defined in the previous section, where each domain 
corresponds to a single SMP node. The reordering of vertices in each domain allows 
the construction of local operations without global dependency but with continuous 
memory access, in order to achieve optimum parallel performance of Krylov iterative 
solvers with ILU/IC preconditioners. In previous studies [1,2], the author adopted 
multicoloring as a reordering method, mainly because a highly parallel performance 
and load balancing can easily be obtained.  In the present work, a Reverse Cuthill-
McKee (RCM) type approach is introduced. The RCM method is a typical level set 
reordering method [1,5,14], which is a reversing of the Cuthill-McKee reordering 
(CMK). In CMK reordering, the vertices adjacent to a visited vertex are traversed 
from lowest to highest degree, where the degree of a vertex refers to the number of 
vertices connected to it.   Multicoloring (MC) is much simpler than RCM. MC is 
based on an idea in which no two adjacent vertices have the same color. In both 
methods, vertices of the same color (or level set) are independent. Therefore, parallel 
operation is possible for the vertices of each color, and the number of vertices of each 
color should be as large as possible for high granularity in the parallel computation. 

RCM (Fig. 7(a)) reordering facilitates a faster convergence of iterative solvers with 
ILU/IC preconditioners than MC reordering, but leads to irregular numbers of vertices 
in each level set. For example, in Fig. 7(a), the 1st level set is of size 1, while 
the 8th level set is of size 8. In contrast, the MC method uses a uniform number of 
 

 
 
 
 
 
 
 
               (a) RCM                                  (b) MC: 4 colors                   (c) CM-RCM: 4 colors 

Fig. 7. Example of RCM, MC and CM-RCM coloring for reordering on a 5-point grid [1,2] 
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vertices of each color (Fig. 7(b)). However, it is widely known that the convergence 
of iterative solvers with ILU/IC preconditioners is rather slow if the vertices are reor-
dered by MC [5]. Convergence can be improved by increasing the number of colors 
due to the consequent reduction in the number of incompatible local graphs [5], but 
this reduces the number of vertices of each color. The solution to this trade-off is 
RCM with cyclic-multicoloring (CM-RCM) [15]. In this method, further renumbering 
in a cyclic manner is applied to vertices that are reordered by RCM. Figure 7(c) 
shows an example of CM-RCM reordering. In this case, there are 4 colors: the 1st, 
5th, 9th and 13th groups in Fig. 7(a) are classified into the 1st color. There are 16 
vertices in each color. In CM-RCM, the number of colors should be large enough to 
ensure that vertices of the same color are independent.  

Figure 8 shows the convergence of the SGS/GPBi-CG solver with MC and CM-
RCM reordering on a single AMD Opteron core for small problems (29,791 elements, 
98,304 DOF) in elastic media with (a) homogeneous and (b) heterogeneous distribu-
tions of material properties. In both cases, CM-RCM yields a faster convergence. In 
 

 
   

 
 

 
 
 
 

 
(a)Emax= Emin= 1.0                                         (b) Emax=103, Emin=10-3 

Fig. 8. Convergence of SGS/GPBi-CG on a single core for a 3D linear elasticity  model with a 
heterogeneous distribution of Young’s modulus (Emax: maximum, Emin: minimum), for 29,791 
elements and 98,304 DOF 

 
 
 
 
 
 

 
 
 
 
 

 

Fig. 9. Forward substitution process of preconditioning written in FORTRAN and MPI with 
OpenMP directives, global communications using hierarchical communication tables occur at 
the end of the computation of each level 

do lev= 1, LEVELtot
do ic= 1, COLORtot(lev)

!$omp parallel do private(ip,i,SW1,SW2,SW3,isL,ieL,j,k,X1,X2,X3)
do ip= 1, PEsmpTOT
do i = STACKmc(ip-1,ic,lev)+1, STACKmc(ip,ic,lev)
SW1= WW(3*i-2,R); SW2= WW(3*i-1,R); SW3= WW(3*i  ,R)
isL= INL(i-1)+1; ieL= INL(i)
do j= isL, ieL

k= IAL(j)
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WW(3*i-2,R)= X1; WW(3*i-1,R)= X2; WW(3*i  ,R)= X3

enddo
enddo

!$omp end parallel do
enddo

call SOLVER_SEND_RECV_3_LEV(lev,…): Communications using
Hierarchical Comm. Tables.

enddo
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enddo
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general, convergence is faster the larger the number of colors.  The relationship be-
tween convergence and number of colors is not monotonic in heterogeneous cases, 
because only information for connected graphs is considered in the reordering proce-
dures. In the present work, CM-RCM with 10 colors will be applied for performance 
evaluation. This reordering procedure has to be applied to the vertices at each level.  
The number of vertices in connectors of level 2 and above is usually relatively small. 
In the present work, the number of colors at each level is specified so that the number 
of vertices at each level is at least 10. Figure 9 shows forward substitution process of 
preconditioning written in FORTRAN and MPI with OpenMP directives. Global 
communications using hierarchical communication tables, mentioned in the previous 
chapter, occur in the end of the computation at each level. 

3   Examples 

3.1   Hardware Environment 

PHIDAL was applied to a parallel FEM code with an SGS/GPBi-CG solver using a 
hybrid parallel programming model. The FEM code solves for simulations of 3D 
linear elasticity problems in media with heterogeneous material properties,   as shown 
in Fig.5. The developed code has been tested on the IBM p5-575 of the National  
Energy Research Scientific Computing Center at Lawrence Berkeley National Labo-
ratory (bassi) [10], and the TSUBAME Grid Cluster at the Global Scientific Informa-
tion and Computing Center at Tokyo Institute of Technology [11]. Table 2 presents a 
summary of the architectural characteristics of the each supercomputer. 

The IBM p5-model 575 (IBM p5-575) at NERSC/LBNL [10] is a POWER5-based 
super scalar system, with 111 SMP nodes, 888 processors, and 3.5 TB memory. Total 
peak performance is 6.75 TFLOPS. Each node is connected via IBM’s “Federation” 
HPS (High-Performance Switch).  

The TSUBAME Grid Cluster at Tokyo Institute of Technology [11] is a scalar sys-
tem with 655 SunFire X4600 nodes, where each node has 8 sockets (16 cores) of 
AMD’s dual-core-Opteron at 2.4 GHz, connected through Coherent HyperTransport. 
The overall system has 10,480 cores, and 21.4 TB memory. Total peak performance is 
50.4 TFLOPS. SMP nodes are connected through Infiniband 4x/Voltaire ISR 9288 
switch. In the present work, only 8 of the cores on each SMP node have been used. 

Table 2. Main architectural features of the IBM p5-575 and the TSUBAME Grid Cluster 

 IBM p5-575 [10] TSUBAME [11] 
Core#/node 8 16 
Clock rate (GHz) 1.90 2.40 
Peak performance/PE (GFLOPS) 7.60 4.80 
Memory/node (GB) 32 32 
Peak Memory BW (GB/sec/node) 100 100 
Network BW (GB/sec/node) 4.00 2.50 
MPI Latency (μsec) < 5.0 < 4.0 

3.2   Results on the IBM p5-575 

Performance of the developed code has been evaluated using between 1 and 8 SMP 
nodes (8 and 64 cores) of the IBM p5-575. In this evaluation, a strong scaling test has 
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been applied, where the entire problem size is fixed at 1,594,323 DOF (512,000 ele-
ments). The hybrid parallel programming model has been applied using 8 threads. 
Figure 10 shows a comparison between block Jacobi-type localized preconditioner 
and the present PHIDAL-based one. In the case with 8 cores (= a single SMP node), 
there are no MPI communications, and “Block Jacobi” and “PHIDAL” provide iden-
tical results. As the number of core increases, the number of iterations required for 
convergence of the “Block Jacobi” increases significantly, but that of the “PHIDAL” 
stays constant. Both of the methods achieve excellent scalability, but PHIDAL 
achieves a better performance, because “PHIDAL” can consider the global effect of 
external domains in parallel computations, and are expected to be more robust. Figure 11 
shows the effect of additional communications in SGS/GPBi-CG with PHIDAL. As 
shown in Fig.9, the PHIDAL algorithm requires additional communications at the end of 
forward/backward substitution processes at each level in the preconditioning. The ratio of 
the additional communications to entire computation time for the linear solver increases 
according to the number of cores. The ratio is 17% for 64 cores. 
 

 
 

 
 
 
 
 
 

 

Fig. 10. Convergence (number of iterations required for convergence, and elapsed computation 
time for the linear solver) of SGS/GPBi-CG on the IBM p5-575 for the 3D linear elasticity 
model with a heterogeneous distribution of Young’s modulus (Emax=103, Emin=10-3), for 
512,000 elements and 1,594,323 DOF, using the hybrid parallel programming model 

 
 
 

 
 
 

 
 

      (a) Computation and additional communications    (b) Ratio of additional communications 

Fig. 11. Convergence of SGS/GPBi-CG with PHIDAL on the IBM p5-575 for the 3D linear 
elasticity model with a heterogeneous distribution of Young’s modulus (Emax=103, Emin=10-3), 
for 512,000 elements and 1,594,323 DOF, using the hybrid parallel programming model 

3.3   Results on TSUBAME 

The performance of the developed code has been evaluated using between 8 and 64 
SMP nodes (64 and 512 cores) of the TSUBAME Grid Cluster. A strong scaling test 
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has been applied, where the entire problem size is fixed at 6,440,067 DOF (2,097,152 
elements). Both a flat MPI and a hybrid parallel programming model have been ap-
plied, where 8 threads have been used in the latter.   

Each plate of Fig. 12 shows the performance of the “Block Jacobi” and “PHIDAL” 
for the hybrid parallel programming model. Although both of the methods achieve 
excellent scalability, PHIDAL achieves the superior performance. Figure 13 shows 
effect of additional communications in SGS/GPBi-CG with PHIDAL. The ratio of the 
additional communications to entire computation time for the linear solver increases 
according to number of cores; the ratio is 19% for 512 cores.  

Figure 14 shows a comparison between flat MPI and the hybrid parallel program-
ming models for PHIDAL. In general, flat MPI outperforms the hybrid parallel  
programming model, mainly because of the efficiency of memory. However, as the 
number of cores increases, the problem size for each core (or SMP node) decreases, 
and the performance of hybrid parallel programming model improves markedly. The 
effect of additional communications is significant in flat MPI, and the ratio of these 
communications to the entire solver process is more than 40% at 512 cores.  

 
 

 
 
 
 
 
 

 
 

Fig. 12. Convergence (number of iterations for required for convergence, and elapsed computa-
tion time for linear solver) of SGS/GPBi-CG on TSUBAME for the 3D linear elasticity model 
with a heterogeneous distribution of Young’s modulus (Emax=103, Emin=10-3), for 2,097,152 
elements and 6,440,067 DOF, using the hybrid parallel programming model 

 
 
 
 
 

 
 
 

 

    (a) Computation and additional communications  (b) Ratio of additional communications 

Fig. 13. Convergence of SGS/GPBi-CG with PHIDAL on TSUBAME for the 3D linear elastic-
ity model with a heterogeneous distribution of Young’s modulus (Emax=103, Emin=10-3), for 
2,097,152 elements and 6,440,067 DOF, using the hybrid parallel programming model 
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 (a) Elapsed computation time for linear solvers        (b) Ratio of additional communications 

Fig. 14. Convergence of SGS/GPBi-CG with PHIDAL on TSUBAME for the 3D linear elastic-
ity model with a heterogeneous distribution of Young’s modulus (Emax=103, Emin=10-3), for 
2,097,152 elements and 6,440,067 DOF 

4   Summary and Future Works 

In this work, “PHIDAL (Parallel Hierarchical Interface Decomposition Algorithm)” 
using a hybrid parallel programming model has been applied to a finite-element solu-
tion of simulations of linear elasticity problems in media with heterogeneous material 
properties using parallel preconditioned iterative solvers. Reverse Cuthill-McKee 
reordering with cyclic multicoloring (CM-RCM) has been applied for parallelism on 
each SMP node through OpenMP. PHIDAL-based ILU/IC preconditioners can con-
sider the global effect of external domains in parallel computations, and are expected 
to be more robust than block Jacobi-type localized ones. 

The developed code has been tested on the IBM p5-575 and the TSUBAME Grid 
Cluster using up to 512 cores. A preconditioner based on PHIDAL provides a supe-
rior scalable performance on both architectures than a conventional block Jacobi-type 
localized preconditioner, although the PHIDAL-based approach requires additional 
communications at each level.  

A comparison between flat MPI and hybrid parallel programming models for 
PHIDAL on TSUBAME for strong scaling shows that flat MPI is much better if the 
number of cores is small, but these two methods are more closely matched as the 
number of cores increases. The effect of additional communications is significant in 
cases with many cores, especially for the flat MPI parallel programming model. 
PHIDAL-based preconditioning with the hybrid parallel programming model is ex-
pected to be a good choice for excellent scalable performance and robustness for 
implementations on more than 104 cores on SMP cluster architectures and clusters of 
multi-core processors. A CM-RCM reordering provides a more robust convergence 
than MC reordering, but the relationship between number of colors and convergence 
is not straightforward in ill-conditioned cases with heterogeneity. Further investiga-
tion of effective reordering techniques for ill-conditioned problems is important. 

In the present work, no fill-in processes have been considered in PHIDAL proce-
dures. The results of using PHIDAL in comparison with conventional block Jacobi-
type localized preconditioning have therefore not been so significant. More robust 
preconditioning methods based on PHIDAL may be developed by considering fill-ins 
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inside and between connectors. Moreover, the developed methods may further be 
evaluated on various types of SMP cluster architectures and clusters of multi-core 
processors. 
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Abstract. We have developed a high-performance FFT on SGI Altix
3700, improving the efficiency of the floating-point operations required
to compute FFT by using a kind of loop fusion technique. As a result, we
achieved a performance of 4.94 Gflops at 1-D FFT of length 4096 with
an Itanium 2 1.3 GHz (95% of peak), and a performance of 28 Gflops at
2-D FFT of 40962 with 32 processors. Our FFT kernel outperformed the
other existing libraries.

1 Introduction

The Fast Fourier Transform (FFT) [1] algorithm is now used in many fields, and
its fast adaptation to computer systems continues to be expected. We developed
a high-performance FFT on SGI Altix 3700 [2], which is a hardware distributed
shared memory parallel computer with Intel Itanium 2 processors.

The performance of floating-point operations in modern microprocessors has
significantly matured. The next issue is how to use the FPUs efficiently. In this
paper, we focus on the efficiency of executing instructions. Several optimization
techniques for nested loops have been researched [3]. But they are not adequate
for archieving perfect performance of processors such as the Itanium 2, because
the overheads of the loop initializations are too large. Various kinds of loop
fusion methods for FFTs on vector processors have been proposed [4,5]. Those
methods require index arrays, which are usually larger than the capacity of the
cache memory. For this reason, conventional loop fusion methods are not suitable
for non-vector processors like Itanium 2. Therefore, we propose a new loop fusion
method without index arrays, and implemented highly optimized FFT kernels
for the Itanium 2.

2 IA-64

Intel Architecture 64 (IA-64) [6] is a new 64-bit processor architecture developed
by Intel and Hewlett Packard. As a major step forward from the IA-32, Intel’s
32-bit architecture, the IA-64 is equipped with many advanced and challenging
technologies.

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 396–407, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Table 1. The capacities of the cache memories

Itanium Itanium 2
Merced McKinley Madison

Level-1 Inst. 16kB 16kB 16kB
Level-1 Data 16kB 16kB 16kB

Level-2 Unified 96kB 256kB 256kB
Level-3 Unified 2MB 1.5/3MB 3/6MB

Itanium is the first product of the IA-64 architecture, codenamed ’Merced’,
and was released in 2001. The second product, codenamed ’McKinley’, was re-
leased as Itanium 2 in 2002, and the third product, codenamed ’Madison’ was
released in 2003.

2.1 EPIC

The IA-64 uses a kind of VLIW (Very Long Instruction Word) [7] architecture.
A 16-byte ’bundle’ usually contains three instructions, and the Itanium and the
Itanium 2 processor can execute two bundles, i.e., up to six instructions, in each
cycle. This number is large compared with other processors. EPIC (Explicitly
Parallel Instruction Computing) [8] technology plays an important role in ex-
ploiting its performance.

Checking the dependencies between instructions in order to execute many
instructions in one cycle requires a great deal of hardware resources. For this
reason, the number of instructions to be executed in a single cycle is limited.
In the case of EPIC, the dependencies between the instructions are checked at
the compilation time, and independent instructions are explicitly grouped to
avoid dependency. Thus, the grouped instructions can be subsequently executed
without checking dependencies.

Itanium 2 processors have four memory units, two integer units, two floating-
point units, and three branch units. Up to six instructions are sent to those
execution units.

2.2 Memory Hierarchy

The IA-64 processors have a level-1 instruction cache, a level-1 data cache, a
level-2 unified cache, and a level-3 unified cache. Their capacities depend on the
models as listed in Table 1.

In the IA-64 architecture, the floating-point data do not pass the level-1 cache,
but are directly transferred from the level-2 cache. The throughput of the level-2
cache is large, but the latency is long.

2.3 Predicate Register

In case of the IA-64 instruction set architecture, predicate registers can be spec-
ified to almost all instructions. The predicate register is a single-bit register, and
64 registers in total are available. If a predicate register is specified to an instruc-
tion, the instruction will be executed only if the value of the predicate register
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is 1. The values of the predicate registers are changed by compare instructions,
and logical operations between the predicate registers are also available.

Implementations with branch instructions always have the risk of penalties
for the branch prediction misses. But implementations with predicate registers
have no such risk; therefore, even more complex operations including conditional
statements can be executed efficiently. Although an instruction is not executed
if the value of the specified predicate register is 0, the instruction nonetheless
occupies an instruction slot. In practice, it is a rare case that this matters,
because the IA-64 processors can execute six instructions in each cycle.

2.4 Register Rotation

The IA-64 architecture uses the mechanism of register rotation. The relations
between the logical register numbers and the physical register numbers can be
rotated mainly by the branch instructions for loops described later. The IA-64
architecture has 128 floating-point registers, and 96 registers from the number
32 can be rotated. In general, a long sequence of instructions is required to uti-
lize such a large number of registers. But the mechanism of the register rotation
enables a short compact sequence of the instructions to use many physical regis-
ters. There are 64 predicate registers, where 48 registers from the number 16 can
be rotated. The general purpose (integer) registers also can be rotated partially.

2.5 Branch Instructions for Loop

The IA-64 instruction set defines several kinds of branch instructions, including
a normal branch instruction, a branch instruction for calling functions, a branch
instruction for returning from functions, and branch instructions for loops. The
conditional branches are implemented by the normal branch instruction with the
predicate register.

The branch instructions for loops reference the Loop Counter register (LC)
and the Epilogue Counter register (EC) to control the iteration. The LC is set
to (iteration count - 1) of the original loop. The EC is set to the number of extra
iterations required by the software pipelining. The ‘br.cloop’ instruction only
references the LC. On the other hand, the branch instructions for the modulo-
scheduled loops [9] such as ‘br.ctop’ reference both the LC and EC, and the
registers are rotated.

Those branch instructions reference the value of the LC, and jump to a spec-
ified address as long as the value is positive, and the LC is decreased by one.
When the LC becomes zero, the branch instructions for the modulo-scheduled
loops also reference the value of the EC and decrease it. In case of the modulo-
scheduled loop, the predicate registers are rotated by the branch instructions.
After rotating, the predicate register number 16 (p16) is set to 1 as long as
the value of the LC is positive. When the LC becomes 0, p16 is set to 0. Us-
ing the features of the predicate registers, the register rotation, and the branch
instruction for loops, we can describe an efficient modulo-scheduled loop very
simply.
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3 Conventional Optimizations of Nested Loop of FFT

Many of the traditional implementations of the FFT algorithm have nested loops.
An example of the radix-2 FFT kernel [5] is described below:

double complex vin[n1][2][n2], vout[2][n1][n2];
double complex w, table[n1][n2];
for (i = 0; i < n1; i++) {
w = table[i][0];
for (j = 0; j < n2; j++) {
t = w * vin[i][1][j];
s = vin[i][0][j];
vout[0][i][j] = s + t;
vout[1][i][j] = s - t;

}
}

The array ‘table’ is a trigonometric table called the twiddle factor table. Stock-
ham’s auto-sort algorithm [4,5] is used in this example. For this reason, the input
array ‘vin’ can not be overwritten. The results are written to another output
array ‘vout’.

The iteration counts of the nested loops are n1 and n2, respectively, and
they change during the computation of the FFT. For example, using the radix-
2 FFT kernel for the input size N(= n1 ∗ n2 ∗ 2) = 64, (n1, n2) becomes
{(1, 32), (2, 16), (4, 8), (8, 4), (16, 2), (32, 1)}. When the iteration count of the in-
ner loop n2 is too small, the efficiency of executing instructions is generally
degraded because of the overhead around the loop. There are several loop opti-
mization methods [3] proposed for such a case.

3.1 Loop Interchange

If one of the iteration counts of the nested loops is large enough, the performance
may be improved by interchanging the inner loop and the outer loop [4,5].

if (n1 > n2) {
for (j = 0; j < n2; j++) {
for (i = 0; i < n1; i++) {
w = table[i][0];
t = w * vin[i][1][j];
s = vin[i][0][j];
vout[0][i][j] = s + t;
vout[1][i][j] = s - t;

}
}

} else {
....

}
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In this example, the loop interchange is performed only if the iteration count of
the outer loop is larger than that of the inner loop. But the loop interchange does
not always improve the performance in the case of the FFT. The loop interchange
increases the number of load operations for the twiddle factor table, and the
memory accesses to the input and output buffers are no longer contiguous.

3.2 Unrolling of Inner Loop

The efficiency of executing instructions decreases when the iteration count of
the inner loop is small. The rate of the performance degradation depends on the
overhead of the loops such as the penalty for the branch prediction misses and
so on. Assume that branch prediction misses occur once every n2 iterations. A
drastic performance degradation results only if n2 is too small. Thus, we should
unroll the inner loop only in those cases.

switch (n2) {
case 1:
for (i = 0; i < n1; i++) {
w = table[i][0];
t = w * vin[i][1][0];
s = vin[i][0][0];
vout[0][i][0] = s + t;
vout[1][i][0] = s - t;

}
break;

case 2:
for (i = 0; i < n1; i++) {
w = table[i][0];
t = w * vin[i][1][0];
s = vin[i][0][0];
vout[0][i][0] = s + t;
vout[1][i][0] = s - t;
t = w * vin[i][1][1];
s = vin[i][0][1];
vout[0][i][1] = s + t;
vout[1][i][1] = s - t;

}
break;

....
}

The improvement in performance achieved by unrolling is especially large in
the case of smaller n2 values. As n2 becomes larger, the ratio of improvement
decreases. The exact threshold at which n2 should be unrolled should be deter-
mined in consideration of the size of the instruction cache memory and so on.
In general, the use of unrolling for large n2 values is not recommended.
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3.3 Loop Fusion Using Index Array

When computing on vector computers, the iteration count of the inner loop is
a very important factor. To achieve high performance with vector processing,
the iteration count must be sufficiently large. Using the loop interchange, the
iteration count may become

√
N/2 in the worst case, and this is not sufficiently

large for small N values. Pease proposed a method to combine nested loops into
a single loop [10]. The method prepares index arrays to realize non-contiguous
access in nested loops and performs gather operations using them. The example
of n2 = 4 is described below.

double complex vin[n1 * n2 * 2], vout[n1 * n2 * 2];
double complex w, table[n1 * n2];
long index1[] = {0, 1, 2, 3, 8, 9, 10, 11, 16, ...};
long index2[] = {0, 0, 0, 0, 1, 1, 1, 1, 2, ...};
for (i = 0; i < n1 * n2; i++) {
w = table[index2[i] * n2];
t = w * vin[index1[i] + n2];
s = vin[index1[i]];
vout[i] = s + t;
vout[i + n1 * n2] = s - t;

}

Although the iteration count of the loop becomes large, the method requires
O(N log N) memory space for the index arrays, and additional memory access
to the index arrays is required.

4 Loop Fusion Without the Index Arrays

In the case of the modulo scheduled loop of Itanium 2, the throughput of ex-
ecuting instructions is very high, whereas the overheads of the loops are large.
Therefore, the technique of loop interchange is not sufficient to exploit the poten-
tial. The conventional loop fusion method requires large index arrays. This causes
many cache misses; therefore, those methods are not suitable for non-vector pro-
cessors including Itanium 2. Thus, we propose a new loop fusion method without
index arrays.

At first, we observed the memory access patterns for ‘vin’, ‘vout’, and ‘table’.
The addresses for ‘vin’ move 16 bytes forward at each iteration; additionally,
they move (n2 * 16) bytes forward once every n2 iterations. The addresses for
‘table’ move (n2 * 16) bytes forward once every n2 iterations. The addresses for
‘vout’ move 16 bytes forward at each iteration. Using the operations of pointers,
they can be described as follows:

double complex *vin0 = vin, *vin1 = vin + n2;
double complex *vout0 = vout, *vout1 = vout + n1 * n2;
double complex *ptable = table;
count = n2;
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for (i = 0; i < n1 * n2; i++) {
w = *ptable;
t = w * *vin1; s = *vin0;
*vout0 = s + t; *vout1 = s - t;
vin0 += 1; vin1 += 1;
vout0 += 1; vout1 += 1;
count -= 1;
if (count == 0) {
vin0 += n2; vin1 += n2;
ptable += n2;
count = n2;

}
}

The variable ‘count’ is used to count down from n2, and the adjustments of the
pointers are performed when the count becomes zero. Although the number of
address operations is increased, the nested loops can be combined into a single
loop. The latest super-scalar processors can execute many instructions in each
cycle. In particular, IA-64 processors can execute six instructions, and the post
increment feature of the load and store instructions is usable to increase the
addresses by 16 bytes.

4.1 Implementation on Itanium 2

Combining the nested loops of the FFT into a single loop, the iteration count
is always sufficiently large. This may improve the efficiency of executing in-
structions, while the ‘if’ statement appears in the loop. If the statement is im-
plemented with branch instructions, the branch prediction misses degrade the
performance. For this reason, this kind of transform is usually not performed.
But in the case of implementation with the predicate register of IA-64, the trans-
form is effective.

The memory accesses for the twiddle factor table are performed at each it-
eration. Since the accesses to the same addresses are repeated in n2 contiguous
iterations, the lines are probably stored in the cache memory. The number of load
operations actually increases; therefore, the high-performance (cache) memory
access such as that of IA-64 is required.

4.2 Implementation on Other Architecture

The loop fusion method can be implemented, not with predicate registers but
with generic integer operations. If n2 is a power of two, it is clearly possible to
implement with logical operations as follows:

count = 0;
for (i = 0; i < n1 * n2; i++) {
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....
count += 1;
b = count & n2;
count -= b;
vin0 += b; vin1 += b;
ptable += b;

}

This is because we can use n2 as the bit mask and create the counter easily if
n2 is a power of two. Even if not, a similar operation is possible. The following
example uses the arithmetic shift right operation.

count = n2 - 1;
for (i = 0; i < n1 * n2; i++) {
....
count -= 1;
b = count >> 63; shift right arithmetic.
b &= n2;
count += b;
vin0 += b; vin1 += b;
ptable += b;

}

The size of the integers is assumed to be 64 bits. As the result of the 63-bit
arithmetic shift right operation, the significant bit will be copied to all the other
bits. For negative numbers, all bits become one. Otherwise, all bits become zero.
Using this procedure for the mask operation, the variable ’b’ becomes n2 once
every n2 iterations.

Almost all the processors have the arithmetic shift operation; therefore, the
loop fusion method is usable not only for IA-64 but also for other processors.

5 Implementation

The floating-point units of the IA-64 processors execute Fused Multiply-Add
(FMA) operations. Several FFT kernels for FMA have been proposed [11,12,13].
We used the FFT kernels proposed by Goedecker and Linzer, which require a
minimum number of FMA operations. To compute the FFT of the length of
powers of two, we can use the radix-2, radix-4, and radix-8 [14] FFT kernel and
so on. Table 2 shows the numbers of FMAs, and the load and store operations
required in those kernels. Using the radix-4 and radix-8 kernels, the number of
the FMA operations becomes smaller than with the radix-2 kernel. We used
the radix-4 mainly, and also used the radix-8 if required. Although the sizes of
transforms are limited to powers of two in this paper, our loop fusion method
can be used for kernels of radix 3, 5, or any other radix.

An optimized assembly code of the radix-4 kernel is used in later experiments.
Using the radix-4 kernel for the FMA, the nested loops are combined into a single



404 A. Nukada et al.

Table 2. The number of FMA and load/store operations of the FFT kernels for FMA

FMA load store

Radix-2 6 6 4
Radix-4 22 14 8
Radix-8 66 30 16

loop, and then the software-pipelined modulo-scheduled loop is generated. The
instructions are well scheduled in consideration of the dependencies and latencies.
In case of the Itanium 2 (Madison), the latency of the FMA is 4 cycles. The
latencies of the floating-point load operations from the level-2 cache and the
level-3 cache are 6 cycles and at least 23 cycles, respectively. In our optimized
kernel, the load operations are scheduled for 22–33 cycles before the data is used.
Each iteration takes 11 cycles, and 4 iterations are added for the epilogue. Thus,
11(N/4 + 4) cycles in total are required.

When the twiddle factor is 1.0, the multiplication by it can be skipped. This
optimization is often used to reduce the number of floating-point operations. In
case of the sample code in Section 4, the twiddle factors become 1.0 in the first n2
iterations. The radix-4 kernel has three complex multiplications by the twiddle
factors. If they are skipped, the number of the FMA operations is reduced to 16.
We also generated an optimized modulo-scheduled loop for them. Its epilogue
count is 5, and 8(n2 + 5) cycles in total are required. The other part, that is,
multiplications for which the twiddle factor is not 1.0, is computed normally and
requires 11(N/4 − n2 + 4) cycles. As the result of skipping the multiplication,
(3 ∗ n2 − 40) cycles are eliminated. Therefore, it is effective only if n2 is larger
than 13. Otherwise, the overhead of splitting the loop is larger. In our experi-
ments, N is a power of two. We used this optimization only if n2 was not less
than 16.

For the 2-D FFT, the optimized 1-D FFT kernel is used. And it is parallelized
using OpenMP as follows.

double complex v[N][N+1];
double complex work1[N], work2[N];
double complex table[N];

#pragma omp parallel for private(work1)
for (i = 0; i < N; i++)
FFT1D(N, v[i], work1, table);

#pragma omp parallel for private(j,work1,work2)
for (i = 0; i < N; i++) {
for (j = 0; j < N; j++) work1[j] = v[j][i];
FFT1D(N, work1, work2, table);
for (j = 0; j < N; j++) v[j][i] = work1[j];

}
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In the transform along the second axis, the data in non-contiguous addresses
are copied into the work space, and they are written back after the transform
for the efficient memory access. The 2-D array of N × (N + 1) is allocated to
store N ×N data. This is important to improve the performance of the memory
access because N is a power of two in our experiments.

In case of the Altix 3700, the physical memory pages are allocated by the
first-touch policy. The 2-D array is initialized in parallel to allocate the physical
memory pages of all nodes equally.

6 Performance Evaluations

Using the optimized FFT kernels, the performance on the SGI Altix 3700 was
evaluated. Table 3 shows the specifications of the system.

6.1 Performance of 1-D FFT

The performance of the 1-D FFT is shown in Table 4. Only one processor (sin-
gle thread) was used for computation. The elapsed time required to repeat the
forward and backward transforms �300/ log2 N� times was measured. The per-
formance (Gflops) was calculated from this value. Scaling of the results by (1/N)
was not performed. The number of floating-point operations in a 1-D FFT of
length N was assumed to be 5N log2 N . To compare the performance of the
optimized FFT kernel with that of other existing libraries, the performances
of FFTW 3.1 [15], Intel Performance Primitive Signal Processing 5.1.1 (IPPS),
Intel Math Kernel Library 8.0 (MKL), and SGI Scientific Computing Software
Library 1.5 (SCSL) were also measured. To compile the FFTW library, Intel
C/C++ Compiler 9.1.042 and compiler option ‘-O3’ were used.

Table 3. The specification of SGI Altix 3700

Processor Intel Itanium 2 (Madison)
Clock Frequency/Peak Gflops 1.3 GHz/5.2 Gflops
# of Proc. 32
Level-2/3 cache 256kB/3MB
Memory 32GB
Operating System SGI ProPack 2.4 for Linux

Table 4. The performance (Gflops) of 1-D FFTs

N 256 512 1024 2048 4096

Optimized 4.18 4.56 4.80 4.86 4.94
FFTW 3.1 2.94 3.11 3.14 2.92 3.01
IPPS 5.1.1 4.10 4.25 4.33 4.37 4.03
MKL 8.0 3.27 3.66 3.72 3.86 2.10
SCSL 1.5 2.87 3.13 3.32 3.44 3.29
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Table 5. The use rate of the FPUs

N 256 512 1024 2048 4096

# of FMAs 5152 11712 26144 57920 127008
Time 2.43us 5.04us 10.6us 23.1us 49.7us

Use rate 81.4% 89.2% 94.2% 96.2% 98.2%

Table 6. The performance (Gflops) of parallel 2-D FFT of 40962

# of PEs 1 2 4 8 16 32

Optimized 1.35 2.52 4.37 8.37 15.8 28.2
SCSL 1.5 0.82 1.44 2.54 4.36 6.91 10.6
MKL 8.0 0.62 0.95 1.51 2.83 4.92 7.99

FFTW 3.1 0.69 0.61 0.91 1.25 2.02 3.20

The optimized kernel (Optimized) we developed highly outperformed other
libraries. As the result of the loop fusion, the iteration count became O(N) and
the performance increased as N became larger.

Table 5 shows the number of floating-point FMA operations and the use rate
of the FPUs. The number of FMA operations only counts the operations which
are actually completed; therefore, it does not include the operations retired in
the prologue and epilogue parts of the modulo-scheduled loop. Despite that, the
use rate of the FPUs is very high, reaching up to 98.2%. The rate was improved
by loop fusion.

For FFTs of larger sizes, the block FFT algorithm based on six-step FFT is
suitable. In the block FFT algorithm, multicolumn FFTs of the sizes evaluated
in the Table 4 are computed in the cache memory.

6.2 Performance of 2-D FFT

Table 6 shows the performance of the parallel 2-D FFT of 40962. The perfor-
mances with 1,2,4,8,16, and 32 threads were measured. The speed-up of the
optimized kernel was about 20.8 with 32 threads. In the case of a single thread,
all the data were available in the memory of the local node; therefore, no data
transfer between nodes was required. In consideration of that, the speed-up was
sufficiently large.

7 Concluding Remarks

We have developed a high-performance FFT on the SGI Altix 3700, which is
a hardware distributed shared memory parallel computer with Itanium 2 pro-
cessors. To exploit the improved performance of the modulo-scheduled loop of
the IA-64 architecture, we proposed a loop fusion method for nested loops of
the FFT. In contrast to conventinal loop fusion methods, our method requires
no index arrays, and also can be used for other processor architectures because
it can be implemented with a series of generic instructions. This improved the
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efficiency of executing instructions, and the use rate of the FPUs reached 98.2%.
Using the Itanium 2 1.3 GHz, we achieved a performance of 4.94 Gflops (95% of
peak) in the 1-D FFT, and 28 Gflops in the 2-D FFT with 32 processors. The
optimized FFT kernel outperformed the other existing libraries.
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Abstract. Object-based storage offloads some works of file systems to
storage devices to improve security, scalability, and performance. Secu-
rity is a main concern when sharing data over network. We examine
the security model of object-based storage and find that there is some
problem in the model. It can be disabled by modifying specific field in
the command. We propose a solution to this problem by encryption that
makes unauthenticated clients impossible to alter the field. The overhead
of this encryption is quite low. Thus the performance of our enhanced
object-based storage system is comparable to that of the original one
while offering an enhanced security. In addition, we have compared the
performance of OSD systems with that of iSCSI and NFS. The write
performance of an object-based storage system is much better because it
can offload some tasks to storage devices, and the CPU usage at client
side is also largely reduced.

1 Introduction

The design of storage subsystems becomes an important issue with the improve-
ment of computer system. Although direct attached storage (DAS) devices have
much better performance compared to network attached storage (NAS), the ad-
vantages of NAS, such as scalability and file sharing, make it become important
in large scale computer systems. However, when a storage subsystem is connected
to internet, security is always a main concern for system designers. Object-based
storage systems [1][2] provide a security model which protects the shared data
in storage devices and eases the storage subsystem design in a very large scale
computer system.

The main concept of object-based storage is to offload the space management
component of existing file system to the storage device itself. Application clients
thus request for an object (or file) instead of many disk blocks. The new interface
can reduce traffics between application clients and storage devices. And the
application clients only need to manipulate hierarchy management, naming, and
user access control. The work data structure mapped to physical organization
and disk space management is left to be done in storage device.

The object-based interface is defined in details by OSD T10 standard [3]
and the aim of our work is to build an OSD (Object-based Storage Device)
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system compliant to this standard. Our implementation is based on IBM Object
Store Initiator [4][5] and Intel iSCSI/OSD reference implementation [6].However,
we find that there is a potential problem in their security model. The security
method can be altered by unauthenticated application clients to disable the
security model. In this paper, we propose an enhanced security model to resolve
the potential problem. The main idea is to encrypt the security method field and
make others impossible to alter the security method. The encryption does not
add much computing overhead to the system. We will illustrate the architecture
and design issues of our enhanced OSD system.

Section 2 gives the system architecture of our OSD system and briefly ex-
plains the design of the system. Section 3 discusses the security model of OSD
T10 standard and points out the potential problem. In section 4 we discuss the
possible solutions for the potential problem of the security model and give the
performance result in section 5. We give the conclusion and what to do in the
future in section 6.

2 OSD Environment

Currently the object-based hard disk drives compliant to the T10 standard are
still not available and our OSD storage system is based on Intel iSCSI/OSD
reference implementation, which consists of initiators and object-based targets,
to emulate the underlying Object-based Storage Device (OSD). Initiators and
targets are connected via iSCSI protocol over IP network [7][8]. The initiator
prepares the OSD SCSI commands, requests for credential from security manager
and packs it into OSD Command Descriptor Block (CDB) format which is a 200
bytes variable length CDB [9], and then issues it. The object based target receives
the OSD CDB from the initiators, checks whether the command is illegal and
then executes the command if it is a legal request. The architecture of the system
is shown in Fig. 1, which consists of initiator, security manager, policy/storage
manager, and storage device server.

2.1 Initiator

The initiator acts as an application client, which issues the OSD SCSI commands
to access the storage device server. The difference between the OSD system and
the traditional storage subsystem is that an application client of traditional
storage systems needs to allocate and manage disk space for specific files while
an OSD system does not care about it. An application client of OSD systems only
needs to specify which object it wants to access and the mapping between the
file name and the object ID. The storage space allocation and management are
delegated to storage device server. The only thing an application client needs to
do is specifying which object and its offset to be accessed. The application client
does not concern about the disk space and thus its loading is eased compared to
traditional storage system.

When an application client wants to issue an OSD command, it prepares pa-
rameters such as partition ID, object ID, the length and the starting address of
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Fig. 1. The architecture of our OSD system

the object it wants to access. Before it issues the command, it needs to request
a credential, which contains capability and capability key, from security man-
ager. The capability is generated by policy/storage manager which coordinates
requests from different application clients and determines their access rights.
Once the application client gets the credential, it packs the capability contained
in the credential into OSD CDB and sends the CDB via iSCSI initiator over
network. The command it issues can be verified by storage device server and
executed correctly with appropriate access right.

There are four supported security methods, NOSEC, CAPKEY, CMDRSP,
and ALLDATA [3][10]. The NOSEC method means security model is disabled
and all data is unprotected. The CAPKEY method protects the capability of the
CDB and the CMDRSP protects entire CDB and responses from targets. The
ALLDATA method makes sure all of the data between initiators and targets
are under protection. If the security model is enabled, the initiator needs to
compute an integrity check value before sending the command. In our system
we use HMAC (Hash Message Authentication Code) [11] algorithm and use the
secret key generated by security manager to compute integrity check value of
specific data depending on the security method. The integrity check value is
then packed into OSD CDB and the command is issued.

2.2 Security Manager

The main purpose of the security manager is to generate a key for initiators to
compute the integrity check value if the security method is not NOSEC. Once
the security manager receives a request from an application client, it hands over
the request to policy/storage manager and requests for a capability. After the
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security manager receives a capability back from the policy/storage manager, it
packs the capability and OSD system ID of storage device server into credential.
Then the security manager uses HMAC algorithm with the secret key shared with
the storage device server to compute a check value of this credential. The check
value, also called capability key, is the key for initiators to compute integrity
check values. The security manger packs the check value into the credential and
the credential is then sent back to the application client.

2.3 Policy/Storage Manager

The policy/storage manager receives requests from security manger and prepares
capabilities depending on different requests. The capability contains parameters
such as security method, integrity check value algorithm, read/write permissions,
allowed object ID for specific command, and so forth. Without the appropriate
capability an application client’s access to the storage device server will be re-
jected. With an appropriate capability, the policy/storage manager can make
application clients access only specific objects of the storage device server but
not the entire disk space.

2.4 Storage Device Server

The storage device server receives OSD commands via iSCSI target driver from
application clients and handles the space allocation and management according
to the requests. Once it receives a request, it will verify whether the command
had been tampered with by checking the integrity check value if the security
method is other than NOSEC. The storage device server will first reconstruct
the credential by copying both the capability from the CDB and the OSD system
ID from the Root Information attributes page. Then it uses the key shared
with security manager and HMAC algorithm to compute a check value of this
reconstructed credential. Finally, the storage device server computes an integrity
check value of the data depending on different security method by use of this
check value. It then compares the reconstructed integrity check value with that
in the CDB computed by application clients. If the two integrity check values are
identical, we can assure that the protected data has not been tampered with. And
if the two values mismatch, the protected data has been altered unintentionally
or maliciously and thus the storage server will reject the command.

If the security method is CAPKEY, we can assure that the capability is the
one that is prepared by the policy/storage manager. If the security method
is CMDRSP, we are confident that the OSD CDB is issued by authenticated
application clients. The ALLDATA security method makes sure that all the
data transmitted between authenticated application clients and storage device
server are not be altered.

If the command is not tampered with, the storage device server then checks
whether the accessed object is allowed and the access right of the command
depending on the capability in the CDB. The storage device server will also check
the parameters such as object created time. Moreover, the specific permission
bits must be set according to the service action and object type. Only when all
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the parameters of capability are verified can the storage device server execute
the OSD command.

The storage device server translates the OSD commands to VFS (Virtual
Filesystem Switch) system calls and exploits existing Linux file system such as
ext3 to do the space allocation and management. For example, OSD-CREATE-
PARTITION can be translated to mkdir() of Linux file system to create a direc-
tory to be treated as a partition of the object-based storage. We treat directories
of Linux file system as partitions and ordinary files as user objects.

2.5 Potential Problem

The security model of OSD systems provide some level of protection to avoid
malicious alteration of data over network. The credential integrity check value,
also called as capability key, is generated by security manager to compute the
integrity check value of protected data. The unauthenticated application clients
have no idea how to reconstruct the capability key because the key used to com-
pute the credential integrity check value is only known by the security manger
and the storage device server. Thus any unauthenticated application client can-
not generate a valid integrity check value without knowing capability key and
this is why the security model can avoid any malicious alteration by unauthen-
ticated application clients.

Even though the integrity check value based security model protects the data
from being altered, the CDB still can be seen by others. Unauthenticated appli-
cation clients can capture the capability by monitoring the CDB sent by authen-
ticated ones. If they change the security method field in the capability to NOSEC
and set integrity check value of CDB to 0s, then they can still access the objects
that the captured capability allows. All unauthenticated clients have to do is to
capture a valid capability, modify the security method, and send the command
using the modified capability to disable the security model. That is to say, unau-
thenticated application clients can force storage device server not checking the
integrity check value by changing the security method field to NOSEC.

Because the security method of certain command fully depends on the ca-
pability, the storage device server will check the integrity check value only if
the security method field of capability is not NOSEC. The security model will
not work if unauthenticated application clients can tamper the security method
field. In this study, we propose a solution to resolve this potential problem and
assure that the security model always works.

3 Enhanced Security Model

The most intuitive solution to prevent unauthenticated application clients from
tampering the security method field is to make it impossible for them to alter the
capability. Encrypting the transmitted data is one way to hide the contents of
the data. Even if unauthenticated application clients can capture the CDBs sent
by authenticated ones, they still do not know how to decrypt the data without
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the key, which is only known by storage device server, and thus they cannot
tamper the capability.

The public key crypto-system is a well known method to encrypt and decrypt
transmitted data. The receiver has its own private key and publishes a public
key, which is usually generated by the private key, to the one which wants to
transmit data to it. The transmitter encrypts the data with the public key of
receiver and the receiver decrypts the data by the private key. Others can’t
decrypt the cipher text without the private key thus they don’t know what the
data is and cannot tamper it.

A well known RSA algorithm uses the public key crypto-system with a set of
public and private keys to encrypt and decrypt. But the computing complexity
of RSA is very high because the encryption and decryption of RSA need to
compute the power of some integer. Although there are some methods to speed
up the computation, it still needs lots of computing resources. We combine the
concept of public key crypto-system and error correction coding, which is first
proposed by McEliece [12], to encrypt the transmitted data and decrypt the
cipher text. The encryption and decryption complexity is very low because all
operations are in binary field and addition can be done by logic exclusive OR
and multiplication can be done by logic AND. This largely decreases the need
of computing power in encryption and decryption.

We design an encryption procedure in the initiator. It encrypts the specific
field of the capability including security method with the public key of the OSD
storage server before issuing the CDB. To encrypt specific data, just like the
encoding process of error correction code encoder, it just multiplies the specific
data by the public key G′ of the OSD storage server, where G′ is generated by
the three private keys. Then it randomly flips t bits of encrypted data, which
stands for t errors during transmission. The encrypted data can be described
by equation c = mG ⊕ e, where m is K bits data and e is error pattern with
weight t. The public key G′ is a K × N matrix, and K is the number of bits of
data to be encrypted and N is the number of bits after encryption. We pack the
redundant bits N - K into the reserved fields of OSD CDBs and thus there is no
transmission overhead.

There are three private keys, G, S, and P generated by OSD storage server.
G is a generating matrix of a (N, K) code, P is an N by N permutation matrix
and S is a nonsingular matrix with dimension K. Currently G is a generating
matrix of a Hamming Code with easily generated generating matrix, thus how
to design a random non-singular matrix is our main concern. We first generate
a matrix with entries of random 0s or 1s and examine whether it is invertible.
If the inverse of the randomly generated matrix exists, then we have found the
non-singular matrix; if not, we regenerate another random matrix and examine
it again. We can find the non-singular within four tries because the probability
of a randomly generated matrix being non-singular is more than 25% [13][14].
Then the public key is generated by multiplying S, G, and P, G′ = SGP .

The OSD storage server must decrypt the received CDB before computing
the integrity check value. Because G′ = SGP , we can rewrite the encrypt data
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c = mSGP ⊕ e. The server first multiplies c with the inverse of P and gets the
equation: c′ = (mSGP⊕e)P−1 = mSG⊕eP−1 = m′G⊕e′. Here e′ has the same
weight as e and then the server can decode c′ with error pattern e′ to m′ using
generating matrix G. We compute the syndrome of c′ and find the least weight
error pattern and then decode c′ to m′. Once m′ is found, the original message
can be decrypted by multiplying m′ by the inverse of S because m′ = mS and
then m = m′S−1.

Both the encryption and the decryption process are very simple because the
matrix multiplications can be replaced with logic AND in binary field. With this
insignificant computing overhead we can provide an enhanced security model
without adding much cost. Unauthenticated clients now cannot capture a valid
capability to generate an unauthenticated CDB by just changing the security
method in the capability.

4 Performance Evaluation

In this section we will show the performance of our system and compare it with
other file systems. We use two identical machines with configuration listed in
Table 1 and connect them with a 3COM gigabits switch. We use the program
bonnie++ version 1.03a [15] with file size set to 1 GB and block size 8 KB
for all of the performance evaluations. We evaluate the performance under five
environments:

OSD-NOSEC: In this environment we use the OSD system according to OSD
T10 standard with security manager disabled. The keys and integrity check
values are all set to zero. In the initiator we implement an OSD file system
based on the Intel iSCSI/OSD reference implementation, and in the target
we exploit existing ext3 file system to manage the disk space. The initiator
and target are connected through a gigabits network.

OSD-CAPKEY: In this environment we use the OSD system with security
method set to CAPKEY. The security manager needs to generate a key
for initiators to compute integrity check value. The initiator and target are
implemented in the same way as OSD-NOSEC.

ENHANCED: This uses the enhanced security model we have proposed. The
architecture is the same as an OSD system except an additional encryption
process.

iSCSI: We use a storage subsystem which supports dual 1 Gbits iSCSI ports
as the underlying storage medium. In the initiator we use Linux-iSCSI driver
[16] to connect to the iSCSI storage through a gigabits network and mount
it as a local disk.

NFS: A well known Network File System. Clients and file server are also con-
nected through the same network as above.

In order to reduce variations between different machines, in all of the tests we
use the same initiator and target.

Fig. 2(a) shows the performance when writing a character at a time of a total
1 GB file. Our enhanced security model has comparable performance to that of
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Table 1. Configurations for initiator and target

CPU AMD Sempron Processor 2500+

Memory 512MB DDR 400 RAM

HDD WD IDE 7200rpm 160GB with 8MB buffer

NIC 3COM gigabits NIC 3C200-T

OSD-CAPKEY. The figure shows that our enhanced model adds almost zero
overhead compared with the OSD T10 standard, but our proposed OSD system
offers stronger security. This is because the matrix multiplication process can
be replaced with logic AND in binary field. The overhead of security method
CAPKEY over NOSEC is about 0.15 % . The overhead is insignificant because
the HMAC process is quite simple and thus requires little computing power.
Compared with iSCSI, our system is about 20 % faster when writing a character
at a time. This is because that the iSCSI storage is block based, and the local file
system packs a character into a block at a time, thus there is a huge overhead
to write only a character at a time. When the OSD file system issues a WRITE
command, it can issue another one as soon as it receives an acknowledgement
response from the target without waiting for the target server to process the
command. That is why the writing performance of an OSD system is better
than iSCSI storage. The same reason accounts for the poor performance of NFS.
Moreover, NFS is based on RPC (Remote Procedure Call) a client, after issuing
a write command, needs to wait until receiving an acknowledgement from NFS
server and this is why NFS is about 35.95 % worse than an OSD system.

Fig. 2(b) shows the performance when writing a block at a time for a 1 GB
file. The performance improvement for both OSD systems and iSCSI storage are
significant because a block now contains 8 KB data to be written instead of 1
byte in the per character write, thus the writing overhead is largely reduced.
We can see that our enhanced model still offers stronger security with little
performance degradation. Again we can see that the overhead of CAPKEY is
still very small over NOSEC, and our OSD system performs better than the
iSCSI storage because application clients do not have to manage the disk space.
We find that the CPU usage for iSCSI storage in such a test is about 3 times of

Fig. 2. (a)Performance when writing a character at a time (b)Performance when writ-
ing a block at a time
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Fig. 3. (a)Performance when reading a character at a time (b)Performance when read-
ing a block at a time

that for an OSD system (9.7% for an OSD system and 31.7% for iSCSI storage).
This is because clients need to allocate and manage the disk space before issuing
a write command but nothing of this sort has to be done in the OSD system.
The performance difference between the OSD system and iSCSI storage in this
test is due to disk performance, where performance of iSCSI storage is limited
by disk. We can improve the performance by about 65 % if we configure the
iSCSI storage to a RAID 5 storage subsystem. The performance improvement
for NFS is smaller compared with OSD system and iSCSI storage due to RPC
procedure because every command is limited by the RPC response time. The
write performance of our OSD system is much better in this test.

Fig. 3(a) shows the performance of reading a character at a time. The poor per-
formance in all environments is now again due to the huge overhead if it only reads
a character at a time because the entire block needs to be transferred while only
one character is needed. Now the OSD system is about 17 % slower than the iSCSI
storage and this is due to the overhead of OSD device server when processing a
READ command. Unlike in the writing case, where the OSD file system does not
need to wait for the target server to process the command, it now needs to wait
for the target server to process the command and return accessed data. The over-
head of the target server processing the OSD command includes security check,
capability validation and command execution. Thus the overhead causes the per-
formance degradation in reading data compared to iSCSI storage. But the CPU
usage of initiator is reduced by about 18 % (78.2 % in iSCSI storage and 63.7% in
the OSD system with NOSEC) in the OSD system due to the offloading of disk
space management to the target server. The NFS performs better than both iSCSI
storage and OSD systems due to the use of a client cache.

Because these machines share the switch with other computers in our lab-
oratory, the traffic of the switch can impact the performance of this system.
The original read performance of ENHANCED is somewhat better than OSD-
NOSEC and OSD-CAPKEY due to different traffic of the switch. Thus we re-
measure the performance of these three systems by disconnecting all the other
computers and get the result shown in Fig. 3(a).

Fig. 3(b) shows the performance of reading a block at a time. The overall
performance is better than per character read performance as shown in Fig. 3(a).
The iSCSI storage and NFS improve a lot due to lower overhead when reading



Security Enhancement and Performance Evaluation 417

Fig. 4. Performance when rewriting an existing file

a block at a time. An entire block now contains valid data and traffics between
client and server are reduced. The improvement in OSD systems is limited by
the overhead to process an OSD command.

Fig. 4 shows the performance result of rewriting an existing file. The per-
formance of our proposed system is still comparable to that of the OSD T10
standard. The rewriting performance of the OSD system is not as good as that
of iSCSI storage because it needs to copy the data from storage server to a
client’s local buffer and then send back the rewritten data. The performance
degradation is due to poorer read performance of the OSD system. Another
reason is that there are two file systems in the OSD systems, OSD file system
for initiator and ext3 file system for target. We have to use ext3 file system in
the target to emulate an OSD storage device because currently no object-based
disks are manufactured and available. We expect the performance of rewrite to
be better if the underlying storage medium is real object-based disks. Another
method to improve rewrite performance is to design a REWRITE command,
which is a new command not defined in OSD T10 standard. Initiator can issue
this new command with appropriate data and let the storage server process the
rewriting process. In this way, the data needs not to be copied to application
clients and thus the rewriting performance can be improved. This is left as our
future implementation.

5 Conclusion and Future Work

The OSD system is a new architecture for storage subsystem. It offloads some
tasks to storage devices to improve security management, scalability, and even
performance. However, the security model of OSD T10 standard can be disabled
by altering specific field in the capability. In this paper we point out a prob-
lematic security issue and propose to resolve the problem with encryption. The
encryption process can be simplified in the binary field by using McEliece based
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cryptosystem. The overhead of our OSD system is almost zero while offering an
enhanced security.

We have also studied storage subsystem performance under five different en-
vironments using Bonnie++ benchmark suit. In general the CPU usage in the
client side of OSD systems can be reduced significantly. We also find that our
OSD system performs much better than the others when writing a file because
a client’s OSD file system dose not need to manage disk space. An application
client can issue another command right after receiving an acknowledgement re-
sponse from storage device server without waiting for it to execute the command.
The read and rewrite performances are not as good as write performance due
to the overhead of the file system used to emulate object-based disk in the stor-
age server.The degradation is expected to be improved significantly when real
object-based disk becomes available in the future.

The first task to do in the future is to improve the rewrite performance. We
want to build an OSD system with performance comparable to iSCSI storage,
thus we first need to improve the performance when rewriting a file. The reason
that rewrite performance is not as good as write performance is that data needs
to be read from the server to the client side, and the data is then modified and
sent back to the server. We propose to implement a new command REWRITE
to be used to eliminate this unnecessary data read from a storage server to an
application client. The new data is sent to the server and the modification is
done in the server side directly.

The ultimate goal is to design a real object-based disk. Currently the OSD
server emulates object-based storage disk by utilizing the Linux ext3 file system
to manage the disk space of the server and its overhead is very large. If we
can design an intelligent disk which can manage disk space by itself, the read
performance improvement will be significant. And this will take the storage
technique to another era.
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Abstract. OpenMP is a portable shared memory programming interface that 
promises high programmer productivity for multithreaded applications. It is de-
signed for small and middle sized shared memory systems. We have developed 
strategies to extend OpenMP to clusters via compiler translation to a Global Ar-
rays  program. In this paper, we describe our implementation of the translation 
in the Open64 compiler, and we focus on the strategies to improve sequential 
region translations. Our work is based upon the open source Open64 compiler 
suite for C, C++, and Fortran90/95. 

1   Introduction 

MPI is still the most popular and successful programming model for clusters. It, how-
ever, is error-prone and too complex for most non-experts. OpenMP is a program-
ming model designed for shared memory systems that provides simple syntax to 
achieve easy-to-use, incremental parallelism, and portability. However, it is not avail-
able for distributed memory systems including widely deployed clusters. We believe 
that it is feasible to use compiler technologies to extend OpenMP to Clusters to alle-
viate the programming efforts on cluster. We have developed strategies[7][8][12] to 
implement it via Global Arrays (GA)[15].  

GA is a library that provides an asynchronous one-sided, virtual shared memory 
programming environment for clusters. A GA program consists of a collection of 
independently executing processes, each of which is able to access data declared to be 
shared without interfering with other processes. GA enables us to retain the shared 
memory abstraction, but at the same time makes all communications explicit, thus 
enabling the compiler to control their location and content.  Considerable effort has 
been put into the efficient implementation of GA's one-sided contiguous and strided 
communications. Therefore, we can potentially generate GA codes that will execute 
with high efficiency using our translation strategy. On the other hand, our strategy 
shares some of the problems associated with the traditional SDSM approach to trans-
lating OpenMP for clusters: in particular, the high cost of global synchronization, and 
the difficulty of translating sequential parts of a program. 

The traditional approach to implementing OpenMP on clusters is based upon trans-
lating it to software Distributed Shared Memory systems (DSMs), notably Tread-
Marks[6] and Omni/SCASH[17]. The strategy underlying such systems is to manage 
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shared memory by migrating pages of data, which unfortunately incurs high over-
heads. Software DSMs perform expensive data transfers at explicit and implicit barri-
ers of a program, and suffer from false sharing of data at page granularity. They  
typically impose constraints on the amount of shared memory that can be allocated. 
But this effectively prevents their applications to large problems. [4] translates 
OpenMP to a hybrid MPI+software DSM in order to overcome some of the associated 
performance problems. This is a difficult task, and the software DSM could still be a 
performance bottleneck. [1] translates OpenMP directly to MPI programs. 

In this paper, we discuss our approach and implementation for translating OpenMP 
programs to Global Arrays, especially we present our strategies for handling sequen-
tial regions of OpenMP efficiently. The remainder of this paper is organized as fol-
lows. We first describe our approach that translates OpenMP to GA in Section 2, and 
follow by three strategies for handling the sequential parts of OpenMP programs. We 
will then present a detailed implementation for the work based on the OpenUH com-
piler. Related work and conclusions are described in the subsequent sections. 

2   Our Translation Approach 

GA [15] was designed to simplify the programming methodology on distributed 
memory systems by providing a shared memory abstraction. It does so by providing 
routines that enable the user to specify and manage access to shared data structures, 
called global arrays, in a FORTRAN, C, C++ or Python program. GA permits the user 
to specify block-based data distributions for global arrays, corresponding to HPF 
BLOCK and GEN_BLOCK distributions which map the identical length chunk and 
arbitrary length chunks of data to processes respectively. Global arrays are accord-
ingly mapped to the processors executing the code. Each GA process is able to inde-
pendently and asynchronously access these distributed data structures via get or put 
routines. 

In principle, translating OpenMP programs into GA programs is not difficult since 
both of them have the concept of shared data and the GA library features match most 
OpenMP constructs. Almost all OpenMP directives can be translated into GA or MPI 
library calls at source level. (We may use these together if needed, since GA was 
designed to work in concert with the message passing environment.)  Most OpenMP 
library routines and environment variables can be also be translated to GA routines. 
Exceptions are those that dynamically set/change the number of threads, such as 
OMP_SET_DYNAMIC, OMP_SET_NUM_THREADS. 

Our translation strategy follows OpenMP semantics and translates an OpenMP 
code to a SPMD style GA program. OpenMP threads correspond to GA processes: a 
fixed number of processes are generated and terminated at the beginning and end of 
the corresponding GA program. Instead of flexible forking and joining threads in 
OpenMP, the GA programs have to keep the fixed number of processes and manage 
them from the beginning. OpenMP shared data are translated to global arrays that are 
distributed among the GA processes; all variables in the GA code that are not global 
arrays are called private variables. OpenMP private variables are replicated to each 
GA process. All shared OpenMP arrays are given a data distribution and translated to 
global arrays. 
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2.1   Strategies for Translating Sequential Regions 

All strategies for implementing OpenMP on cluster have a problem with sequential 
regions. A process executing sequential code may need to read or write to shared data 
which potentially could be distributed across multiple cluster nodes. A major chal-
lenge is to devise an effective compiler/runtime strategy to minimize this communica-
tion overhead.  A simple approach for handling sequential regions would be to restrict 
execution of enclosed statements to the master process. However, this presents an-
other problem. If the executing process encounters a parallel region, other processes 
would need to be available to join in executing it. We refer to this as the control flow 
problem for translating OpenMP sequential region on clusters. We have identified 3 
general translation strategies for resolving this control flow problem, which we dis-
cuss below. 

Parallel Control Flow. For this approach, we translate sequential regions such that 
only one process (typically the master process) executes assignment statements or I/O 
operations. However, to ensure every process is available for a parallel region, control 
flow must be executed by all processes if it encloses a parallel region. While 
sometimes this can be determined at compile time, procedure calls can make it 
difficult to statically determine if a control flow construct encloses a parallel region. 
In the cases a control flow construct is free of enclosed parallel regions or calls to 
procedures with parallel regions, it need only be executed by a single process. 
Otherwise, all processes must execute the control flow statement. In a similar way, a 
call to a procedure must be executed by all processes if there is the potential of 
encountering a parallel region down that call path.  

Another issue is that all processes must identically evaluate the control flow condi-
tion expression. This means that any input values required for the condition expres-
sion must be consistent across all processes. To handle this, the condition expression 
is evaluated and written to a temporary variable by the executing single process. 
Then, all processes execute a collective broadcast operation, which will send the re-
sulting value of the expression to all processes. All processes then use this value to 
evaluate the control flow condition. 

 

Redundant Execution Approach. Another way of tackling the control flow problem 
in sequential regions is to simply allow every process to redundantly execute the en-
tire sequential region, except for certain I/O operations (e.g. writing to a file). There 
are multiple potential advantages with this approach. Firstly, it can be implemented 
with a more straightforward translation then parallel control flow. And in theory, if all 
shared data is replicated for every process, then a sequential region can be redun-
dantly executed by every process without requiring communication to ensure shared 
data consistency. And, of course, it would not be necessary to broadcast control flow 
conditions either.  

There are, however, some significant drawbacks to this approach as well. It could be 
impractical to replicate shared data for every process if the data consisted of very large 
shared arrays.  Often, we would prefer to distribute such arrays across the cluster proc-
esses. But if we do this then redundant accesses of such data in sequential regions would 
require communication to/from every process, a considerable drain on the cluster’s 
network bandwidth. Also, for certain applications with resource-intensive sequential 
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regions (e.g. graphical interfaces), replicating all sequential code is impractical. For 
these reasons, we believe parallel control flow is a more suitable translation strategy. 

Idle Process Invocation. The final strategy we have considered for dealing with this 
problem is for the master process to invoke idle helper processes to work on parallel 
regions as they are encountered. In this approach, only the master process executes 
sequential regions while the rest of the processes remain idle. Furthermore, the compiler 
outlines all parallel regions in the program to separate procedures, and inserts calls to 
these procedures where the regions used to be. When the master process encounters a 
call to an outlined parallel region, it will broadcast an index and any shared data 
references for the procedure to the rest of the processes. All processes are synchronized 
just before beginning and exiting execution of the outlined parallel region. 

2.2   Translation of Parallel Region 

Before delving into implementation details, we present a short example to illustrate 
how we translate an OpenMP parallel region into an SPMD-style code for clusters. 
 

 

Fig. 1. OpenMP code is translated into an SPMD-style parallel program by our compiler. Calls 
to the ClusterMP runtime are inserted to manage shared data and coordinate work in sequential 
and parallel regions. 
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Fig.1 (a) depicts a simple OpenMP parallel region where work is distributed across 
the array a’s second dimension.  Suppose the size of a’s first dimension is SIZE_X, 
and the size of a’s second dimension is SIZE_Y.  We determine that a is a shared 
variable with work distributed across its second dimension, and we register it as such 
with our runtime Fig. 1 (b), line 3. This registration will create a corresponding GA 
for the array a that is block distributed across each process executing on the cluster. A 
handle for the GA is managed internally by the runtime,  which allows potential run-
time optimizations such as redistribution based on dynamic access patterns. Next, we 
signal the runtime to enter a parallel state, and we commence with the MAX iterations.  

On lines 8 and 9 in Fig. 1 (b), lower and upper bounds for the second dimension 
are calculated by each process at runtime. On line 11, each process performs a block-
wise “get” for array elements it will be reading in the loop. We apply a condition for 
the assignment on line 14, which restricts execution of the enclosed block of state-
ments depending based on the process id and the OpenMP state (i.e. sequential or 
parallel region).  At the end of the iteration, each process will “commit” the local 
writes it performed via the clustermp_write call and then synchronize with the other 
processes before starting the next iteration. Finally, after all iterations have com-
pleted, we tell the runtime that the parallel region has completed.  

3   Implementation 

We have implemented the parallel control flow translation strategy for sequential 
regions, described in the previous section.  Our implementation consists of two 
phases: (1) we use the OpenUH compiler to translate OpenMP programs into a corre-
sponding cluster-enabled parallel program, and (2) we created a runtime library,  
ClusterMP, which wraps calls to the Global Arrays toolkit for creating, reading, and 
writing shared data in a cluster environment. We present implementation details for 
the compilation and runtime phases below. 

3.1   OpenUH Compiler 

The OpenUH compiler is based on Open64, an open source compiler for C, C++, and 
Fortran 90. Fig. 2 shows a component diagram for the OpenUH backend, where we 
have implemented our OpenMP translation for execution on clusters. 

Our translation approach is to leverage as much as possible the ClusterMP runtime 
in order to reduce complexity in our OpenMP translation. Consequentially, our trans-
lation scheme is fairly straightforward and does not assume an underlying use of 
global arrays by the runtime. We also feel there is considerable scope for optimiza-
tions to be carried out both at the compiler and runtime level. In this section, we de-
scribe the translation scheme employed by OpenUH to translate OpenMP programs 
for execution on a cluster in conjunction with the ClusterMP runtime. 

In our translation, each procedure is handled separately. Specifically, if it is the 
main procedure the compiler will insert a call to initialize the ClusterMP runtime 
(clustermp_init) at the beginning of the procedure’s body and a call to shutdown the 
ClusterMP runtime (clustermp_finalize) at the very end of the procedure’s body. For 
all procedures, a runtime call (clustermp_create_locals) is inserted to signal to the  
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Fig. 2. We use the OpenUH compiler to implement the OpenMP translation for clusters 

runtime that a new procedure has been entered. This will cause the runtime to push a 
new shared data frame for the current procedure onto the runtime’s shared data frame 
stack.  Then, a runtime call (clustermp_check_args) is inserted to communicate the 
procedure’s parameters to the runtime.  

The compiler first traverses the IR tree for the procedure and adds any identified 
shared variables to a shared data list. Calls (clustermp_register_var) are inserted for 
each shared variable to register it with the runtime. Information passed includes array 
bounds information (all dimension sizes are set to 1 if it is a scalar), the variable 
name, a unique identification number, and the variable data type.  Next, the compiler 
traverses the IR a second time and restructures the code such that computations in 
sequential regions are handled by the master process, and all processes participate in 
the parallel regions as specified by the OpenMP directives. Runtime calls are inserted 
to read/write shared data, check or modify the dynamic OpenMP state (e.g. in a se-
quential or parallel region?), and to receive the assigned iterations for OpenMP DO 
loops.  Finally a runtime call (clustermp_pop_locals) is inserted at the end of the 
procedure to signal the runtime to pop the current shared data frame from its shared 
data frame stack. 

3.2   ClusterMP Runtime 

Considerable research has been carried out for executing OpenMP programs on clus-
ter architectures. We believe the GA toolkit is a suitable target for translating 
OpenMP programs. It allows for a relatively straightforward translation due to its 
shared memory abstraction. But unlike software distributed memory systems 
(SDSMs), which are traditionally used for implementing OpenMP on clusters, GA 
makes all communication explicit which is useful for controlling and optimizing data 
communication. For our implementation of OpenMP on clusters we developed a run-
time library, ClusterMP, which wraps functionality provided by the GA toolkit and 
provides management of shared data. In this section, we present an overview of the 
ClusterMP Runtime implementation. 
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Fig. 3. The runtime core functionality can be split into four categories: (1) transitioning and 
checking OpenMP state, (2) managing shared data, (3) reading and writing to shared data, and 
(4) communicating control flow information to all processes 

OpenMP State Transition. OpenMP allows parallel regions to extend past the 
lexical extent of the OMP parallel directive and into called procedures. 
Consequentially, we must maintain dynamic OpenMP state information which 
indicates whether the executing process is currently in a sequential or parallel region. 
We add other states to distinguish OpenMP single and critical regions as well. The 
compiler inserts runtime calls into the translated code to initiate state transition as 
appropriate. All processes, by default, start in the sequential state. When transitioning 
from sequential to parallel (via clustermp_entering_parallel) or from parallel to 
sequential (via clustermp_leaving_parallel), the runtime will implicitly invoke a 
barrier operation to synchronize all the processes, unless a nowait clause was 
specified.  

The value of retaining OpenMP state for the purposes of our translation strategy is 
to identify whether a process may execute a conditional block. As explained in our 
description of the compiler translation, we place all assignment statements (i.e. com-
putation) in a conditional block. The condition is evaluated to true at runtime simply 
if the process ID is 0 (it is the master process) or the OpenMP state is set to parallel or 
critical. This will restrict other processes from performing computation in sequential 
regions or OpenMP single blocks. 

Managing Shared Data. The runtime uses two data structures for maintaining 
metadata corresponding to all shared variables identified for the running process. The 
Global Shared Data table holds metadata for shared global variables. The Local 
Shared Data Frame (LSDF) stack holds metadata for all shared variables local to each 
procedure in the call stack. The shared data we support may be either a scalar or 
multi-dimensional array with a base data type of integer, floating point, or complex 
number. For each shared variable, we track the variable name, a unique variable id, a 
global array handle, and the number of dimensions and the size of each dimension (1 
and 1 for scalars).  
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We use global arrays to represent shared data. Whenever clustermp_register_var is 
invoked for a shared variable, the ClusterMP runtime will attempt to create a corre-
sponding global array for the variable with an appropriate data distribution. Informa-
tion for this global array is then added to the appropriate Shared Data table. When a 
process enters a called procedure, clustermp_create_locals is called to create a new 
LSDF that records information for shared variables encountered in the procedure. 
This frame is pushed onto a stack which corresponds to the call stack for the process. 
Global array information for parameters passed into a procedure can be copied from 
the previous LSDF into the new frame, using the calls clustermp_set_args and clus-
termp_check_args. 

 
Reading and Writing to Shared Data. The compiler inserts a call to clustermp_read 
whenever data that is not explicitly scoped as private is read, and it inserts a call to 
clustermp_write whenever such data is written to. The clustermp_read operation will 
perform a one-sided get on the corresponding global array for the variable being read, 
and copy the retrieved value into the variable address (which is essentially treated as a 
“local buffer” for the global array). Similarly, clustermp_write will perform a one-
sided put on the corresponding global array using the value provided in the variable. 
If either function is invoked for a variable that hasn’t been registered, then it immedi-
ately returns. The steps taken for reading and writing shared data is identical for se-
quential and parallel regions.  

Clearly, this approach incurs very high overhead, simply due to the fact that a run-
time call is made for each variable access.  This means that it is the job of the runtime 
to minimize communication overhead as much as possible. We have investigated 
various strategies for minimizing communication – including prefetching read data 
and delaying writes to shared data until a synchronizing barrier is reached. We believe 
there is considerable scope for optimizing the overhead of reading or writing shared 
data, both in the compiler and the runtime. 

Communicating Control Flow. In our translation, the master process must 
communicate the resulting value of the Boolean expression for control flow 
constructs. The routine clustermp_comm_cf is used to communicate this information. 
If the OpenMP state is not sequential or single, then this routine does nothing (all 
processes already have the necessary information to correctly execute the control 
flow). Otherwise, we broadcast the value specified from the master process to all 
other processes. 

4   Evaluation 

In this section, we discuss the results of a set of experiments we ran to evaluate the 
three strategies for sequential translation described in Section 2.1. We look at  execu-
tion time and frequency of various GA routine calls. Experiments were conduceted on 
Atlantis, a cluster  of dual-Itanium2 machines connected by a high performance myri-
net interconnect. We used OpenUH 1.0 to implement the parallel control flow (PCF) 
translation and we create ClusterMP programs by hand to test redundant execution 
(RE) and idle process invocation (IPI). These experiments also used the GA 4.0.5 and 
Intel OpenMPI 1.2.3 libraries. 
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4.1   Benchmark 

To test our implementation, we devised a benchmark which would contain a config-
urable mixture of sequential regions, with read and write I/O, and parallel regions.   
Within the main iteration loop of the benchmark: (1) the contents of a large file are 
read into a buffer, (2) an arithmetic expression is evaluated based on the interation 
count and one of multiple procedures are called accordingly. (3) a parallel routine 
(Jacobi) may or may not be called (likelihood increases proportionally with a specifed 
JacobiFrequency parameter), and (4)  contents of file are written back out to an out-
put file. We ran this benchmark, translated using the above three strategies, on 4 clus-
ter nodes.  

4.2   Performance Results 

The results in Fig. 4 (a) show that the PCF approach yielded the best total execution 
time as the frequency of Jacobi interjection increases. While from Fig. 4 (b) it is clear 
that sequential execution time was much greater for PCF than either RE or IPI, we see 
also that each invocation of Jacobi is executed faster ( Fig. 4 (c) ). This is an interest-
ing result, since all three approach should yield identical translations for parallel 
regions, and indeed we verified that all three translations of Jacobi had an identical 
number of calls to ga_create, ga_get, ga_put, ga_sync, and ga_destroy.  When 
worker processes are expected to replicate execution (as in RE) in sequential regions, 
this can cause them to arrive late at the parallel region which in turn results in extra 
wait time to complete necessary collective operations. Thus, even though the RE 
 

 

Fig. 4. The above the three graphs show execution time as the frequency of Jacobi invoked 
during the run varies. In (a), we look at total execution time of benchmark, in (b) we look only 
at the “sequential” portion, and in (c) we focus on time for each invocation of Jacobi. 
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approach can yield superior sequential execution time (for the master process), over-
all performance can be potentially be degraded.  

We are particularly intrigued by the results of the IPI approach, which in effect 
mimics the fork-join model of traditional shared memory programs. Sequential execu-
tion times are very small, as expected, since only the master process executes it. As 
with RE though, there are unexpected overheads when executing the parallel regions 
that are currently being investigated. 

5   Related Work 

Our approach to implementing OpenMP for distributed memory systems has a num-
ber of features in common with approaches that translate OpenMP to Software DSMs 
[17][2][6][5] or Software DSM plus MPI [4], or directly to MPI [1] for cluster execu-
tion. All of these methods need to determine the data that has to be distributed across 
the system, and must adopt a strategy for doing so. Also, the work distribution for 
parallel and sequential regions has to be implemented, and it is typically the latter that 
leads to problems. Note that it is particularly helpful to perform an SPMD-style, 
global privatization of OpenMP shared arrays before translating codes via any strat-
egy for cluster execution, due to the inherent benefits of reducing the size and number 
of shared data structures and of obtaining a large fraction of references to (local) pri-
vate variables. 

On the other hand, our translation to GA is distinct from other approaches in that 
ours promises higher levels of efficiency via the construction of precise communica-
tion sets. The difficulty of the translation itself lies somewhere between the translation 
to MPI and the translation to Software DSMs. First, the shared memory abstraction is 
supported by GA and Software DSMs, but is not present in MPI. It enables a consis-
tent view of variables and a non-local datum is accessible if given a global index. In 
contrast, only the local portion of the original data can be seen by each process in 
MPI. Therefore manipulating non-local variables in MPI is inefficient since the owner 
process and the local indices of arrays have to be calculated. Furthermore, our GA 
approach is portable, scalable and does not impose limitations on the shared memory 
space. The everything-shared SDSM as presented in [3] attempts to overcome the 
relaxation of the coherence semantics and the limitation of the shared areas in other 
SDSMs. It does solve commonly existing portability problems in SDSMs by using an 
OpenMP run-time approach, but it is hard for such a SDSM to scale with sequential 
consistency. Second, the non-blocking and blocking one-sided communication 
mechanisms offered in GA allow for flexible and efficient programming. In MPI-1, 
both sender process and receiver process must be involved in the communication. 
Care must be taken with the ordering of communications in order to avoid deadlocks. 
Instead, get and/or put operations can be handled within a single process in GA. 

6   Conclusion 

Despite the widespread use multicores, clusters are increasingly used as compute 
platforms for a growing variety of applications. Extending the simple programming 



430 D. Eachempati, L. Huang, and B. Chapman 

model OpenMP to clusters will provide an efficient program paradigm to allow many 
non-experts to exploit the capacity of clusters. OpenMP is designed for shared mem-
ory systems, and it seems inappropriate to add new language features for cluster sup-
port into it. A joined compiler and runtime system is a more practical and promising 
approach for bridging the gap between the language and hardware.  

This paper describes our strategies in implementing OpenMP on clusters by trans-
lating OpenMP codes to equivalent GA ones. This approach has the benefit of being 
relatively straightforward. This strategy has the advantage of relative simplicity to-
gether with reasonable performance, without adding complexity to OpenMP for both 
SMP and non-SMP systems. We have presented the strategies for efficiently handling 
sequential regions in an OpenMP program. We describe our implementation for the 
translation from OpenMP to GA in the Open64 compiler [16], an open source com-
piler that supports OpenMP and which we have enhanced in a number of ways al-
ready. We have developed a runtime system on top of the GA library for facilitating 
the compiler implementation. The rich set of analyses and optimizations in Open64 
may help us create efficient GA codes. We will continue working on optimizing our 
translation by utilizing existing compiler analyses. We plan to build a framework to 
conduct parallel data flow analysis for OpenMP to improve the performance. 
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Abstract. One of the outcomes of DARPA’s HPCS program has been
the creation of three new high productivity languages: Chapel, Fortress,
and X10. While these languages have introduced improvements in lan-
guage expressiveness and programmer productivity, several technical
challenges still remain in delivering high performance with these lan-
guages. In the absence of optimization, the high-level language constructs
that improve productivity can result in order-of-magnitude runtime per-
formance degradations.

This paper addresses the problem of efficient code generation for high
level array accesses in the X10 language. Two aspects of high level array
accesses in X10 are important for productivity but also pose significant
performance challenges: the high level accesses are performed through
Point objects rather than integer indices, and variables containing refer-
ences to arrays are rank-independent. Our solution to the first challenge
is to extend the X10 compiler with automatic inlining and scalar re-
placement of Point objects. Our partial solution to the second challenge
is to use X10’s dependent type system to enable the programmer to an-
notate array variable declarations with additional information for the
rank and region of the variable, and to allow the compiler to generate
efficient code in cases where the dependent type information is available.
Although this paper focuses on high level array accesses in X10, our
approach is applicable to similar constructs in other languages.

Our experimental results for single-thread performance demonstrate
that these compiler optimizations can enable high-level X10 array ac-
cesses with implicit ranks and Points to improve performance by up to
a factor of 5.4× over unoptimized X10 code, and to also achieve per-
formance comparable (from 48% to 100%) to that of lower-level Java
programs. These results underscore the importance of the optimization
techniques presented in this paper for achieving high performance with
high productivity.

1 Introduction

The Defense Advanced Research Projects Agency (DARPA) has challenged su-
percomputer vendors to increase development productivity in high-performance
scientific computing by a factor of 10 by the year 2010. DARPA has recognized
that constructing new languages designed for scientific computing is important
to meeting this productivity goal. Cray (Chapel), IBM (X10), and Sun (Fortress)
have developed new high productivity languages in response to this challenge.

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 432–445, 2007.
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While these languages’ abstractions suitably provide the mechanisms necessary
to improve productivity in high-performance scientific computing [10], compiler
optimizations are crucial to minimizing performance penalties resulting from the
abstractions.

This paper addresses the problem of efficient code generation for high level
array accesses in the X10 language. There are two aspects of high level array
accesses in X10 that are important for productivity but that also pose signifi-
cant performance challenges. First, the high level accesses are performed through
Point objects rather than integer indices. Points support an object-oriented ap-
proach to specifying sequential and parallel iterations over general array regions
and distributions in X10. As a result, the Point object encourages programmers
to implement reusable high-level iteration abstractions to efficiently develop ar-
ray computations for scientific applications without having to manage many of
the details typical for low level scientific programming. However, the creation
and use of new Point objects in each iteration of a loop can be a significant
source of overhead. Second, variables containing references to arrays are rank-
independent i.e., by default, the declaration of an array reference variable in
X10 does not specify the rank (or dimension sizes) of its underlying array. This
makes it possible to write rank-independent code in X10, but poses a challenge
for the compiler to generate efficient rank-specific code. Our solution to the first
challenge is to extend the X10 compiler so as to perform automatic inlining and
scalar replacement of Point objects. We have a partial solution to the second
challenge that uses X10’s dependent type system to enable the programmer to
annotate selected array variable declarations with additional information for the
rank and region of the variable, and to extend the compiler so as to generate
efficient code in cases where the dependent type information is available. In the
future, we plan to evaluate existing algorithms in the literature for rank and
region analysis to test their effectiveness for X10 arrays, so as to reduce the need
for the programmer to provide the dependent type annotations.

Our experimental results for single-thread performance demonstrate that
these compiler optimizations can enable high-level X10 array accesses with im-
plicit ranks and Points to improve performance by up to a factor of 5.4× over
unoptimized X10 code, and to also achieve performance comparable (from 48% to
100%) to that of lower-level Java programs. Even though the current prototype
X10 implementation [18] targets Java as its execution platform, we expect the
code optimizations presented here to be applicable to other source languages
(including Chapel and Fortress) and other target languages (including C and
Fortran). Further, recent improvements in Java optimization and implemen-
tation technologies show that Java performance can also approach that of native
Fortran and C for some high-performance scientific applications [15]. Thus,
we believe that the experimental results in this paper are also indicative of the
impact that the optimizations will have on future production-strength imple-
mentations of the new high-productivity languages.

Section 2 discusses X10 language constructs related to arrays, points, regions,
and point-wise loops. Section 3 describes the optimizations we utilize to enhance
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the performance of applications employing these specific language constructs.
Finally, section 4 presents the experimental results obtained from these compiler
optimizations.

2 X10 Language Overview

In this section, we summarize X10 features related to arrays, points, regions and
loops [7], and discuss how they contribute to improved productivity in high per-
formance computing. Since the introduction of arrays in the fortran language,
the prevailing model for arrays in high performance computing has been as a con-
tiguous sequence of elements that are addressable via a Cartesian index space.
Further, the actual layout of the array elements in memory is typically dictated
by the underlying language e.g., column major for fortran and row major for
C. Though this low-level array abstraction has served us well for several decades,
it also limits productivity due to the following reasons:

1. Iteration. It is the programmer’s responsibility to write loops that iterate
over the correct index space for the array. Productivity losses can occur when
the programmer inadvertently misses some array elements in the iteration or
introduces accesses to non-existent array elements (when array indices are
out of bounds).

2. Sparse Array accesses. Iteration is further complicated when the program-
mer is working with a logical model of sparse arrays, while the low level
abstraction supported in the language is that of dense arrays. Productivity
losses can occur when the programmer introduces errors in managing the
mapping from sparse to dense indices.

3. Language Portability. The fact that the array storage layout depends on the
underlying language (e.g., C vs. fortran) introduces losses in productivity
when translating algorithms and code from one language to another.

4. Limitations on Compiler Optimizations. Finally, while the low-level array
abstraction can provide programmers with more control over performance,
there is a productivity loss incurred due to its interference with the com-
piler’s ability to perform data transformations for improved performance
(such as array dimension padding and automatic selection of hierarchical
storage layouts).

The X10 language addresses these productivity limitations by providing
higher-level abstractions for arrays and loops that build on the concepts of points
and regions (which were in turn inspired by similar constructs in languages such
as ZPL). A point is an element of an n-dimensional Cartesian space (n ≥ 1)
with integer-valued coordinates, where n is the rank of the point. A region is
a set of points, and can be used to specify an array allocation or an iteration
construct such as the point-wise for loop. The benefits of using points inside of
for loops include: potential reuse of common iteration patterns via storage inside
of regions and simple point references replacing multiple loop index variables to
access array elements. We use the term, compact region, to refer to a region for
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Region operations:

R.rank ::= # dimensions in region;

R.size() ::= # points in region

R.contains(P) ::= predicate if region R contains point P

R.contains(S) ::= predicate if region R contains region S

R.equal(S) ::= true if region R and S contain same set of points

R.rank(i) ::= projection of region R on dimension i (a one-dimensional region)

R.rank(i).low() ::= lower bound of i-th dimension of region R

R.rank(i).high() ::= upper bound of i-th dimension of region R

R.ordinal(P) ::= ordinal value of point P in region R

R.coord(N) ::= point in region R with ordinal value = N

R1 && R2 ::= region intersection (will be rectangular if R1 and R2 are rectangular)

R1 || R2 ::= union of regions R1 and R2 (may or may not be rectangular,compact)

R1 - R2 ::= region difference (may or may not be rectangular,compact)

Array operations:

A.rank ::= # dimensions in array

A.region ::= index region (domain) of array

A.distribution ::= distribution of array A

A[P] ::= element at point P, where P belongs to A.region

A | R ::= restriction of array onto region R (returns copy of subarray)

A.sum(), A.max() ::= sum/max of elements in array

A1 <op> A2 ::= returns result of applying a point-wise op on array elements,

when A1.region = A2. region

(<op> can include +, -, *, and / )

A1 || A2 ::= disjoint union of arrays A1 and A2

(A1.region and A2.region must be disjoint)

A1.overlay(A2) ::= array with region, A1.region || A2.region,

with element value A2[P] for all points P in A2.region

and A1[P] otherwise.

Fig. 1. Region operations in X10

which the set of points can be specified in bounded space1, independent of the
number of points in the region. Rectangular, triangular, and banded diagonal
regions are all examples of compact regions. In contrast, sparse array formats
such as compressed row/column storage are examples of non-compact regions.

Points and regions are first-class value types [1] in X10 — a programmer can
declare variables and create expressions of these types using the operations listed
in Figure 1. In addition, X10 supports a special syntax for point construction —
the expression, “[a,b,c]”, is implicit syntax for a call to a three-dimensional
point constructor, “point.factory(a,b,c)”, and also for variable declarations
— the declaration, “point p[i,j]” is exploded syntax for declaring a two-
dimensional point variable p along with integer variables i and j which corre-
spond to the first and second elements of p. Further, by requiring that points
and regions be value types, the X10 language ensures that individual elements
of a point or a region cannot be modified after construction.

A summary of array operations in X10 can be found in Figure 1. A new array
can be created by restricting an existing array to a sub-distribution, by combin-
ing multiple arrays, and by performing point-wise operations on arrays with the

1 For this purpose, we assume that the rank of a region can be assumed to be bounded.
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Java version:

double G[][] = new double[M][N];

. . .

int Mm1 = M-1; int Nm1 = N-1;

for (int p=0; p<num_iterations; p++) {

for (int i=1; i<Mm1; i++) {

double[] Gi = G[i]; double[] Gim1 = G[i-1]; double [] Gip1 = G[i+1];

for (int j=1; j<Nm1; j++)

Gi[j] = omega_over_four * (Gim1[j] + Gip1[j] + Gi[j-1] + Gi[j+1])

+ one_minus_omega * Gi[j];

} // for i

} // for p

X10 version (rank-specific):

region R = [0:M-1,0:N-1]; double[.] G = new double[R];

. . .

region R_inner = [1:M-2,1:N-2]; // R_inner is a subregion of R

for (int p=0; p<num_iterations; p++) {

for (point t : R_inner) {

G[t] = omega_over_four * (G[t+[-1,0]] + G[t+[1,0]]

+ G[t+[0,-1]] + G[t+[0,1]]) + one_minus_omega * G[t];

} // for t

} // for p

X10 version (rank-independent):

. . .

region R_inner = ... ; // Inner region as before

region stencil = ... ; // Set of points in stencil

double omega_factor = ... ; // Weight used for stencil points

for (int p=0; p<num_iterations; p++) {

for (point t : R_inner) {

double sum = one_minus_omega * G[t];

for (point s : stencil) sum += omega_factor * G[t+s];

G[t] = sum;

} // for t

} // for p

Fig. 2. Java Grande SOR benchmark

same region. Note that the X10 array allocation expression, “new double[R]”,
directly allocates a multi-dimensional array specified by region R. In its full
generality, an array allocation expression in X10 takes a distribution instead of
region. However, we will ignore distributions in this paper, since we limit our
attention to single-place executions.

As an example, consider the Java and code fragments shown in Figure 2 for the
Java Grande Forum [12] SOR benchmark2. Note that the Java version involves a

2 For convenience, we use the same name, G, for the allocated array as well as the array
used inside the SOR computation, even though the actual benchmark uses distinct
names for both.
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lot of manipulation of explicit array indices and loops bounds that can be error
prone. In contrast, the rank-specific X10 version uses a single for loop to iterate
over all the points in the inner region (R inner), and also uses point expressions
of the form “t+[-1,0]” to access individual array elements. One drawback of
the point-wise for loop in the X10 version is that (by default) it leads to an
allocation of a new point object in every iteration for the index and for each
subscript expression, thereby significantly degrading performance. Fortunately,
the optimization techniques presented in this paper enable the use of point-wise
loops as in the bottom of Figure 2, while still delivering the same performance
as manually indexed loops as in the top of Figure 2.

Figure 2 also contains a rank-independent X10 version. In this case, an ad-
ditional loop is introduced to compute the weighted sum using all elements in
the stencil. Note that the computation performed by the nested t and s for
loops in this version can be reused unchanged for different values of R inner
and stencil.

3 Improving Performance of Applications with X10
Language Abstractions

This section has two areas of focus. First, we discuss a compiler optimization we
employ to reduce the overhead of using points in X10. Second, we use X10’s de-
pendent type system to further improve code generation. As an example, Figure 3
contains a simple code fragment illustrating how X10 arrays may be indexed with
points in lieu of loop indices. Figure 4 shows the unoptimized Java output gen-
erated by the reference X10 compiler [18] from the input source code in Figure 3.
The get and set operations inside the for loops are expensive, and this is further
exacerbated by the fact that they occur within innermost loops.

To address this issue, we have a developed an optimization that is a form of ob-
ject inlining, specifically tailored for value-type objects. Object inlining [2,4,8,9]
is a compiler optimization for object-oriented languages that transforms objects
into primitive data, and the code that operates on objects into code that oper-
ates on inlined data. Budimlić [2] and Dolby [8] introduced object inlining as an
optimization for Java and C++. General object inlining requires complex escape
analysis and concrete type inference, and the transformation is irreversible (once
unboxed, objects in general cannot be “reboxed”).

However, because points in X10 are value types, we can safely optimize all
array accesses utilizing point objects by replacing them with an object inlined
point array access version. A value object has the property that once the program
initializes the object, it cannot subsequently modify any of the object’s fields.
This prevents the possibility of the code modifying point p in Figure 3 in between
the assignments – a situation that would prevent the inlining of the point. As a
result, we can inline the point object declared in the for loop header. Figure 5
shows the results of applying this point optimization to the loop we introduce
in Figure 3, and Figure 6 shows the resulting Java code.
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region arrayRegion1 = [0:datasizes_nz[size]-1];

...

//X10 for loop

for (point p : arrayRegion1) {

row[p] = rowt[p];...

col[p] = colt[p];...

val[p] = valt[p];...

}

Fig. 3. X10 source code of loop example taken from the Java Grande sparsematmult
benchmark

//X10 for loop body translated to Java

for ... {

... // Includes code to allocate a new point object for p

(row).set(((rowt).get(p)),p);...

(col).set(((colt).get(p)),p);...

(val).set(((valt).get(p)),p);...

}

Fig. 4. Java source code of loop following translation from X10 to Java by X10 compiler

3.1 Point Inlining Algorithm

We perform a specialized version of object inlining [2] to inline points. There are
two main differences between points and the objects traditionally considered as
candidates for object inlining. First, a point variable can have an arbitrary num-
ber of fields because a programmer may use points to access arrays of different
rank. Second, a point variable may appear in an X10 loop header. Consequently,
the specialized object inlining algorithm must transform the X10 loop header by
using the inlined point fields as loop index variables. As a result, this may lead
to nested for loops if the point variable is a multi-dimensional point.

Figure 7 shows the point inlining algorithm. The first step in the algorithm is
to use type analysis to discover the rank of all X10 points in the program. Recall,
developers may omit rank information when declaring X10 points. However, we
need to infer rank information to inline the point. We obtain rank information
for points from both point assignments and array domain information found in
X10 loop headers. Because points have the value type property, we inline/unbox
every point with an inferred rank. When encountering method calls passed point
arguments, we reconstruct the inlined point by creating a new point instance,
but ensure that this overhead is only incurred on paths leading to the method
calls by allowing the code to work with both original and unboxed versions of
the point. Finally, when possible, we convert a point-wise X10 loop into a set of
nested for loops using the X10 loop’s range information for each dimension in
the region.
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//X10 optimized for loop

for (int i = 0; i <= datasizes_nz[size] -1; i +=1) {

// No point allocation is needed here

row[i] = rowt[i];...

col[i] = colt[i];...

val[i] = valt[i];...

}

Fig. 5. X10 source code following optimization of X10 loop body

//X10 optimized for loop translated to Java

for (int i = 0; i <= datasizes_nz[size] -1; i +=1) {

(row).set(((rowt).get(i)),i);...

(col).set(((colt).get(i)),i);...

(val).set(((valt).get(i)),i);...

}

Fig. 6. Java source code of loop following translation of optimized X10 to Java by X10
compiler

3.2 Use of Dependent Type Information for Improved Code
Generation

When examining the Java code generated for the optimization example discussed
in the previous section (Figure 6) we see that even though the point object has
been inlined, significant overheads still remain due to the calls to the get/set
methods. These calls are present because by default, the declaration of an array
reference variable in X10 does not specify the rank (or dimension sizes) of its
underlying array. This makes it possible to write rank-independent code in X10,
but poses a challenge for the compiler to generate efficient rank-specific code. In
this example, all regions and array accesses are one-dimensional, so it should be
possible for the compiler to generate code with direct array accesses instead of
method calls. Ideally, this information should be deduced automatically by the
compiler (e.g., by propagating rank information from the array’s allocation site
to all its uses), but in general it requires intra- and inter-procedural rank and
region analysis of X10 programs which is beyond the scope of this paper and
a subject for future work. Instead, the partial solution in this paper is to use
the dependent type system [11] available in version 1.01 of the X10 language [16]
to enable the programmer to annotate selected array variable declarations with
additional information for the rank and region of the variable, and to extend the
X10 compiler so as to generate efficient code in cases where the dependent type
information is available. A key advantage of dependent types over pragmas is
that type soundness is guaranteed statically with dependent types, and dynamic
casts can be used to limit the use of dependent types to performance-critical
code regions.
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// flow -insensitive point inlining algorithm

// init pass
for each region r

r’s rank = TOP
for each point p

p’s rank = TOP

// gather rank information
for each AST node n

case(assignment)
i f (n.lhs == point OR region)

n.lhs rank = merge(n.lhs ’s rank, n.rhs’s rank)
case(x10 loop)

point p = s.formal ();
region r = s.domain ();
p’s rank = merge(p’s rank, r’s rank);

// merge rank using lattice
merge(rank l, rank r) {

return l ^ r where :
TOP ^ r = r;
BOTTOM ^ r = BOTTOM;
c1 ^ c2 = c1, i f c1 equals c2 else BOTTOM;

}

// inline points
for each AST node n

i f (get_rank (n) == CONSTANT ) // inlineable point found
switch(n)

case(point declaration)
inline(n);

case(point use)
inline(n);

case(method call argument )
reconstruct_point(n);

case(loop with formal point)
convert_loop(loop)

Fig. 7. Algorithm for X10 point inlining

To illustrate this approach, Figure 8 contains an extended version of the orig-
inal X10 code fragment in Figure 3 with a dependent type declaration shown for
array row. Similar declarations need to be provided for the other arrays as well.
The X10 compiler ensures the soundness of this type declaration i.e., it does not
permit the assignment of any array reference to row that is not guaranteed to
satisfy the properties. For the one-dimensional case, we extended the code gen-
eration performed by the reference X10 compiler [18] to generate the optimized
code shown in Figure 9 for array references with the appropriate dependent type
declaration. Performing this optimized code generation for multi-dimensional
arrays with dependent types is a subject for future work.

4 Performance Results

We ran all experiments on a 1.25 GHz PowerPC G4 with 1.5 GB of memory using
the Sun Java Hotspot VM (build 1.5.0 07-87) for Java 5 with the -Xms2000M
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// X10 array declarations with dependent type information

// rank==1 ==> array is one-dimensional

// rect ==> array’s region is dense (rectangular)

// zeroBased ==> lower bound of array’s region is zero

double[: rank==1 && rect && zeroBased ] row = ... ;

. . .

region arrayRegion1 = [0:datasizes_nz[size]-1];

//X10 for loop

for (point p : arrayRegion1) {

row[p] = rowt[p];...

col[p] = colt[p];...

val[p] = valt[p];...

}

Fig. 8. X10 for loop example from Figure 3, extended with dependent type declarations

//X10 optimized for loop translated to Java

for (int i = 0; i <= datasizes_nz[size] -1; i +=1) {

((DoubleArray_c) row).arr_[i] = ((DoubleArray_c) rowt).arr_[i] ;...

((DoubleArray_c) col).arr_[i] = ((DoubleArray_c) colt).arr_[i] ;...

((DoubleArray_c) val).arr_[i] = ((DoubleArray_c) valt).arr_[i] ;...

}

Fig. 9. X10 for loop body translated from X10 to Java by X10 compiler

-Xmx2000M options to set the heap size to 2 GB (we used < 1.5 GB in prac-
tice). We measured performance results on the Java Grande benchmarks. All
benchmark results are obtained using the class A versions of the benchmark.
We report results for 3 different versions of the benchmark suite. Version 1 is
essentially the original Java version obtained from the Java Grande Forum web
site [12] renamed with the .x10 extension – we use this version as the baseline
since the X10 compiler currently translates X10 code into Java. Version 2 is an
unoptimized direct translation of the Java version into X10, with all Java arrays
converted into X10 arrays and integer subscripts replaced by points. Version 3
uses the same input X10 program as in Version 2 but turns on the optimizations
described in this paper. All results include runtime array bounds checks, null
pointer checks and other checks associated with a Java runtime environment.

Table 1 shows the impact of the optimizations by comparing the performance
of Versions 2 and 3. Performance improvements in the range of 1.6× to 5.4×
were observed for 7 of 8 benchmarks in Table 1. We observed no improvement
in the series benchmark because its performance is dominated by scalar (rather
than array) operations.

Table 2 compares the performance of the Java baseline (Version 1) with the
optimized X10 (Version 3) by reporting the execution time ratio for Version 1
relative to version 3. For 6 of 8 benchmarks the ratio is in the range of 0.48
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Table 1. Results from optimizing points in X10 version of Java Grande benchmarks

Benchmarks Runtime Performance in seconds Speedup Factor
Unopt. X10 (Version 2) Opt. X10 (Version 3) (Version 2)/(Version 3)

sparsematmult 57.97 13.83 4.1×
crypt 8.14 4.79 1.7×
lufact 52.87 18.86 2.8×
sor 508.49 93.41 5.4×
series 19.01 18.95 1.0×
moldyn 2.39 1.19 2.0×
montecarlo 7.59 3.49 2.2×
raytracer 2.27 1.43 1.6×

Table 2. Comparison of applied compiler optimizations to X10 array point accesses
versus the original version with Java arrays

Benchmarks Runtime Performance in seconds Performance Ratio
Orig. Java (Version 1) Opt. X10 (Version 3) (Version 1)/(Version 3)

sparsematmult 9.75 13.83 0.71

crypt 4.60 4.79 0.96

lufact 1.38 18.86 0.07

sor 6.06 93.41 0.07

series 19.01 18.95 1.00

moldyn 0.57 1.19 0.48

montecarlo 3.00 3.49 0.86

raytracer 1.28 1.43 0.90

to 1.00, showing that the performance gap is at most a factor of 2 for these
benchmarks. For the two remaining benchmarks, lufact and sor, the ratio is 0.07
indicating that the Java version is 14.3× faster than the X10 version in these two
cases. This gap is primarily due to the multi-dimensional array computations in
the two benchmarks, and the fact that the efficient code generation discussed in
Section 3.2 currently does not support arrays with rank > 1. Enabling efficient
code generation for multi-dimensional X10 arrays and comparison to C/Fortran
benchmark versions is a subject for future work.

5 Related Work

Object Inlining [2,4,8,9] is a compiler optimization for object-oriented languages
that transforms objects into primitive data, and conversely the rest of the program
code that operates on objects into code that operates on inlined data. It is closely
related to “unboxing” [14] for functional languages. Budimlić [2] and Dolby [8] in-
troduced object inlining as an optimization for object-oriented languages, partic-
ularly for Java and C++. General object inlining requires complex escape analysis
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and concrete type inference, and the transformation is irreversible (once unboxed,
objects cannot always be reboxed). Joyner [6,13] extended the analysis to allow
more objects and arrays of objects to be inlined in scientific, high performance
Java programs. This paper presents object inlining for points and other value ob-
jects in X10, which is a less general, but more effective and more applicable (all
value objects can be boxed and unboxed freely) form of object inlining.

Wu et al. [17] presented Semantic Inlining for Complex numbers in Java, an
optimization closely related to object inlining. Their optimization incorporates
the knowledge about the semantics of a standard library (Complex numbers)
into the compiler, and converting all the Complex numbers into data structures
containing the real and imaginary part. Although this optimization achieves the
same effect as object inlining for Complex numbers, it is less general since it
requires compiler modifications for any and all types of objects for which one
desires to apply this optimization.

The point-wise for loop language abstraction is not unique to the X10 lan-
guage. Titanium [19], a Java dialect, also has for loops which iterate over points
in a given domain. The Titanium compiler also performs an optimization to
remove points appearing inside for loops. However, there are a couple of dif-
ferences between our approach and the one applied in Titanium. First, because
in X10 the rank specification of both points and arrays is not required at the
declaration site, we employ a type analysis algorithm to determine the rank for
all X10 arrays. Second, object inlining in X10 is directly applicable to all value
objects, not just points, and thus is a more general optimization.

6 Conclusions and Future Work

In this paper, we discussed the Point abstraction in high-productivity languages,
and described compiler optimizations that reduce their performance overhead.
We conducted experiments that validate the effectiveness of our optimizations
and demonstrate that these optimizations can enable high-level X10 array ac-
cesses written with implicit ranks and Points to achieve performance comparable
to that of low-level programs written with explicit ranks and integer indices. The
experimental results showed performance improvements in the range of 1.6× to
5.4× for 7 of 8 Java Grande benchmark programs written in X10, as a result of
these optimizations. Further, for 6 of 8 benchmarks, the performance ratio of the
optimized X10 versions relative to the low-level Java versions was in the range
of 0.48 to 1.00, showing that the performance gap is at most a factor of 2 for
these benchmarks. These results emphasize the importance of the optimizations
we have presented in this paper as a step towards achieving high performance
for high productivity languages.

We plan to investigate possible optimizations to the X10 array implementation
that brings it closer to Java array performance. We will be exploring the ways to
communicate static compiler analysis information to the run-time environment
to further speed up array accesses, for example by eliminating array bounds
checks whenever possible.
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We will examine the achievability of an object inlining framework that would
expand inlining to more general types of objects. This framework will require
a sophisticated concrete type analysis for high-productivity languages, which is
an exciting problem in its own right.
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Abstract. Packet filters play an essential role in traffic management and
security management on the Internet. In order to create software-based
packet filters that are fast enough to work even under a DOS attack, it is
vital to effectively combine both the higher-level optimization related to
algorithmic structure and the lower-level optimization related to acceler-
ation techniques in compiler study. In the present paper, we focus on the
lower-level (machine code) optimization using software-pipelining, and
report experimental results that indicate the potential of our approach
for accelerating packet filter performance. The technical difficulty is that
the packet filter is a lump of conditional branches, so that standard opti-
mization techniques usually applied to basic blocks is not directly appli-
cable to this problem. Using predicated execution and enhanced modulo
scheduling, we solve this problem and achieve 20 times higher perfor-
mance compared with a conventional interpreter-based packet filter. We
also compare the proposed filters and compiler-based packet filters, and
obtain a better than two-fold increase in performance.

1 Introduction

Packet filters, which basically inspect the header and/or payload of each in-
coming packet and perform appropriate actions on each packet, are essential
for traffic management and security management on the Internet and so are
implemented in a variety of systems/devices, such as IP routers and firewalls.
Software-based packet filters are cost-effective and flexible but are general rel-
atively slow, whereas hardware-based packet filters (e.g., those using ASIC or
FPGA[8,11,6] for pattern matching) are fast but expensive and less flexible.

Recently, the rapid growth of network bandwidth has led to the requirement
for high-speed packet filters. On the other hand, emerging applications of packet
filters require increases scalability and flexibility of filter rules. In particular, in
the case of DOS attacks, it is important to drop an enormous number of useless
packets efficiently, while valid packets should be handled properly. In addition,
these filters should be easily modified in response to new circumstances or new
� This work was supported in part by Hitachi, Ltd, the Ministry of Internal Af-
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requirements. In order to realize a packet filter that manages both flexibility and
high-speed in a cost-effective manner, it is of practical importance to establish
an approach by which to create software-based packet filters that are fast enough
to work even when under DOS attack. This requires the effective combination
of both higher-level optimization related to algorithmic structure adapted to the
input packet sequence and lower-level (machine code) optimization related to
acceleration techniques in a compiler study.

We will focus on the lower-level optimization. Several studies have attempted
to produce a native machine code from a packet filter rule and to make the fil-
ter faster compared with the conventional interpreter-based packet filter[2,3,7].
However, to the best of our knowledge, none of these studies attempted to apply
the state-of-the-arts optimization techniques based on software-pipelining. Al-
though software-pipelining is a common technique in compiler construction, it
is technically difficult to apply software-pipelining to a packet filter because the
filter consists of several (more than 20 in some cases) conditional branches, but
the standard software-pipelining algorithm is not applicable to programs with
conditional branches. We solve this program with predicated execution[4] and
enhanced modulo scheduling[9].

The present paper is an extension of our previous research [10], which showed
that we achieved from 10 to 20 times higher performance. In the present paper,
we will show that further improvement of the algorithms and more appropriate
choices of scheduling parameters result in 12 to 28 times higher performance and
an average of 20 times higher performance. In addition, in order to explain our
optimization techniques in detail, we present concrete code examples in the C
language and the assembly language using an Intel IA-64 Itanium 2 processor.

2 Framework

For the purpose of simplification, we consider a packet filtering procedure to
consist of two serial procedures. The first procedure classifies each received packet
into one of three categories: usually accept, drop, or forward, according to pre-
defined filter rules and the context of the packet. The second procedure is to
process the packet according to the above classification. These two procedures
are usually invoked serially within a single loop, such as

for(;;) {

n_packets = receive();

@ for(i = 0; i < n_packets; i++) {

result = filter(i);

action(result);

@ }

}

where we assume that when a packet stream is incoming at a very high rate
(e.g., due to a DOS attack), two or more consecutive packets are received by
each receive() and are stored in the receiving buffer, after which they are
continuously processed in the internal loop.
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Simply speaking, making a packet filter faster is approximately equivalent to
executing this loop in a shorter time. Hence, in the present paper, we apply
code optimization techniques to this loop. The function filter() in the above
loop usually consists of only logical and arithmetic operations. Therefore, we
expect that it is rather easy to optimize this function with various code opti-
mization techniques. On the other hand, since the function action() includes
complex tasks, the function must perform tasks such as hoist a packet to an
upper-layer and send a packet to other network ports, it is almost impossible
to apply optimization techniques to this function. Then, in order to obtain the
maximum effects of optimization, in other words, to enable the application of
loop optimization techniques, we divide the above loop into two loops as follows:

for(;;) {

n_packets = receive();

for(i = 0; i < n_packets; i++){ // Loop1

result[i] = filter(i);

}

for(i = 0; i < n_packets; i++){ // Loop2

action(result[i]);

}

}

We therefore concentrate on how to optimize Loop1 efficiently.
The main idea is to process multiple consecutive packets together using a

software-pipelined procedure. This approach is especially effective in suffering
from DOS attacks, where a major problem is how to prevent the unprocessed
packets from being incessantly lost due to buffer overflow, that is, how to in-
crease the maximum acceptable input packet rate. Consider a very simple ana-
lytical model. Let T1 and T2 be the average times of executing (non-optimized)
filter() for one packet and action() in cases of accept and forward for one
packet, respectively. We also assume the execution time of action() in case of
drop is negligible. Then, let α denote the ratio of non-dropped (valid) packets
to all of the incoming packets. In addition, let A denote the acceleration ratio
of the execution time in optimizing Loop1, when many consecutive packets are
processed together. The average processing time per packet is then T1/A + αT2.
In a DOS attack situation, we can assume that α � 1 because the number
of received packets is huge but the number of valid packets does not vary
from a non-DOS attack situation. Therefore, the ratio of the optimized pro-
cessing time to the non-optimized processing time is approximately given as
(T1/A + αT2)/(T1 + αT2) ≈ 1/A. It shows that the code optimization in Loop1
directly affects the total performance of the packet filter.

3 Loop Optimization

In this section, we briefly explain the three steps of the optimizations compared
herein. Our proof-of-concept prototype of the packet filter is based on tcpdump[5]
(or bpf as its basis). Actually, the compilers for packet filters in our experiments
are implemented by rewriting the source program of tcpdump.
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List 1: bpf’s filter machine code for rule, ip and tcp� �
(000) ldh [12]

(001) jeq #0x800 jt 2 jf 5

(002) ldb [23]

(003) jeq #0x6 jt 4 jf 5

(004) ret #96

(005) ret #0

� �
3.1 Interpreter

tcpdump translates a filter rule into a code for the pre-defined virtual machine,
called a filter machine, which consists of an accumulator, an index register, and
an array of scratch memory. tcpdump then executes the code on the interpreter
that simulates the filter machine. The code is a sequence of bpf instructions. bpf
instructions can load a part of a packet contents into a virtual register, perform
arithmetic on virtual registers, and return an integer value indicating whether a
packet is accepted.

For example, let us consider the tcpdump rule, ip and tcp, which accepts
only IPv4 tcp packets. List 1 shows the corresponding filter machine code of
bpf instructions. Here, the instructions ldh, ldb, jeq, and ret denote load a
half word, load a byte, jump if equal, and return a constant value, respectively.
The tags jt m and jf m denote that the execution jumps to location m when
the comparison yields true and false, respectively. This code corresponds to the
function filter(i) in the previous section.

3.2 Compiling into a C Program

Since tcpdump translates a filter rule into a filter machine code and executes the
code on an interpreter, the filtering process is very slow. The process generally be-
comes faster when we compile the rule into a native code. Several studies???[3,7]
have already reported that the filter becomes approximately five times faster. As
the first step of our research, we compile the rule into a native code. Specifically,
we translate a filter rule into a C program and compile the C program into a
native code using an existing C compiler.

In the present paper, we examine two types of C programs because we expect
that compilers treat them differently. The first type is a C program in which
each bpf instruction in a filter machine code is straightforwardly replaced with
equivalent C statements, including labels and goto statements. For example,
List 2 is the C program translated from List 1. The other type of C program is a
structured program without goto statements, like List 3. Structured programs
are sometimes more redundant than the unstructured programs but are expected
to be compiled into more efficient codes by highly-optimizing C compilers.

Rewriting the source program of the bpf interpreter, we can easily build a
translator that translates a given filter machine code into both unstructured
and structured C programs. The C compilers the authors used in this research
are gcc, the Gnu C compiler, and icc, Intel’s C compiler.



450 Y. Yamashita and M. Tsuru

List 2: unstructured C program for List 1� �
for(i = 0; i < n_packets; i++) {

byte* p = packets[i];

L0: A = EXTRACT_SHORT(&p[12]);

L1: if(A == 0x800) goto L2; else goto L5;

L2: A = p[23];

L3: if(A == 6) goto L4; else goto L5;

L4: A = 96; goto L6;

L5: A = 0; goto L6;

L6: result[i] = A;

}

� �
List 3: structured C program for List 1� �

for(i = 0; i < n_packets; i++) {

byte* p = packets[i];

short tmps = EXTRACT_SHORT(&p[12]);

if(tmps == 0x800) {

byte tmpb = p[23];

if(tmpb == 6) A = 96;

else A = 0;

} else A = 0;

result[i] = A;

}

� �

3.3 Simple List Scheduling

A C compiler sometimes generates slow code because the compiler has little in-
formation specific to a given C program so that it is likely to select a conservative
but inefficient instruction pattern. As the second step of our research, we build
a translator that directly translates a filter machine code into a native assem-
bly code using elaborately selected instruction patterns. A simple instruction
scheduling, so-called list scheduling, is applied to individual basic blocks.

List 4 is an example of such simply list-scheduled code translated from List
3, based on the Intel IA-64 architecture. Here, we assume that the registers
r100 and r110 hold the addresses of arrays packets and results (see List
2), respectively, and that r10 and r20 hold the constant values 0x800 and 96,
respectively. For ease of reading, in the present paper, every register used in
the codes is singly assigned, although register allocation algorithms are applied
to actual codes. Double semicolons ";;" indicate a boundary of adjacent in-
struction groups, in each group of which all of the instructions can be executed
simultaneously.

3.4 Software Pipelining

As the third step of our optimization, we apply software-pipelining techniques[1],
which are highly sophisticated aggressive instruction scheduling techniques for
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List 4: naive code for List 3� �
L0: ld8 r32 = [r100],8 ;; // r100 == &packets[i]

adds r40 = 12,r32 ;;

ld2 r50 = [r40] ;;

cmp.eq p6,p7 = r10,r50 // r10 == 0x800

(p7)br L2 ;;

adds r60 = 23,r32 ;;

ld1 r70 = [r60] ;;

cmp.eq p6,p7 = 6,r70

(p7)br L1 ;;

mov r80 = r20 // r20 == 96

br L3 ;;

L1: mov r80 = r0

br L3 ;;

L2: mov r80 = r0 ;;

L3: st4 [r110] = r80,4 // r110 == &results[i]

br.ctop.dptk L0

� �
loops. Although software pipelining techniques are popular and have been im-
plemented for several existing compilers, including gcc, most of the compilers
can only apply the techniques to loops whose bodies are basic blocks, but cannot
apply the techniques to loops with conditional branches like List 2 or List 3.

In order to obtain software-pipelined codes for loops with conditional branches,
we adopt two special techniques. The first is called predicated execution[4] (PE
for short), which can be performed by processors with the facility of predicate
registers, such as the Intel Itanium 2 [4]. The second is called enhanced modulo
scheduling (EMS for short) [9], which can be performed by any RISC processor,
but generates code of larger size. Since these techniques are the primary theme
in the present paper, we will explain them in detail in the following two sections.

4 Predicated Execution

In this section, we briefly explain the basic concepts of PE and the software-
pipelining technique based on PE.

4.1 Predication

Predicate registers are used to eliminate branch instructions, which may seriously
slow program execution. List 5, translated from List 4, is an example of code
that uses predicate registers. For example, the instruction cmp.eq p10,p20 =
r10,r50 assigns true and false values to predicate registers p10 and p20, respec-
tively, if the values of r10 and r50 are equal. Otherwise, this instruction assigns
false and true values to predicate registers p10 and p20, respectively. The in-
struction (p10)adds r60 = 23,r32 performs addition if p10 is true. Otherwise,
this instruction works as a nop instruction, and the instruction is said to be
nullified. The compare instruction (p10)cmp.eq.unc p30,p40 = 6,r70, which
is qualified with the predicate register p10, assigns the appropriate truth values
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List 5: naive PE code for List 3� �
L0: ld8 r32 = [r100],8 ;;

adds r40 = 12,r32 ;;

ld2 r50 = [r40] ;;

cmp.eq p10,p20 = r10,r50 ;;

(p10)adds r60 = 23,r32

(p20)mov r80 = r0 ;;

(p10)ld1 r70 = [r60] ;;

(p10)cmp.eq.unc p30,p40 = 6,r70 ;;

(p30)mov r80 = r20

(p40)mov r80 = r0 ;;

st4 [r110] = r80,4

br.ctop.dptk L0

� �
List 6: software-pipelined PE code (kernel) for List 3� �

//stage

L0: ld8 r32 = [r100],8 //1

(p12)cmp.eq.unc p30,p40 = 6,r71 //4

(p11)adds r60 = 23,r34 //3

ld2 r50 = [r41] //2

(p41)mov r82 = r0 //5

(p21)mov r80 = r0 ;; //3

(p11)ld1 r70 = [r60] //3

cmp.eq p10,p20 = r10,r50 //2

adds r40 = 12,r32 //1

st4 [r110] = r82,4 //5

(p30)mov r81 = r20 //4

br.ctop.dptk L0

� �
to p30 and p40 according to the results of comparison if p10 is true. Otherwise,
the instruction assigns false values to both p30 and p40.

4.2 Software pipelining for Predicated Code

Since a loop body without branches is a straight-line code, we can optimize
the loop by applying a standard method of software-pipelining[1] (or modulo
scheduling as a concrete algorithms). List 6 is such a software-pipelined predi-
cated code (hereinafter PE code) optimized from List 5 under the assumption
that every memory access latency is one machine cycle (MC). In order to mini-
mize the initiation interval of the loop iterations (hereinafter I.I.), we use register
rotation[4] for both predicate and integer registers. In List 6, for example, just
after the loop-back branch instruction br.ctop is executed, the predicate regis-
ters p10, ... , p40 are renamed p11, ..., p41, respectively, and the integer registers
r32, ..., r81 are renamed r33, ..., r82, respectively. The code in List 6 consists
of five software pipeline stages, denoted 1 through 5 following the corresponding
instruction at each line of List 6.
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The idealistic I.I. of the loop in List 6 is 2 MC because the first six instructions
of the loop can be executed simultaneously and so the last six instructions can
also be executed, although it is almost impossible to attain I.I. because the
memory access latency is longer than 1 MC and often varies greatly.

A major benefit of using PE is that PE frees us from branches (and branch
penalties) and can facilitate the application of software-pipelining. Conversely,
a major disadvantage is that the instructions that would be nullified do not
contribute any effective computation and waste processor resources. In general,
a PE code becomes slower when the code size (precisely speaking, the number
of nullified instructions) increases.

5 Enhanced Modulo Scheduling

Since it is difficult to explain the EMS algorithm[9] in detail in the limited space
available here, we only present the concept of how the processor runs effectively
on the code generated by the EMS algorithm. The EMS algorithm generates

List 7: EMS code (kernel) for List 3� �
Lxx_tx: //stage

ld8 r32 = [r100],8 //1

st4 [r110] = r82,4 //4

cmp.eq p6,p7 = r10,r51 //2

(p7)br Lfx_tx ;;

Ltx_tx:

adds r40 = 12,r32 //1

adds r60 = 23,r33 //2

cmp.eq p6,p7 = 6,r71 //3

(p7)br Ltx_tf ;;

Ltx_tt:

ld2 r50 = [r40] //1

mov r81 = r20 //3

ld1 r70 = [r60] //2

br.ctop.dptk Lxx_tx

br Lexit ;;

Ltx_tf:

ld2 r50 = [r40] //1

mov r81 = r0 //3

ld1 r70 = [r60] //2

br.ctop.dptk Lxx_tx

br Lexit ;;

Lfx_tx:

adds r40 = 12,r32 //1

mov r80 = r0 //2

cmp.eq p6,p7 = 6,r71 //3

(p7)br Lfx_tf ;;

continues to the right column

Lfx_tt: //stage

ld2 r50 = [r40] //1

mov r81 = r20 //3

br.ctop.dptk Lxx_xx

br Lexit ;;

Lfx_tf:

ld2 r50 = [r40] //1

mov r81 = r0 //3

br.ctop.dptk Lxx_xx

br Lexit ;;

Lxx_xx:

ld8 r32 = [r100],8 //1

st4 [r110] = r82,4 //4

cmp.eq p6,p7 = r10,r51 //2

(p7)br Lfx_xx ;;

Ltx_xx:

adds r40 = 12,r32 //1

adds r60 = 23,r33 ;; //2

ld2 r50 = [r40] //1

ld1 r70 = [r60] //2

br.ctop.dptk Lxx_tx

br Lexit ;;

Lfx_xx:

adds r40 = 12,r32 //1

mov r80 = r0 ;; //2

ld2 r50 = [r40] //1

br.ctop.dptk Lxx_xx ;;

Lexit:

� �
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such a code. Strictly speaking, the EMS algorithm originally given in [9] treats a
loop having a few unnested conditional branches and is not sufficient to optimize
the loops with many (more than 20 in the present cases, as shown in the next
section) deeply-nested (maximum depth: 10) conditional branches. The authors
are now preparing another paper that explains how to treat such complex loops.

5.1 Difference from Predicated Execution

A software-pipelined PE code uses a set of predicate registers to memorize trace
information of the evaluation results of compare instructions. Review the code
in List 6. The rotating predicate register p10 is defined at the second stage and
is referred at the third and fourth stages as p11 and p12, respectively. p20 is
defined as the second stage and referred at the third stage as p21. p30 is defined
and referred at the fourth stage. p40 is defined at the fourth stage and referred
at the fifth stage as p41. Thus, at the beginning of every new iteration, the
predicate information that must live over iterations is held in the set of the
registers, (p11, p12, p21, p41), so that there are at least 16 (=24) patterns of
code executions for the one code in List 6.

The EMS algorithm does not use predicate register, but instead generates two
or more code patterns corresponding to the set of the truth values the predicate
registers possess in the PE code.

5.2 Code Example

List 7 is the kernel part of the software-pipelined code generated with the EMS al-
gorithm (hereinafter EMS code). Each basic block in the code has a label of form
La1b1 a2b2, where the letters ai and bi represent the truth values of the results
of the comparisons cmp.eq p6,p7 = r10,r51 and cmp.eq p6,p7 = 6,r71, re-
spectively, for the i-th past iteration. The letters ‘t’, ‘f’, and ‘x’ denote the
true, false, and undefined (or useless) values, respectively. For example, the label
Lxx tx at the first line in List 7 represents the situation in which no compar-
ison has yet been evaluated for the most recent iteration but the comparison
cmp.eq p6,p7 = r10,r51 has been evaluated affirmatively for the second most
recent iteration. If a series of adjacent packets are all IPv4 tcp packets, the pro-
gram traverses only the three basic blocks labeled Lxx tx, Ltx tx, and Ltx tt. If
none of the packets is a IPv4 tcp packet, the program traverses the basic blocks
labeled Lxx xx and Lfx xx. Otherwise, the trace becomes more complicated.
Under the assumption that there is no branch penalty, the ideal I.I. of the code
in List 7 is 3 MC, even if the processor runs on any path.

In contrast to the PE code, the EMS code is not free from branch penalty in
general but rather contains no nullified instructions because the EMS code only
executes the instructions required for the computation. Therefore, the EMS code
is faster than the PE code if the penalty of the nullified instructions is greater
than the branch penalty.
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Table 1. Filter Rule in Our Experiments

No Rule depth #ifs #insts matching
ratio

1 ip 1 1 7 100.0%

2 ip and tcp 2 2 11 99.8%

3 tcp 3 3 17 99.8%

4 ip and udp 2 2 11 0.2%

5 udp 3 3 17 0.2%

6 ip and dst net 〈ip address〉 2 2 15 4.9%

7 dst net 〈ip address〉 4 6 36 4.9%

8 ip and net 〈ip address〉 3 3 22 10.9%

9 net 〈ip address〉 5 9 59 10.9%

10 ip and dst port 〈number〉 7 19 66 9.3%

11 dst port 〈number〉 8 29 88 9.3%

12 ip and port 〈number〉 9 19 90 21.41%

13 port 〈number〉 10 29 125 21.41%

6 Experiments

This section reports the experimental results obtained using the code optimiza-
tion methods explained in Sections 3.1, 3.2, 3.3, 4, and 5.

6.1 Environment

Table 1 shows 13 examples of the filter rules of tcpdump examined herein. Each
rule is simple, short, and uni-functional, although, in reality, a longer rule that
combines these simple rules is likely to be employed. This is because examining
each simple rule separately is suitable for analyzing the effect of our optimizations
in depth. In order to clarify how the rule is complex to optimize, the columns
depth, #ifs, and #insts in the table show three characteristics of the structured C
program in Section 3.2 and the native assembly code in Section 3.3 corresponding
to each rule. The depth is the maximum depth of nests of if constructs that
the program contains, #ifs is the number of if constructs that the program
contains, and #insts is the number of assembly instructions not including branch
instructions.

The sample packets used in the experiments were captured from the network
of the authors’ lab using tcpdump -w. The total number of packets was 10, 000.
The column matching ratio in Table 1 is the ratio of the packets accepted by each
rule. In our experiments, the 10, 000 packets are loaded on a large buffer (virtual
network). Then, every n packets packets are copied from the virtual network
buffer to the receiving buffer and are processed by Loop1 10, 000/n packets
times (recall Section 2). The total execution time is then divided by 10, 000 to
obtain the execution time per packet for the given n packets. For performance
evaluation purposes, we use the execution time for the optimal n packets, which
varies depending on the filter rule. Experiments were performed on an Intel IA-64
Itanium 2 processor (900 MHz, revision 7), Linux version 2.4.18-1.
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Table 2. Execution Time per Packet (MC)

No Tip T u
gcc T s

gcc T u
icc T s

icc Tsls Tpe Tems Thyb

1 80.6 17.5 17.6 13.4 7.6 11.2 4.3 4.3 4.3

2 126.7 19.4 19.5 15.5 8.6 14.1 4.5 5.8 4.5

3 143.6 20.6 21.7 16.2 9.6 15.3 5.5 7.5 5.5

4 126.5 19.5 19.6 14.6 8.6 14.1 4.5 7.7 4.5

5 143.6 20.6 21.7 16.2 9.6 15.3 5.5 7.6 5.5

6 132.5 188.1 188.8 184.4 189.5 18.7 6.9 10.4 6.9

7 132.7 190.6 189.8 187.1 184.9 19.0 10.7 9.9 10.7

8 181.8 332.0 332.0 330.1 329.2 24.9 9.1 13.5 9.1

9 181.6 333.7 333.5 331.4 330.5 25.2 18.2 14.4 14.4

10 266.2 54.3 53.6 32.5 34.5 30.0 18.6 15.1 15.1

11 283.2 55.1 55.4 30.7 35.4 31.1 21.2 16.9 16.9

12 309.5 64.6 67.3 37.1 40.6 37.2 22.2 20.5 20.5

13 326.5 66.7 69.4 37.6 39.5 38.0 28.8 22.2 22.2

6.2 Results

Table 2 shows the average execution time per packet for Loop1 (in units of
machine cycle time). Here, Tip is the execution time of the original filter function
of tcpdump, T u

gcc and T s
gcc are the execution times of unstructured and structured

C programs, such as List 2 and List 3, respectively, compiled by gcc 2.96 with a
-O3 option, T u

icc and T s
icc are the execution times of unstructured and structured

C programs compiled by Intel icc 9.1 with a -O3 option, Tsls is the execution
time of the simply list-scheduled code, such as List 4, Tpe is the execution time of
the software-pipelined PE code, such as List 6, and Tems is the execution time of
the EMS code, such as List 7. Since a software-pipelined code and its execution
time can vary greatly depending on the memory access latency, we profiled the
possible execution times in terms of the memory access latency and selected the
optimal execution time as Tpe (or Tems). Table 3 shows the acceleration ratios
Ax = Tip/Tx, and Figure 1 shows this information in the form of a bar graph.
From the tables, we observe the following:

The ratio Au
gcc is approximately 5, except for cases No. 5 through No. 8, which

agrees with the results reported in [7]. The ratio As
gcc is approximately Au

gcc for
all cases, because gcc applies no special optimization to loops with conditional
branches, regardless of their program structures. As

icc is approximately twice as
large as Au

icc for cases No. 1 through No. 5, because icc optimizes the loops of
which the bodies are small and well-structured by applying software pipelining
with predicated execution but sacrifices optimization when the program size is
sufficiently large.

The ratio Ape shows that the PE code is at least 10 times faster and ap-
proximately 18 times faster on average than the interpreter-based execution.
This ratio decreases as the number #insts increases. The ratio Aems shows that
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Table 3. Acceleration Ratio (Ax = Tip/Tx)

No Aip Au
gcc As

gcc Au
icc As

icc Asls Ape Aems Ahyb

1 1.0 4.6 4.6 6.0 10.6 7.2 18.7 18.7 18.7

2 1.0 6.5 6.5 8.2 14.7 8.9 28.2 21.8 28.2

3 1.0 7.0 6.6 8.9 15.0 9.4 26.1 19.1 26.1

4 1.0 6.5 6.5 8.7 14.7 9.0 28.1 16.4 28.1

5 1.0 7.0 6.6 8.9 15.0 9.4 26.1 18.9 26.1

6 1.0 0.7 0.7 0.7 0.7 7.1 19.2 12.7 19.2

7 1.0 0.7 0.7 0.7 0.7 7.0 12.4 13.4 12.4

8 1.0 0.5 0.5 0.6 0.6 7.3 20.0 13.5 20.0

9 1.0 0.5 0.5 0.5 0.5 7.2 10.0 12.6 12.6

10 1.0 4.9 5.0 8.2 7.7 8.9 14.3 17.6 17.6

11 1.0 5.1 5.1 9.2 8 9.1 13.4 16.8 16.8

12 1.0 4.8 4.9 8.3 7.6 8.3 13.9 15.1 15.1

13 1.0 4.9 4.7 8.7 8.3 8.6 11.3 14.7 14.7

ave. 1.0 5.7∗ 5.6∗ 8.3∗ 11.3∗ 8.3 18.6 16.3 19.7
∗ Calculated without No. 6 to No. 9.

the EMS code is at least 12 times faster and 16 times faster on average than
the interpreter-based execution. Since the declining speed of Aems is lower than
that of Ape , Aems is larger than Ape when #insts is greater than 30. This will
be discussed further in the following subsection.

Tsls can be regarded as the minimum execution time (or, conversely, as the
maximum execution speed) of a program to which no software-pipelining method
has been applied, because in all cases except cases No. 6 through No. 9, Tsls is
approximately T u

icc, which is the execution time of the program compiled by the
Intel compiler optimized for the Itanium 2 processor. Then, Aems and Ape are
approximately twice as large as Asls on average. Roughly speaking, this ratio
with respect to Asls indicates the effect of software-pipelining.

The values in entries {No. 6, ..., No. 9} × {T u
gcc, T

s
gcc, T

u
icc, T

s
icc} are extraor-

dinarily large compared to the corresponding values for Tip . This is because
memory access conflicts occur on the Itanium 2 machine used in this study, and
the compilers gcc and icc can never recognize this symptom. The algorithms
associated with Tsls , Tpe , and Tems manage to avoid this conflict by using a
special load/store pattern.

6.3 Comparison of PE and EMS Algorithms

In general, Tpe is smaller than Tems in simple rules, (cases No. 1 through No. 5)
and conversely Tems is smaller than Tpe in complex rules. (cases No. 10 through
No. 13). This is because the PE code is affected by the number of nullified in-
structions, which is usually proportional to the code size (or the complexity of
the rule). On the other hand, the EMS code contains no nullified instruction,
but rather branch instructions that cause branch penalties. In a simple rule, the
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branch penalties dominate the slowdown of the execution but, in a complex rule,
the nullified instructions dominate the slowdown.

Figure 2 shows the plots of all Tpe (shown as circles in the graph) and
Tems (shown as cross-hairs in the graph) in terms of #insts. Using the least
mean square method, we can approximate Tpe and Tems as the following liner
equations:

Tpe = 0.22#insts + 2.93, Tems = 0.14#insts + 6.01

as in Figure 2 with considerably small errors. The root mean square errors of
these equations are 1.13 and 1.86, respectively. The intersection of these two
lines is located at #insts = 39.3. Therefore, we can alternatively select the better
software-pipelining algorithm according to the size of #insts. The execution time
Thyb in Table 2 is a value obtained alternatively from Tpe and Tems and so is the
acceleration ratio Ahyb in Table 3.

Consequently, this hybrid algorithm is approximately 20 (=19.7) times faster
than the interpreter-based execution on average, 3.5 times faster than gcc-based
execution, and 1.7 times faster than icc-based execution.
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Abstract. Existing runtime parallelization techniques impose severe
performance penalties when a speculative parallelization is attempted
and fails. Some techniques require a sequential restart of the specula-
tive execution while others only disregard the work after the first point
of failure. This paper introduces a new technique that reduces the per-
formance overhead of failure to less than 1% on standard processors
through a combination of hoisting the failure path and partitioning work
to a Coinspector Thread.

1 Introduction

Runtime compilation techniques have become mainstream for commercial ap-
plications since the introduction of JavaTM in 1995. However, runtime compila-
tion has not been adopted by industrial strength High Performance Computing
(HPC) compilers, although, for example, runtime parallelization has been in-
vestigated since the late 1980s. The motivation for runtime parallelization are
applications for which the data dependences can only be analyzed at runtime.
Charm, Gaussian, Dyna-3D, Spice and Chaos are examples of such HPC appli-
cations, but runtime parallelization has also been tested with SPEC R© CPU and
SPECjvm R©.

An example loop construct:

for (i = lb; i< up; i = i + s) {
A[indx[i]] = A[jndx[i]] + expression;

}

where indx and jndx are indirection arrays, and lb, up and s are integers,
illustrates the need for runtime parallelization. In general the contents of these
indirection arrays (indx and jndx) cannot be known until runtime. Thus, a static
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parallelizing compiler can only identify that elements of array A are read from
and written to by each iteration. Consider that the iterations of the loop are
divided, for example, into two equal size partitions and that each partition is
scheduled to run in parallel on a different processor. When there are no common
values stored in indx and jndx, and indx contains no repetitions, the reads
and writes can be performed in parallel maintaining sequential semantics. But
these properties that guarantee safe parallelization cannot be determined at
compilation time.

Several approaches have been proposed for runtime parallelization. One com-
mon problem for these approaches is the cost of failures. In the context of this
paper, a failure is considered either an attempt to parallelize at runtime for
which sequential semantics could not be maintained or an attempt to parallelize
at runtime for which sequential semantics are maintained, but the execution
time takes longer than a sequential execution.

The contribution of this paper is a technique to ensure that despite runtime
parallelization failures, the associated execution time overhead is minimal. The
technique targets speculative parallelization and it is inspired by the inspector-
executor model. The core idea is to preserve the sequential execution without
adding anything extra, but at the same time to enable the speculative execution
including the required extra tracking of memory accesses and data dependence
tests. The technique does not assume any computer architecture support to
facilitate speculative parallelization.

The paper is organized as follows. Section 2 provides an overview of the
inspector-executor model and speculative techniques for runtime parallelization.
Section 3 introduces the new technique to minimize the overhead of failure in
speculative parallelization — the Coinspector Thread — and Section 4 shows
the performance evaluation. Section 5 presents computational patterns that can
require additional overhead and an analysis of their effect on how much the new
technique can eliminate the overhead of failure. The summary of the paper is
presented in Section 6.

2 Background and Related Work

In a nutshell, current industrial parallelizing compilers analyze code regions and
try to prove that no data dependences will occur in any parallel execution. To
achieve this, the analysis sets up equations describing the read and write memory
accesses within a given code region. When there are intersection points between
these equations, if parallelized, the sequential semantics cannot be guaranteed.
A kind of data dependence captured in this case is known as read-after-write
(RAW) — a read access to a given variable C occurs after a write access to the
same variable C (e.g. C = B + 5;... A = C - H;).

When the equations describing the write accesses intersect, sequential seman-
tics cannot be guaranteed if parallelized without other code transformations.
This kind of data dependence is known as write-after-write (WAW) — a write
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access to a given variable D occurs after another write access to the same variable
D (e.g. D = B + 5; ... D = A / C;).

Parallelizing compilers work around WAW dependences by creating a priva-
tized copy of the offending variables for each parallel thread — variable priva-
tization. Each parallel thread writes directly to the private copy of the variable
instead of the shared original variable. After the parallelized code region, paral-
lelizing compilers place a new section of code whose sole purpose is to copy out
from the private variables, and if necessary accumulate the private results, to
the original shared variable.

The variable privatization transformation also takes care of the remaining
data dependence type — write-after-read. For brevity hereafter this last data
dependence type is omitted as it is solved by the treatment for WAW depen-
dences.

Complementary to the a priori approach based on proving mathematically the
absence of data dependences, runtime parallelization has been investigated for
two decades [1,2]. Rauchwerger [3] presents a survey of the main developments
covering the first decade. Almost all of those developments fall under the inspec-
tor/executor model and target array-based partially parallel loops. Accordingly,
the basis of this model is to establish at runtime the different sets of iterations
— wavefronts — without data dependences and then execute these wavefronts
in parallel. At its simplest, the inspector is a single thread chartered with
identifying the wavefronts. To achieve this, the inspector only needs to track
the memory accesses and thus it executes all the iterations of the loop, but not
all the instructions of the loop body. The compiler generates a stripped down
version of the loop with the minimum set of instructions needed to calculate the
memory addresses accessed. With the wavefronts in hand, executor threads run
independent wavefronts in parallel knowing that the sequential semantics are
intact. The scalability of this model is limited by how long it takes to run the
inspector phase. In the worst case scenario the stripped down loop is exactly the
same as the original loop and only one inspector thread can be used.

Rather than establishing safety before executing the code region in parallel,
it is possible to establish safety a posteriori — speculative parallelization. An
implementation of speculative parallelization requires a means for restoring the
program state to that before the speculation started.

One recovery mechanism is to checkpoint the variables that may be modified
during the speculation. The speculative threads then execute in parallel the
code region plus some extra instructions to log the memory accesses (reads and
writes) in new data structures generated by the compiler. Hereafter, these data
structures are referred to as shadow structures. Once the speculative threads
have finished the execution of the code region, speculative parallelization needs
to test for data dependence violations relying on the information stored in the
shadow structures. When the test is passed, the sequential semantic equivalence
has been established and the program state contains the correct values. However,
when the test fails, the program state contains incorrect values and it is necessary
to recover from the checkpoint. With this recovery mechanism, suggested by [4],
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the execution time of a given sequential region of code for which one speculative
parallelization is attempted and failed can be modeled as

Tf = Ts +
Ts

p
+ max

i=1..p
T i

l + Tc + Tt + Tr ,

where Tf is the total execution of the failed speculative parallelization, Ts is the
sequential execution time, p is the number of speculative threads executing in
parallel, Tl is the time spent logging memory accesses by a speculative thread,
Tc is the time to take the checkpoint, Tt is time spent applying the test, and Tr

is time to recover the program state from the checkpoint.
The checkpoint recovery mechanism can be modified by making the shadow

structures more complex. Instead of taking the checkpoint, the shadow structures
in addition to tracking the memory accesses now store information for undo logs.
This enables an implementation of speculative parallelization to eliminate Tc

(checkpoint time) and to save part of the speculative computation by undoing
the modifications up to the first point of failure as identified during the test.
Garzarán et al. [5] study various mechanisms to store the data generated during
speculative parallelization and one of those studied covers the undo logs.

In these two recovery mechanisms, WAW dependences can occur since pri-
vatized data structures are not considered. Using privatization the results of
speculative parallelization do not modify the program state directly. Only after
the test has passed are the results from the privatized variables copied out to the
program state. When the test fails it is enough to disregard the privatized vari-
ables of those speculative threads that have computed results that correspond
to instructions after the first point of failure according to the sequential order
of execution. With this mechanism, the cost of failure can be modeled as

Tf = (1 − αfTs) + αf
Ts

p
+ max

i=1..p
T i

lp + Tt + αfTcom ,

where Tf is the total execution time including a failed speculative parallelization,
Ts is the sequential execution time, αf is the ratio of speculative execution which
can be saved, p is the number of speculative threads executing in parallel, Tlp

is the time spent by a speculative thread logging memory accesses and writing
to privatized variables, Tt is the time spent applying the test, and Tcom is the
time to copy-out the results from the privatized variables. Dang et al. [6], Cintra
and Llanos [7], Rundberg and Stenström [8] and Garzarán et al. [5] follow this
mechanism. Note that Garzarán et al. [5] not only consider this mechanism, but
also studied several options, as mentioned above.

Dang et al. [6], and Cintra and Llanos [7] proposed to reduce the resource
requirements and the overhead of failure by using a sliding window mechanism.
Rather than applying speculative parallelization to an entire iteration space in
one go, the iteration space is partitioned into blocks of contiguous iterations.
The block containing the first iterations of the loop constitutes the first window
of iterations. Speculative parallelization is then applied to this window. That
is, each speculative thread is assigned to execute different subsets of iterations
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contained within the window. When the speculation succeeds the window slides
to the immediately following block of iterations and the window only contains the
iterations of this block. These steps are applied repeatedly until the window has
slid across the entire iteration space and thereby the loop has been completely
executed. If the speculation fails for any given window of iterations, only the
iterations of the window for which speculation failed are executed sequentially.
Alternatively, it is also possible to commit the results of those speculative threads
that have executed instructions corresponding to iterations situated before the
first point of failure according to the sequential order of execution. In this case,
the window slides up to the iterations of the speculative thread identified as
containing the first point of failure. The sliding window advances without leaving
behind any unexecuted and uncommitted iteration. The window may increase
its size to include all the iterations in the immediately following block or it may
keep the same window size, effectively repartitioning the remaining iterations in
the iteration space. The last mathematical model describing Tf still holds, but
instead of covering the whole iteration space of a loop, it models a subset of that
iteration space, a window. The overhead of failure has not been reduced as such,
but probabilistically the chances of encountering failures are reduced due to fewer
iterations being speculated upon. As long as several windows can successfully
execute in parallel, the accumulated overhead of failure may be reduced.

The contribution of this paper is how to make |Tf−Ts| as close to 0 as possible
without assuming any special functionality to facilitate speculative paralleliza-
tion from the computer architecture.

3 The Coinspector Thread

Practical application of speculative parallelization requires not only the possi-
bility of a performance improvement as demonstrated by previous work (soft-
ware [9,4,10,8,6,7] and hardware [11,12,13,14,15,16,5,17]), but also assurances
that users will not be confronted with a “double-edged” sword due to this op-
timization. Otherwise, the question of when to apply speculative parallelization
becomes complex and critical.

The existing techniques for speculative parallelization, at best, offer not to
waste all the results generated by the speculation and re-execute from the first
point of a data dependence occurrence. The Coinspector Thread technique tar-
gets software speculative parallelization using privatization and borrows concepts
from the inspector-executor model. The core idea is to preserve the sequential
execution without adding anything extra, while at the same time enabling the
speculative execution to proceed including the required extra tracking of memory
accesses and data dependence tests.

Figure 1 shows a graphical representation of a speculative parallelization exe-
cution. Privatization has been applied and no computer architecture support for
speculative parallelization is required. The vertical axis represents the iteration
space under consideration. Without loss of generality, these iterations can span
the entire set of loop iterations or a windowed subset as described in Section 2.
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(a) (b)

(c) (d)

Fig. 1. Speculative Parallelization with Privatized Variables

Neither speculative parallelization nor the Coinspector Thread technique are
limited to loop constructs. An iteration space is selected for easier presentation
and comprehension. On the horizontal axis, execution time progresses from left
to right. Figure 1 (a)−(d) are snapshots at different points during the specu-
lation process. Figure 1 (a) presents the snapshot just before the speculative
threads start execution. For example, Thread 0 has been assigned iterations
0-to-9, Thread 1 has been assigned 10-to-19 and so on. Each thread will exe-
cute the body of the loop augmented with extra instructions to track memory
accesses using the shadow structures. Figure 1 (b) advances in time and the
speculative threads have completed one iteration. For example, Thread 0 has
completed iteration number 0 while Thread 1 has completed iteration number
10. In this example there are one read and one write memory operation tracked
per iteration. Each speculative thread has executed the instructions to record the
memory accesses and it has written the result of the write in a private variable.
For example, Thread 2 has read from memory address 12 and it has written to
memory address 9. However, the write operation has not been performed directly
at memory address 9. Instead the value has been stored in a private variable of
Thread 2. Figure 1 (c) fast-forwards the speculative threads to a point in time
where all of them have finished executing their assigned iterations. For example,
Thread n has written to memory addresses 6, 0, . . . 14 and read from mem-
ory addresses 11, 8, . . . 23. The last snapshot of the sequence shows that the
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speculative threads have taken part in the check phase where the test has been
applied by comparing the shadow structures among the speculative threads. The
test has been passed and the speculative threads have also completed the com-
mit phase by copying out the results stored in the privatized variables to the
program state. For example, the value stored in private memory of Thread n for
memory address 23 has now been written to the memory address 23.

It is out of the scope of this paper to describe the different implementation
techniques proposed in the literature for when to apply speculative paralleliza-
tion, and how to implement the different phases (speculative computations, check
and commit phases). The technique described here has been implemented with
several variants to confirm its applicability.

The Coinspector Thread technique can be explained as a set of optimizations
applied to the least speculative thread. In Fig. 1, Thread 0 is the least specu-
lative thread. Thread 1 is more speculative than Thread 0 in the sense that it
is executing iterations which are further in the future according to the sequen-
tial execution order. Thread 0 was executing iterations 0-to-9 while Thread 1,
for example, was executing iterations 10-to-19. Similarly, Thread n is the most
speculative thread.

The least speculative thread is referred to as the Base Thread and receives
the following optimizations:

1. The Base Thread executes the original loop body without requiring writ-
ing to private memory or logging of read memory accesses. As noted by
Gupta and Nim [9], no preceding speculative writes can invalidate the reads
which renders unnecessary the logging of read memory accesses, no RAW
dependences.

2. The Coinspector Thread offloads from the Base Thread the logging of write
memory accesses by executing (as the inspector thread does in the inspec-
tor/executor model) a stripped down version of the loop body for the set of
iterations assigned to the Base Thread.

3. The Base Thread, although it has been assigned a set of iterations, con-
tinues executing beyond that set until the whole loop is completed or the
speculation has succeeded.

The Coinspector Thread is the key mechanism that enables the Base Thread
to be performing a sequential execution completely unaware of the speculative
threads, of logging memory accesses, or of applying tests to establish the sequen-
tial semantic equivalence. Unlike the Base Thread, the Coinspector will never
execute more than the assigned set of iterations. This is sufficient to check for
successful parallelization.

Figure 2 presents a graphical representation of a speculative parallelization
using the Coinspector Thread. Figure 1 can be compared against this figure to
observe the differences. Thread 0 has become the pair Base and Coinspector
Threads and both threads are assigned the same set of iterations. The rest of
the threads and iteration assigments remain identical. Figures 2 (a)–(c) illustrate
that the Base Thread does not take part in any logging of memory accesses. The
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(a) (b)

(c) (d)

Fig. 2. Speculative Parallelization with the Coinspector Thread

Base Thread is running the original loop body writing directly to memory; no
privatization. The Coinspector and Threads 1–n progress through the iterations
logging the memory accesses. The Coinspector is duplicating some of the com-
putations performed by the Base Thread to be able to keep a record of the
write memory accesses made by the Base Thread. The Coinspector Thread is
not actually performing the write operations or storing the values unless needed
for logging the write memory accesses. In such cases the values are stored in
privatized variables since a result generated by the Coinspector will never need
to be copied out to the program state. As in Fig. 1, Threads 1–n advance by exe-
cuting the original loop body augmented with the extra logging instructions and
performing the write operations in private variables. Figure 2 (d) illustrates how
the Base Thread continues executing without being involved in the check phase.
Only once the Coinspector Thread together with Threads 1–n have passed the
test in the check phase, the Base Thread gets a notification to stop because the
speculation was successful. In such case, the commit phase will need only those
results generated by speculative threads that have not been passed by the Base
Thread. If the Base Thread has passed a speculative thread, the program state
already contains the write values that would need to be copied out from the
passed speculative thread. This situation would occur, for example, if the Base
Thread has executediterations 0-to-9 and also 10-to-19, and iterations 10-to-19
were assigned to Thread 1. Note that although the Base Thread can execute
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Fig. 3. Experiment Results - Overhead of Failure

iterations beyond those it has been assigned, the Coinspector Thread never exe-
cutes more than its assignment. When the Base Thread finishes all the iterations
in the loop before getting notified, then the Base Thread requests the specula-
tion be discarded. In the check phase when the test fails, the Coinspector Thread
as such does not prevent exploiting those correct results (i.e. those speculative
threads assigned to iterations prior to the first point of failure). The Base Thread
is notified of the partial success and will restart execution once those speculative
threads that passed the test have completed the commit phase.

4 Performance Evaluation

To test the value of the Coinspector Thread in eliminating the overhead of spec-
ulative failure, a code of interest in the DARPA High Productivity Computing
Systems program is considered, the Gyrokinetic Toroidal Code (GTC). GTC
is a 3-D particle-in-cell code developed at the Princeton Plasma Physics Lab
[18]. Two sections of the code are of interest for speculative parallelization: the
compute mapping and deposit routines. These routines map particles to a 3-D
grid. The benchmark code is a synthesized loop from these two routines. The
data set was engineered to ensure that one failure would occur. When a failure
occurs, all of the speculative results, including correct ones sequentially earlier
than the failure, are discarded. The benchmark experiments map 1 billion par-
ticles into a 1 million element 3-D array.

The experiments run on a Sun FireTM E6900 server running SolarisTM 10 with
24 1.35GHz UltraSPARC R© IV processors. Each UltraSPARC R© IV processor is
dual core adding up to a total of 48 cores in the server. Sun FireTM E6900
servers offer a cache coherent shared memory system and this server has 192GB
of physical memory installed.
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Figure 3 presents the overhead of failure as a percentage of Ts (sequential
execution time without any instrumentation due to speculation). Although the
overhead fluctuates depending on the number of speculative threads taking part,
the maximum overhead recorded is 0.77%.

The Coinspector Thread takes a thread slot that, if speculation were success-
ful, could have been exploited by executing an extra speculative thread. Due to
space constraints such an evaluation is out of scope, but note that the actual
speedup thanks to that extra speculative thread is completely dependent on the
computer architecture and application. It is well established that speedup curves
flatten and decrease beyond a given number of threads. For example, the best
speedup on 16 processors published in [6] is around 9 with most values being
between 5 − 6. Given the current industry trend towards multi-core and many-
core processors (such as Sun’s Niaraga processor with 32 hardware threads), it
seems more challenging to develop scalable applications than to find a hardware
slot for the Coinspector Thread.

5 Limits of the Coinspector Thread

The characteristics of the original code from which a compiler extracts the in-
structions for the Coinspector Thread has a direct impact on how much overhead
of failure can be eliminated. Consider the example loop:

for (i = 0; i < 100; i++) {
A[indx[i]]] = A[i] + 3.14159; // statement S1

indx[i] = expression; // statement S2

}

where indx is an indirection array and A is an array of doubles. The Coinspector
Thread executes a version of this loop that does not interfere with the Base
Thread. Since all changes done by the Base Thread are correct and are safe if
seen by later speculative threads, these are done directly to the original data
structures. The problem is that a variable used to determine the memory ad-
dresses of write operations to array A can be modified by statements inside the
loop body. For example, consider that the Base and Coinspector Threads have
been assigned to iterations 0-to-9 and both execute the loop body as presented.
In the first iteration (i = 0), the Base Thread can execute Statement S2 be-
fore the Coinspector Thread has been able to read the contents of indx[0] for
Statement S1. In specific, the Base Thread could replace the value 7 with the
value 8 in indx[0]. Thus, the Coinspector Thread would believe that the write
to array A had been done at index position 8 and would incorrectly generate the
corresponding log entry. This is one illustration of the general case in which the
memory access patterns that need to be logged are not reproducible. However,
even in these cases it is possible to use a Base and Coinspector Thread whenever
speculative parallelization is applicable.

There are several alternatives available when speculating on this type of code
section, however all of them introduce some additional overhead. The choices
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range from first, using prior techniques with logging overhead in the base thread,
second, privatizing a portion of the index array for use by the Coinspector and
speculative threads, and third, delaying the progress of the base thread so that
it does not interfere with correct logging by the Coinspector or correct execu-
tion by later speculative threads. In the second case, the Base Thread does not
start execution until the privatization is completed. This delay means that the
sequential execution has been halted and, thereby, the worst case analysis for
the execution time in case of failure Tf is the sequential time Ts plus the time
for privatizing data in the Coinspector Thread Tpct.

It is worth noting that when the operations performed by the expression in
Statement S2 are reversible, for example an increment indx[i]++, the Coinspec-
tor Thread has the option of reversing the computation to recover the original
array index for its log. However, even in these situations the Coinspector Thread
must know whether it is ahead or behind the Base Thread. One way to accom-
plish this is to force the Coinspector Thread to lag the Base Thread so that the
Base Thread can run at full speed.

An example which introduces a similar difficulty for both previous speculative
parallelization techniques and the Coinspector Thread is when the access pattern
is not predictable.

for (i = 0; i < 100; i++) {
A[random()] = A[i] + 3.14159; // statement S3

}

This lack of predictability can be resolved by applying a straightforward inspec-
tor loop to generate the access pattern in advance. This access pattern can then
be stored for use by all threads.

6 Conclusions

Practical application of speculative parallelization requires not only the possibil-
ity of a performance improvement as demonstrated by previous work, but also
assurances that users will not be confronted with a severe performance degrada-
tion. Such risk may prevent wide spread adoption of speculative parallelization
by industrial strength compilers.

The contribution of this paper is a technique to preserve the sequential exe-
cution without adding anything extra (Base Thread), but at the same time to
enable the speculative execution including the required extra tracking of memory
accesses and data dependence tests (Coinspector Thread).

The performance evaluation has tested the technique under various numbers
of speculative threads (from 4 up to 32). The performance results show that the
Coinspector Thread enables the overhead to execute regions of code including
failed speculative parallelization to be less than 1%. To the best of the authors’
knowledge, this is the first technique delivering such a low overhead.
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Abstract. Nowadays, power consumption reduction techniques are be-
ing increasingly used in computer systems, and high-performance com-
puting systems are not an exception. In particular, the power consumed
by the interconnect circuitry has a non-negligible contribution to the
total system budget. In this scenario, fat-tree interconnection networks
are one of the most popular topologies. This topology is particularly
well-suited for applying power consumption reduction techniques since
it provides multiple alternative paths for each source/destination pair.
In this paper, we present a mechanism that dynamically adjusts the
available network bandwidth by switching links on and off, according to
the traffic requirements. This mechanism provides significant reduction
in power consumption while maintaining the original underlying routing
algorithm, at the expense of slight latency increase for low loads.

1 Introduction

Nowadays power consumption reduction techniques are being increasingly used
in computer systems, and high-performance computing systems are not an ex-
ception. Most of these systems are clusters (this is the architecture of 72.20%
of the 500 systems listed in the November 2006 edition of the Top500 Su-
percomputers sites [1]). In particular, the power consumed by the intercon-
nection network circuitry has a significant contribution to the total system
budget. For example, the routers and links in a Mellanox server blade, consume
about 37% of the total power budget [2]. In this scenario, fat-tree interconnec-
tion networks are one of the most popular topologies due to their high bisection
bandwidth and ease of application mapping for arbitrary communication topolo-
gies [3]. But most applications have communication topology requirements that
are far less than the total connectivity provided by fat-trees. Vetter and Mueller
show that applications that scale most efficiently to large numbers of proces-
sors use point-to-point communications patterns where the average number of
distinct destinations is relatively small [4]. This provides strong evidence that
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many application communication topologies exercise a small fraction of the re-
sources provided by fat-trees [5]. Moreover, traffic in an interconnection net-
work exhibits large spatial and temporal variance, leading to inactivity periods
at several links in the network [6]. On the other hand, fat-trees are particu-
larly well-suited for applying power consumption reduction techniques since they
provide multiple alternative paths for each source/destination pair. This paper
shows that there is a chance to reduce power consumption by dynamically
switching on/off links based on the traffic they support while running a set of
applications.

Several power reduction techniques for interconnection networks have been
proposed. Most of them are based on Dynamic Voltage Scaling (DVS). DVS
was originally proposed, and now is widely deployed, for microprocessors. When
applied to networks, this approach allows DVS links to work in a discrete range
of frequencies and supply voltages, which leads to different levels of power con-
sumption in response to their traffic utilization. The history-based DVS policy
proposes to use past network utilization to predict future traffic, therefore tuning
dynamically link frequency and voltage to reduce network power consumption
[7]. Stine and Carter compare DVS with the use of adaptive routing in non
DVS links, showing that, as long as the network provides enough bandwidth to
meet the needs of the application, an adaptively-routed network can improve
latency with the same power consumption [8]. DVS has significant drawbacks:
it requires a sophisticated hardware mechanism to ensure correct link operation
during scaling, it consumes significant CMOS area, and DVS links continue to
consume power even while idle.

Other techniques are based on the use of on/off links that are selectively
switched on and off according to their utilization [2,9,6]. In order to avoid dead-
locks, adaptive routing algorithms must be used. Kim et al. also investigate
hybrid techniques based on both DVS and on/off links. The idea is to shut down
DVS links when traffic drops to very low levels [2].

In this paper, we present a new method to reduce power consumption in fat-
trees based on the use of on/off links. The rest of the paper is organized as follows.
Section 2 formalizes fat-tree network topology considering it a particular class
of k-ary n-tree, including a description of packet routing. Section 3 describes the
proposed power saving mechanism. Our proposal is evaluated using simulation
in Section 4 and, finally, some conclusions are drawn in Section 5.

2 Fat-Trees

A k-ary n-tree is composed of N = kn processing nodes and S = nkn−1 k-ary
switches. Every switch has 2k ports, k “up” links and k “down” links. Processing
nodes are identified by (p0, p1, . . . pn−1) where pi ∈ {0, 1, . . . , k − 1} for 0 ≤
i ≤ n − 1, and each switch is identified by (w0, w1, . . . wn−2, l), where wi ∈
{0, 1, . . . , k − 1} for 0 ≤ i ≤ n − 2 and l ∈ b {0, 1, . . . , n− 1} is the level of the
switch (0 is the root level).
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– Two given switches, (w0, w1, . . . wn−2, l) and (w′
0, w

′
1, . . . w

′
n−2, l

′) are con-
nected if and only if l′ = l + 1 and wi = w′

i for all i �= l. The link connecting
both switches is labeled with w′

l on the level l switch and with k +wl on the
l′ switch.

– There is a link between the switch (w0, w1, . . . wn−2, l) and the processing
node (p0, p1, . . . pn−1) if and only if wi = pi ∀i ∈ {0, . . . , n− 2}.

The labeling scheme shown in the previous definitions makes the k-ary n-tree
a delta network: any path starting from a level 0 switch and leading to a given
node p0, p1, . . . , pn−1 traverses the same sequence of links (p0 at level 0,p1 at
level 1,. . . , pn−1 at level n − 1) [10]. An example of such labeling is shown in
Figure 1, for a quaternary fat-tree of dimension 3 (64-node network), that is a
4-ary 3-tree.

Given a k-ary n-tree, the Minimal Tree (MT) is the subset of the tree com-
posed of all the processing nodes, a subset of the communication switches, and
the edges between them. A switch (w0, w1, . . . wn−2, l) belongs to the MT if one
of the following properties holds:

1. l < n− 1 and wi = 0 ∀i ∈ {l, . . . , n − 2}.
2. l = n− 1 (all the switches in the level n− 1 belong to the MT).

Within these switches, all the “down” links and the “up” links with index k
also belong to the Minimal Tree. The Minimal Tree of a quaternary fat tree of
dimension 3 (4-ary 3-tree) is shown in Figure 1 using thicker lines.
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Fig. 1. 4-ary 3-tree node, switch and edge labels. The Minimal Tree is highlighted.

Minimal routing between any pair of processing nodes can be accomplished by
sending the message to one of the nearest common ancestor switches and from
there to the destination. Hence, each message experiences two routing phases:
an ascending phase, from the processing node to a nearest common ancestor,
followed by a descending phase. While the descending phase is necessarily de-
terministic, since there is a single path from a nearest common ancestor switch
to the destination, there could be alternative routes to reach a nearest common
ancestor. The availability of alternative routes makes it possible to randomly
choose ascending links or even implementing an adaptive algorithm that makes
a decision according to the local state of the switch, avoiding congested links.
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3 Description of the On/Off Power Saving Mechanism

The proposed power saving mechanism is based on dynamically switching links
on/off as a function of the required network throughput, and improves a prelim-
inary version of this mechanism [11]. We consider bidirectional links that can be
turned on/off in a given direction, either ascending or descending. Every switch
in the network periodically measures outgoing traffic and controls the number
of operating outgoing links depending on traffic variations. A subset of network
links, which is defined as the Minimal Tree, fixing the maximum level of power
saving, cannot be switched off in order to maintain the network connectivity.

In order to dynamically turn links on and off according to their utilization, the
average utilization of all the “up” links in a switch, uup, is periodically obtained.
Two thresholds are defined to control the mechanism behavior: Uoff is the turn
off threshold, and Uon is the turn on threshold. If uup < Uoff one of the “up”
links is turned off, while when uup > Uon, an inactive “up” link is turned on.

The power saving mechanism controls the network links state according to
the following general rules:

– Up links: the utilization of the up links of a given switch is used to decide
whether to turn on or turn off up links. This decision propagates upward to
guarantee at least one path to level 0 switches (this is required to provide
a path to every destination), and downward to guarantee descending routes
to processors (for the same reason).

– Down links: these links are turned on/off all at once. Down links at a given
switch are turned off when that switch cannot receive descending traffic, that
is when all its input links (ascending and descending) have been turned off.
Those links will be turned on again when some input link is turned on.

– The underlying routing algorithm need no changes since the mechanism is
limited to those switches and links that do not belong to the MT (see Section
2), and the MT provides the minimum paths needed to maintain all the
processing nodes connected.

A detailed description of the mechanism can be found in previous work [11].
The mechanism performance can be tuned by setting the values of the thresh-

olds (Uon and Uoff) used to control link on/off switching. Their effect can be
analyzed by considering that threshold average indicates the mechanism aggres-
siveness while threshold difference (or hysteresis band) indicates mechanism re-
sponsiveness. Aggressiveness is related to the maximum power saving requested
to the mechanism. Responsiveness refers to its ability to follow load changes.

The range of possible threshold values is conditioned by several limiting factors
[12] that are summarized in the map of possible thresholds shown in Figure 2.
This diagram is represented as a function of threshold difference and average.
Any point inside the shaded region provides a valid configuration, with different
responsiveness and aggressiveness as indicated with the bars depicted together
with the axis in the graph.
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Fig. 2. Map of possible thresholds

3.1 Static Thresholds

Our mechanism uses static thresholds, as their value is constant regardless of
the number of links that are on or off. Nevertheless, the mechanism generates
an effect of increase (decrease) in the utilization of the available links as long as
some of them are turned off (on). This effect could also be analyzed as whether
the thresholds were reduced proportionally to the available throughput and the
load was calculated relative to the full throughput. We refer those thresholds
to as the effective thresholds. The effective threshold values as a function of the
number of outgoing links in ascending direction for a 4-ary n-tree are indicated in
Table 1. Factor column shows the fraction of available outgoing throughput used
to calculate the effective thresholds. According to that, 3

4U
on

can be considered
as the minimum utilization for having all links active, while 2

4Uoff is the maxi-
mum utilization that guarantees maximum power saving for a particular switch.

Table 1. Static threshold values according to the available links for a 4-ary switch

Static thresholds Effective thresholds
On Up Links On Off Factor On Off

4 Uon Uoff 1 Uon Uoff

3 Uon Uoff 3/4 3
4
U

on
3
4
U

off

2 Uon Uoff 2/4 2
4
U

on
2
4
U

off

1 Uon Uoff 1/4 1
4
U

on
1
4
U

off

Figure 3(a) shows the switch state (given by the number of ascending active
links) versus the load traversing the switch in ascending direction for a 4-ary
fat-tree. The state with all the links in the off state is not shown, since the last
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Fig. 3. Switch state as a function of traffic with (a) static and (b) dynamic thresholds

ascending link is turned off (except for the MT) when all the incoming links in
the ascending direction have been already turned off.

The reduction in available throughput when reducing the active outgoing links
generates an effect that can be viewed as a reduction in the hysteresis band
(increase on responsiveness) of the mechanism. This is a positive effect since
the network is more sensitive to congestion when the fraction of active links
is reduced. In that situations, having a higher responsiveness will increase the
mechanism agility to react against small changes in traffic, providing additional
active links if needed. Otherwise a low responsiveness could lead to network
congestion during limited periods of time, with a significant increase in latency.

An important limitation of the static thresholds is that Uon must be higher
than 2 · Uoff . This makes the threshold average to be low for situations with
several active links, and hence making the mechanism less aggressive, which
means reducing the margin for power saving. Moreover, this condition precludes
the use of a mechanism that is both very aggressive and very responsive (see
Figure 2).

3.2 Dynamic Thresholds

As an alternative, we have devised a version of the mechanism which is based
on dynamic thresholds. The main objective is trying to divide the full range of
network utilization in as many slots as indicated by the network arity. On average
every switch distributes the ascending traffic among k links, when the network
is fully active. If the traffic decreases 1/k of the nominal traffic requiring the
full switch throughput it seems reasonable to reduce the available throughput
by exactly the same amount, thus turning off one link.

The dynamic implementation is based on a fixed “on” threshold, Uon, and
a dynamic version of the “off” threshold, Uoff , that depends on the number of
active outgoing links according to the following expression:
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Uoffi =
Uon · (i − 1)

k

i being the number of active outgoing links in the ascending direction.
Considering a 4-ary n-tree, the set of dynamic thresholds together with the ef-

fective thresholds is indicated in Table 2, with the corresponding state transition
diagram shown in Figure 3(b).

The dynamic implementation of thresholds provides significant power sav-
ing improvements, since the fraction of switch utilization where some links are
turned off increases with respect to the static version. This result is validated in
Section 4. The overlap among the transitions between 4 and 3 on links is not
a problem (multiple alternative transitions due to traffic oscillations) since the
mechanism operation is based on the average switch utilization during fixed
length periods (Section 4.2) which has the effect of filtering quick traffic changes.

Table 2. Dynamic threshold values according to the available links for a 4-ary switch

Dynamic thresholds Effective thresholds
On Up Links On Off Factor On Off

4 n.a. 3
4
Uon 1 n.a. 3

4
Uon

3 Uon
2
4
Uon 3/4 3

4
Uon

6
16

Uon

2 Uon
1
4
Uon 2/4 2

4
Uon

2
16

Uon

1 Uon 0 1/4 2
4
Uon 0

4 Performance Evaluation

In this section, we study, using simulation, the impact of the power reduction
mechanism on latency. The metrics used in this study are the average latency of
a message (measured from generation to delivery time) and the relative power
consumption of the links as compared with the default system.

Two types of graphs are presented: the first shows the relative power con-
sumption of the network links as a function of the injected traffic. These graphs
includes two separate curves corresponding to the network behavior when an
increasing or decreasing load is applied. Assuming that uniform traffic is used,
this representation provides a view of the power consumption hysteresis band for
the whole network. Note that the graph corresponding to the increasing work-
load should be read from left to right, while the one corresponding to decreasing
traffic should be read from right to left. The second graph type shows the la-
tency evolution for the same range of injected traffic, including results with the
network links fully operational.

4.1 Network and Traffic Model

Our simulator models a wormhole switching network at the flit level [13]. The
network is composed of switch nodes and processor nodes. The switches contain
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a routing control unit, a crossbar and as many physical links as indicated by the
network arity. Physical links are split into three virtual channels, with capacity
for four flits. The results have been obtained for quaternary fat-trees of dimension
4 (256 nodes).

The network load is defined by the message generation rate at each node, the
message size, and the destination of each message. Initially only the links in the
minimal tree are active. For each test, the generation rate is kept constant at
0.01 flits/cycle/node during 60000 cycles, increased to its maximum value (0.60
flits/cycle/node) with constant slope during 120000 cycles, maintained at the
maximum rate during 120000 cycles and decreased to the minimum load, again
in 120000 cycles. A synthetic workload based on the uniform distribution is used.
All the nodes in the network have the same behavior: the message inter arrival
time is generated according to the workload type, the message length is fixed to
16 flits and, the destination node for each message is chosen among all the nodes
in the network (except the source node) with the same probability.

We use a uniform distribution for the destinationss because it corresponds to
the worst case, as this workload produces a sustained traffic all over the network.
If we had selected a workload that exhibits locality, some parts of the network
would not receive any traffic. In that case, our mechanism would obtain much
better results by permanently keeping the links in this area switched off.

4.2 Parameters of the Proposed Mechanism

As explained in Section 3, at a given time the operational level of a link depends
on its utilization. The dynamics of the model is driven by the off threshold Uoff

and the on threshold Uon. In the following figures, we explore part of the design
space by selecting different values of Uoff and Uon in order to achieve different
goals of responsiveness and aggressiveness for the power saving mechanism. The
complete set of tested configurations is given by the cross (+) signs on the map
of possible thresholds shown on Figure 2.

On the other hand, a link cannot be instantaneously turned on, but it requires
a time Ton. Turning off a link also needs some time Toff to decrease the circuit
voltage level to zero. When a link is turned off, we assume that it becomes
immediately unavailable but it continues consuming power until Toff cycles have
elapsed. Similarly, when a link is turned on, the new link is available to messages
after Ton cycles, but power consumption increases at once. Based on the values
reported by Kim et al., we have used Ton = Toff = 1000 clock cycles [14,9].
The state of the network is periodically checked to decide if it is necessary to
turn on or off any link. We use a period greater than Ton and Toff in order to
allow network stabilization after the changes. Specifically, the check period used
is 2000 clock cycles.

4.3 Results with Static Thresholds

The power consumption and the latency results for three selected points from
Figure 2 (highlighted with a circle) are presented below.
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Figures 4(a) and 4(b) show results for the static thresholds [Uon, Uoff ] =
[0.030, 0.150]. The power curves are very similar to those predicted by Figure 3,
since they are the result of the overlapped effect of all network switches. These
curves clearly show four different and stable network states. Each one of them is
given by the average network performance of network states where the switches
directly connected to processors have one, two, three or four active ascending
links. This is also due in part to the fact that the reported experiments have
been performed with uniform traffic to show the average network behavior. As
expected, the network is at 100% power consumption with ascending traffic when
the injected traffic surpasses 3

4Uon (3
4Uon = 0.11 for this test) for the 4-ary 4-tree

topology.
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Fig. 4. Power and latency versus traffic with static thresholds

Figures 4(c) and 4(d) show results for the static thresholds [Uon, Uoff ] =
[0.085, 0.435], that provide a more aggressive power reduction mechanism. For
this reason, the switches remain partially disconnected for higher loads and, as a
consequence, the latency penalty increases. As can be seen the latency obtained
for increasing traffic experiences several peaks for low traffics, which are due to
the availability of a fraction of the total network throughput until the turning on
of additional link allows higher loads. The latency curve with increasing traffic
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denotes that the effective Uon thresholds are very close to the maximum traffic
each one of the stable network states can deliver.

4.4 Results with Dynamic Thresholds

In this section, we report the results obtained for the selected points when using
the dynamic thresholds version of the mechanism. As can be seen in Figure 5,
the hysteresis band width reduction provides additional power reductions at no
additional latency cost.
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Fig. 5. Power and latency versus traffic with dynamic thresholds

The main benefits of the dynamic thresholds performance are based on the
displacement of the decreasing power consumption traffic curve closer to the
increasing one. The relative power saving increases dynamic thresholds provide
range between 50% and 30% for the tests reported in this paper. It is important
to note that the increasing traffic power consumption curves make state tran-
sitions for higher loads; hence the network experiences higher latency penalties
than for decreasing traffic, as shown in the latency graphs.

The rest of the experiments corresponding to the points in the area shown in
Figure 2 confirms the results reported in this paper. In particular, more aggres-
sive thresholds introduce significant latency penalties. In some cases, latency
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for very low loads becomes similar to the nominal latency obtained with the
maximum traffic rate. Therefore, these very aggressive thresholds may not be
interesting.

5 Conclusions

In this paper, we have presented a novel technique to reduce power consumption
in fat-tree interconnection networks. Two important contributions of our mech-
anism are its simple implementation and the fact that the underlying routing
algorithm does not need to be modified. The mechanism can be set to provide
different levels of sensitivity to traffic variations. Moreover, power reduction poli-
cies with different levels of aggressiveness can be set, too. Hence, different ratios
of power saving versus performance penalty can be obtained. Another signifi-
cant contribution is the improvement of our original mechanism implementation
by defining a dynamic behavior of the thresholds that control the mechanism
operation. The dynamic version of the mechanism significantly outperforms the
static approach at no additional performance cost.

Our results, obtained by simulation on 4-ary 4-tree networks, show that signif-
icant power savings can be obtained with moderate latency penalty, by selecting
a conservative power reduction policy. Additional power savings can be obtained
as well by further stressing the network at the cost of increasing latency. As future
work we will further explore our proposal with realistic communication traffic
patterns and we will analyze the eventual local congestion that may arise when
many links are in the off state in order to improve network power-performance.
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Abstract. An important question in multi-radio multi-channel and multi-hop 
networks is how to perform efficient network-wide broadcast. Currently almost 
all broadcasting protocols assume a single-radio single-channel network model. 
Simply using them in multi-channel environment without careful enhancement 
will result in unnecessary redundancy. In this paper, we focus on reducing  
the amount of redundant traffic of broadcasting under multi-channel environ-
ment. We propose a general model for broadcasting and reduce the efficient 
broadcast problem into the minimal strong connected dominating set problem 
of the interface-extend graph which extends the original network topology 
across interfaces. Using interface-extend graph, we describe our Multi-Channel 
Self-Pruning broadcast protocol and simulation shows that our protocol can 
significantly reduce the transmission cost. To the best of our knowledge, our 
work is the first self-pruning broadcast scheme in this area. 

1   Introduction 

Multi-hop wireless networks such as mobile ad hoc networks, sensor networks, and 
mesh networks have garnered increasing attention over the last few years. However, a 
fundamental obstacle to building large scale multi-hop networks is the insufficient 
network capacity when route lengths and network density increase due to the limited 
spectrum shared in the neighborhood [1]. Wireless technologies, such as IEEE 
802.11, provide multiple non-overlapping channels and recent advancements in wire-
less technology render the usage of multiple radios affordable. So the use of multiple 
radios which tuned to orthogonal channels becomes very promising because it can 
significantly improve the capacity of the network by employing concurrent transmis-
sions in different channels, and that motivates the development of new protocols de-
signed for multi-channel operation. 

An important question in multi-radio multi-channel multi-hop networks which we 
attempt to address in this paper is how to perform efficient network-wide broadcast in 
such networks. Broadcasting is frequently used in multi-hop networks not only for 
data dissemination, but also for route discovery in reactive unicast routing protocols 
[2]. The presence of several multi-party applications—such as natural disaster warn-
ing, terrorist threat alert, local content distribution and multimedia gaming—also 



Efficient Broadcasting in Multi-radio Multi-channel and Multi-hop Wireless Networks 485 

imposes more capacity requirements to the broadcast protocol. However, naive 
broadcast scheme will generate an excessive amount of redundant traffic and exag-
gerates interference in the shared medium among neighboring nodes, which is called 
the broadcast storm problem [3]. A vast amount of broadcasting protocols such as 
probability-based methods, area-based methods, and neighbor-knowledge-based 
methods [4] have been proposed to mitigate the broadcast storm problem. However, 
all of the above protocols assume a single-radio single-channel (SR-SC) model. 

There exist large amount of research on channel assignment and protocol design 
for MR-MC networks, but the study on broadcasting is very limited. The use of mul-
tiple radios and multiple channels proposes new challenges to broadcast protocol 
design. In SR-SC networks with omni-directional antenna, a transmission by a node 
can be received by all neighboring nodes that lie within its communication range, and 
this is called ‘wireless broadcast advantage’ (WBA). However, when multiple chan-
nels are being used, a packet broadcast on a channel is received only by those nodes 
listening to that channel. Simply using the SR-SC broadcast protocols without careful 
enhancement will result in unnecessary redundancy. For example, in figure 1, node a  
initials a network-wide broadcast process. Under the SR-SC broadcast protocols 
which will only choose node b  as the forward node, totally 4 transmissions are 
needed to cover all nodes. However, if we choose node b (use channel 1) and node f  
(use channel 4) to forward packets, only 3 transmissions are sufficient to complete the 
broadcast. 

 

Fig. 1. A 6-node network with 4 available channels. The number in [] represents the assigned 
channel of the link. 

In this paper, we consider to mitigate the broadcast storm problem in MR-MC net-
works. The objective is to achieve full coverage, and at the same time reduce the 
amount of redundant traffic. We show that the efficient broadcast problem in MR-MC 
environment can be reduced into the minimal strong connected dominating set prob-
lem of the interface-extend graph which extends the original network topology across 
interfaces. Using interface-extend graph, we describe our protocols called Multi-
Channel Self-Pruning (MCSP) broadcast protocols, both in static (virtual backbone) 
and dynamic approach, extending the localized neighbor-knowledge-based broadcast 
protocols called self-pruning [6][7][8] in SR-SC environment. Our simulation results 
show that our MCSP protocol can significantly minimize redundant traffic. To the 



486 L. Li et al. 

best our knowledge, our work is the first neighbor-knowledge-based broadcast 
scheme in MR-MC environment. 

The rest of the paper is organized as follows. Section 2 reviews the existing broad-
cast schemes. Section 3 presents the network model and defines the efficient broad-
casting problem in MR-MC wireless networks. In Section 4, we propose the  
interface-extend graph and describe the MCSP broadcast protocol and its properties. 
Simulation results are presented in Section 5, and Section 6 concludes this paper. 

2   Relate Works 

Williams and Camp [4] divided broadcast techniques into four categories: simple 
flooding, probability-based methods, area-based methods, and neighbor-knowledge-
based methods. Blind flooding may be the simplest form of broadcasting. In blind 
flooding, upon receipt of a new broadcast packet, a node simply sends it to all its 
neighbors. This, however, causes serious network congestion and collision. In prob-
ability-based and area-based methods, each node estimates its potential contribution 
to the overall broadcasting to make a decision whether or not to forward the packet. 
Though smaller forward node sets can be generated, they cannot ensure the full cov-
erage. Neighbor-knowledge-based methods are based on the following idea: select a 
small set of nodes to form a connected dominating set (CDS) as virtual backbone to 
forward packet. A node set is a dominating set if every node in the network is either 
in the set or the neighbor of a node in the set. In [10], it is demonstrated that broadcast 
scheme based on a backbone of size proportional to the minimum connected dominat-
ing set guarantees a throughput within a constant factor of the broadcast capacity.  

Neighbor-knowledge-based algorithms can be divided into neighbor-designating 
methods and self-pruning methods. In neighbor-designating methods [11][12][13], 
each forward node uses a greedy algorithm to selects a few 1-hop neighbors as new 
forward nodes to cover its 2-hop neighbors. The forward node list is piggybacked in 
the broadcast packet and each forward node in turn designates its own forward node 
list. In self-pruning methods, each node determines it own status (forward or non-
forward) according the local topology information and broadcast routing history in-
formation. Wu and Li [7] proposed a marking process and Rule k which can make use 
of local topology and priority among nodes to determine a small CDS. Peng and Lu’s 
SBA [6] uses a random backoff delay to discover more forwarded nodes, and then 
uses a neighbor elimination scheme to determine the forward status for each node. A 
generic self-pruning scheme was proposed by Wu and Dai [8] to unify all the above 
self pruning protocols. In [14][15][16], some schemes are proposed for broadcasting 
using directional antennas. 

All of the aforementioned protocols assume a SR-SC model. Broadcasting in MR-
MC networks is very limited in literature. Kyasanur and Vaidya [5] simply propose to 
transmit a copy of the broadcast packet on every channel or use a separate broadcast 
channel at the expense of a dedicated interface. Qadir and Chou [17] design a set of 
centralized algorithms to achieve minimum broadcasting latency in multi-radio multi-
channel and multi-rate mesh networks. However, the centralized approach results in a 
nontrivial overhead to construct and maintain the broadcast tree. 
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3   Network Model and Problem Formulation 

3.1   Network Model 

We consider a multi-radio multi-channel multi-hop network in which all nodes com-
municate with one another based on the IEEE 802.11 MAC protocol. It’s assumed 
that there are totally C  non-overlapping orthogonal frequency channels in the system 
and each node v  is equipped with ( )I v  omni-directional radio interfaces, ( )I v C≤ . 
The unit disk graph model is used to model the transmission. A channel assignment 
scheme A  assigns each node v , ( )I v  different channels denoted by the set: 

1 ( )( ) { ( ),..., ( ) | , ( ) ; , ( ) ( )}I v i i jA v a v a v i 1 a v C i j a v a v= ∀ ≤ ≤ ∀ ≠ ≠ , where ( )ia v  represents 

the channel assigned to ith  radio interface of node v . Generally speaking, the channel 
assignment scheme can be classified into static, dynamic, and hybrid approach [5]. 
However, in our work, we currently assume that the channel assignment is given 
independently from our broadcasting because the channel assignment strategy is in-
fluenced by many factors, such as the unicast traffic. We further assume the channel 
assignment is static during the process of broadcasting and can keep the networks 
connected. Recognizing that channel assignment in MR-MC networks plays an im-
portant part in the actual performance, we will jointly consider channel assignment 
and broadcasting in our future work. 

Given a channel assignment scheme A , we can use an undirected graph ( , )G V E=  
to model the MR-MC network topology, where V  is the set of vertices and E  is the 
set of edges. A vertex in V corresponds to a wireless node in the network. An edge 

( , , )e u v k= , corresponding to a communication link between nodes u and v under 
channel k , is in the set E if and only if ( ) ( )k A u A v∈ ∩ and ( , )d u v r≤ , where ( , )d u v  
is the Euclidean distance between u  and v , and r  is the communication range of the 
transmission. Note that G  may be a multi-graph, with multiple edges between the 
same pair of nodes, when the node pair shares two or more channels. 

For each node v , ( )kN v  denotes the set of neighbors of  v  that are using channel k , 

and 1( ) ( ) ... ( )cN v N v N v= ∪ ∪  is v ’s neighbor set. Note that a neighbor may appear in 

several ( )iN v . 

3.2   Problem Formulation 

In SR-SC networks, some nodes (called forward nodes) are selected to form con-
nected dominating set (CDS) to relay the packet. There’re two approaches that can be 
adopted: one is the static approach, i.e. the virtual backbone method, where the CDS 
is constructed based on the network topology, but irrelative to any broadcasting; an-
other is the dynamic approach, where the CDS is constructed for a particular broad-
cast request, and dependent on the progress of the broadcast process. In MR-MC 
environment, we will consider both approaches. 

First, we define the forward scheme, F , as a function on V , where ( )F v is the set 
of node 'v s forward channels, i.e. the channels that node v uses to relay broadcast 
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packets, ( ) ( )F v A v⊆ . We use { | , ( ) }B v v V F v= ∈ ≠ ∅ to denote the forward node set. 
For two nodes u V∈ and v B∈ , we say u is reachable from v under forward 

scheme F , if u v= or there exists a path 
1

:  ( , ..., )
l

P v v v u= = , satisfying 
i

v B∈  and 

1
( ) ( )

i i
F v A v + ≠ ∅∩ ,  i 1,...,l - 1= . For example, in figure 2, under forward scheme 

{ [ ], , [ ], [ ], , }F a 3 b c 2,3 d 1 e f=  (which means node a uses channel 3, node c  use chan-
nel 2 and 3, node d  uses channel 1 as forward channels, and other nodes don’t for-
ward packets), node d can reach node f and b . 

 

Fig. 2. An example for illustration the problem formulation 

In the static approach, we say a forward scheme F can form a virtual backbone 
if ,u V v B∀ ∈ ∀ ∈ , u is reachable from v under F . Obviously, for any broadcast proc-
ess with source node s B∈ , every other node can receive 's packets. For broadcast 
process with source node s V B∈ − , there must exist a node u B∈  and 

( ) ( )F u A s ≠ ∅∩ , so s can send data to node u , then to other nodes. Compared with 
the broadcasting with source node in B , only one more transmission is needed. For 
example, in figure 2, both forward schemes 

1
{ [1], [2], [3], , , }F a b c d e f= and 

2
{ [1, 3], [1, 2], [2, 3], , , }F a b c d e f=  can form virtual backbone.  

In the dynamic approach for a particular broadcast with node s  as source node,  
we say a forward scheme F  achieves full delivery if u V∀ ∈ , u is reachable from 
node s . For example, in figure 2, forward scheme 

1
{ [1], [2], [2, 3], , , }F a b c d e f= can 

achieve full delivery for the broadcast process with source node f . 
Our aim is to ensure cover every node, and at the same time reduce the amount of 

redundant traffic. Next we define the transmission cost of a forward scheme F  as 
| | | ( )|v BF F v∈∑= , where | ( )|F v  is the number of forward channels of node v . So our 
efficient broadcasting problem in MR-MC networks can be defined as follows: given 
networks G under channel assignment scheme A , find the forward scheme F with 
minimum transmission cost | |F that can form a virtual backbone in the static ap-
proach or achieve full delivery in the dynamic approach. Obviously, forward scheme 

{ [1], [2], [3], , , }F a b c d e f= can form a virtual backbone with minimum transmission 
cost in figure 2. 

Efficient broadcasting in SR-SC networks is a special case of the above problem 
with 1C = . It is equal to find the minimal connected dominating set (MCDS) which is 
proved to be NP-complete [18]. So we can get the following theorem. 
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Theorem 1. Given a multi-radio multi-channel network G  under channel assignment 
scheme A , it’s NP-hard to find an efficient broadcasting scheme for the networks. 

4   Proposed Scheme 

We first review the self-pruning protocol [8] under omni-directional SR-SC model as 
a trivial example solution to the above problem. In [8], each node computes the cov-
erage of its neighborhood. A neighbor node v is covered from the view of node u if 

( ),w N u w v∀ ∈ ≠ , there exists a replace path that connects w  and v  via several in-
termediate nodes (if any) with higher priority values than the priority value of u . If 
all neighbor nodes are covered from the view of v , v has a non-forward node status, 
otherwise, it will forward the packet. 

We use figure 2 to illustrate the problem of broadcasting under MR-MC model us-
ing the above scheme. From the view of node a , all its neighbors are not covered, 
and it will select channel 1 and 3 as forward channels to cover all neighbors. So sim-
ply using the scheme of [8] will result in the forward scheme 

{ [1, 3], [1, 2], [2, 3], , , }F a b c d e f= . Though forming a virtual backbone, apparently F  
is not the most efficient scheme.  

In SR-SC networks with omni-directional antennas, a transmission by a node can 
be received by all neighboring nodes within its communication range. The ‘wireless 
broadcast advantage’ (WBA) makes broadcasting in SR-SC wireless networks fun-
damentally different from broadcasting in wired networks where the cost to reach two 
neighbors is generally the sum of the costs to reach them individually. This arise the 
shift in paradigm from the ‘link-centric’ nature of wired networks to the ‘node cen-
tric’ nature of wireless communications. However, when multiple radios and multiple 
channels are used, a packet broadcast on a channel is received only by those nodes 
listening to that channel. Motivated by the above example, we argue that we should 
shift the paradigm from the ‘node centric’ to ‘channel/interface centric’ in MR-MC 
environment. In this section, we will reduce the efficient broadcast problem in MR-
MC environment into the minimal strong connected dominating set problem of the  
interface-extend graph which extends the original network topology across interfaces. 
Then we propose our Multi-Channel Self-Pruning (MCSP) broadcast protocol, both in 
static and dynamic approach and describe its property. 

4.1   Extended Graph G  Across Interface 

In this subsection, we extend the original graph G  into interface-extend graph 'G . 
The basic idea here is to treat every interface of every node in MR-MC networks as a 
vertex of a directed graph. Using interface-extend graph, we will show the efficient 
broadcast problem in MR-MC environment can be reduced into the minimal strong 
connected dominating set problem of 'G . 

Definition 1. Interface-Extend Graph  
For an undirected connected graph ( , )G V E= , we construct a directed graph 

' ( ', ')G V E= , where ' { | , ,..., ( )}
i

V v v V i 1 I v= ∈ =  is the set of vertices and 
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' { , | &   & ( , , ( )) }i j iE v u v u i j or v u v u a v E= < > = ≠ ≠ ∈ is the set of directed edges. 

We call 'G  the interface-extend graph of G . 
 
Figure 3 shows the interface-extend graph of figure 2. As we can see, the original 
multi-edge graph is changed into a directed simple graph. 

 

Fig. 3. Interface-extend graph of figure 2 

Definition 2. Strong connected dominating set  
In a strong connected directed graph ' ( ', ')G V E= , a set ' 'S V⊆ is a strong connected 
dominating set of 'G  if every vertex in ' 'V S−  is dominated by at least one vertex in 

'S  (i.e. ' ' 'v V S∀ ∈ − , ' 'u S∃ ∈  satisfying ', ' 'u v E< >∈ ) and the deduced graph 
'[ ']G S  is strong connected (i.e. ' ', ' 'u S v S∀ ∈ ∀ ∈ , there exists a directed path in 
'[ ']G S  from 'u to 'v ). For example, in figure 3, vertex

1
a , 

2
b and 

2
c form a strong 

connected dominating set.  

Next, we use the following theorem to reduce the broadcast problem in MR-MC net-
works G  into the minimal strong connected dominating set problem. 

Theorem 2. To find the virtual backbone with minimum transmission cost for a MR-
MC network G  is equivalent to find the minimal strong connected dominating set of 
the interface-extend graph 'G . 

Proof. Let * { |         }F F forward scheme F that can form a virtual backbone in G= , 
*D = { |         '}D D is a strong connected dominating set of G , and * ':  2Vg F → , 
( )g F  

,
{ ' | , ( ) ( )}

i m m
v i B a i F i= ∈ ∈ . From definition 2, we can prove *( )g F D∈  and 

| | | ( ) |F g F= . 
For *D D∀ ∈ , we can construct a forward scheme F , 

,
( ) { | ' } 

i i m
F v m v D= ∈ , 

i
v V∀ ∈ . It’s easy to verify that F  forms a virtual backbone of G  and 
( ) , | | | |g F D F D= = .  

We can also prove
1 2 1 2
, , , 

1 2
F F F F g(F ) g(F )∀ ≠ ≠ . So g is a bijective mapping 

from *F  to *D  and | | | ( ) |F g F= . And the virtual backbone with minimum transmis-

sion cost in MR-MC networks G  can be reduced into the minimal strong connected 
dominating set problem in directed graph 'G .                                                              □ 
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4.2   Multi-channel Self-pruning (MCSP) Broadcast Protocol 

Theorem 2 implies that we can get the best forward scheme through seeking for the 
minimal strong connected dominating set of correspond interface-extend graph. The 
localized approximation algorithms for minimal strong connected dominating set have 
been studied in [9]. In this subsection, using the localized interface-extend graph, we 
propose our MCSP broadcast protocol, extending the self-pruning protocol in [8][9]. 
We redefine new priority among all interfaces using a combination of node ID and the 

interface/channel properties (such as channel degree | ( ) |
k

N v  , interface ID and so on). 

For other self-pruning protocols, they also can be adapted with some modification.  
In MCSP, neighborhood information can be collected via exchanging “Hello” mes-

sages among neighbors. Periodically, each node broadcasts "Hello" packets on each 
channel. In the kth  round of information exchange, the hello packet contains (k 1)− -
hop neighbor’s channel assignment and priority information. After m  round of in-
formation exchange, where generally 3m ≤ , each node can build its local (m 1)− -hop 
interface-extend graph. 

Figure 4 shows the MCSP algorithm for virtual backbone construction in the static 
approach.  

 

Fig. 4. MCSP algorithm in virtual backbone approach 

Similar to the coverage condition of [8], we say an interface 'w  is covered from 
the view of 'u  if 'w is an out-neighbor of  'u , and for any 'u ’s in-neighbor 'v , there 
exist a replace path that connects from 'v  to 'w  via several intermediate nodes (if 
any) with higher priority values than that of 'u . Note that here 'u , 'v  and 'w  are all 
interfaces of the interface-extend graph. 

Every interface can make decision independently. However, interfaces on the same 
node can interact with each other without extra communication cost. So in the above 
algorithm, every interface first calculates its own uncovered neighbors, then we com-
bine them and use greedy algorithms to reselect forward channels in order to save 
extra transmission. In the example of figure 2, if we use channel degree ( )

k
N v  as 

interface’s priority, MCSP will mark the interface
1

a , 
2

b and 
2

c to forward, which 
form a minimal strong connected dominating set of figure 3.  

We also present the MCSP algorithm in the dynamic approach in Figure 5. 

Algorithms MCSP (the static virtual backbone approach) 
For each node v  

1. Calculate the uncovered interface set Uncovered_Seti, for every interface 
i

v , i=1,...,I(v)  

in the interface-extend graph 'G  

2. Uncovered_Set = 
1 ( )i I v≤ ≤
∑ Uncovered_Seti 

3. Calculate the uncovered node set from Uncovered_Set 
4. If  Uncovered_Set =∅ , node v  has a non-forward status, otherwise use greedy algorithm 

to compute the forward channels ( )F v  that cover all the uncovered neighbors. 
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In the dynamic approach, every node can use broadcast routing history to further 
eliminate the uncovered neighbors. Broadcast routing history can be piggyback in the 
packet. In the example of figure 1, when node a initials a broadcast process, it will 
use channel 3 to cover all its neighbors, and then node b will use channel 1, node f  
will use channel 4 to forward packets. Please note that the broadcast scheme of the 
dynamic approach sometimes can’t form a virtual backbone. In figure 1, when node 
c initials a broadcast, the above forward scheme can’t achieve full delivery. 

 

Fig. 5. MCSP algorithm in the dynamic approach 

Following theorem guarantees that the MCSP protocol in the dynamic approach 
can assure every node eventually receives the broadcast packet of the source node s . 

Theorem 3. The forward scheme determined by MCSP in the dynamic approach 
achieves full delivery. 

Proof. We use contradiction to conclude the theorem. Suppose there exists a non-
empty node set M V⊆ that every node in M  is not reachable from the source 
node s . Let ' { | , ,..., ( )}

i
M v v M i 1 I v= ∈ = . So there must exist a non-empty interface 

set ' ( ') '
in

U N M M⊆ −  in which every interface in 'U  is reachable from one inter-
face of the source node s . Let 

'
{ ( )}

k iv Ui
u max priority v

∈
= . Let ' ( ) '

out k
v N u M∈ ∩ . 

k
u  

doesn’t forward packet, so 'v  is covered from local view of 
k

u . However, according 
to 2.1.1-2.1.3, 'v  cannot be covered, because: 

1. If 'v  is a known forwarded interface (2.1.1) or 'v  is a neighbor of a known 
forwarded interface (2.1.2), 'v  is reachable from one interface of the source 
node s , which contradicts the assumption that ' 'v M∈ . 

Algorithms MCSP (the dynamic approach) 

1. For source node s , use greedy algorithm to compute the forward channels ( )F s that cover 

all neighbors 

2. For other node v , when v  fist receives a new packet  

2.1. For each interface 
i

v of node v , compute the uncovered interface set 

2.1.1. Forward_Seti = all known forwarded interface 

2.1.2. Covered_Seti = Forward_Seti + { ( ')
out

N v  | 'v ∈ Forward_Set } 

2.1.3. While there exists an interface 'w ( ')
out

N u∈ , 'u  ∈  Covered_Set and Pri-

ority ( 'u ) > Priority (
i

v ) 

                              Covered_Seti = Coverws_Set +{ 'w }, 

2.1.4. Uncovered_Seti= ( )
out i

vN - Cover_Seti 

2.2. Compute the forward channels 

2.2.1. Uncovered_Set = 
1 ( )i I v≤ ≤
∑ Uncovered_Seti 

2.2.2. If Uncovered_Set =∅ , node v has a non-forward status, otherwise use greedy 

algorithm to compute the forward channels ( )F v  that can cover all the un-

covered neighbors. 
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2. If 'v  is an out-neighbor of a covered interface 'w  and Priority ( 'w ) > Priority 
(

k
u ) (2.1.3), according to the loop of 2.1.3, there exists a path P: 

1 2
( ', ', ', ..., ', ')

l
x y y y v  from a known forwarded interface 'x  to interface 'v , 

where Priority ( '
i

y ) > Priority (
k

u ), 1,2,...,i l= . Because ' 'v M∈ , there is at 
least one interface '

j
y  in P that is reachable from one interface of s  but 

1
' '

j
y M+ ∈ , 1 j l≤ ≤ , so, ' '

j
y U∈ , but Priority ( '

j
y ) > Priority(

k
u ), which 

contradicts the assumption that 
k

u  is the interface in 'U  that has the highest 
priority.                                                                                                              □ 

5   Simulation 

The proposed MCSP protocols have been implemented in ns-2. For comparison pur-
pose, we implement a centralized broadcast algorithm (CBA) which is similar to what 
Das et al. [19] proposed. The centralized broadcast algorithm finds the forward 
scheme by growing a directed tree T  in the interface-extend graph starting from an 
interface with the maximum channel degree, and adding new interface to T  accord-
ing to its effective channel degree (number of neighbors that are not covered). Then 
we can translate T  to the resulting forward scheme. The centralized style makes the 
algorithm unpractical since it requires global information to compute the forward 
scheme. However, it can produce a near-optimal result. Here we use it as a substitu-
tion of the “perfect” algorithm that produces the optimal forward scheme. The  
original self-pruning protocols (OSP) [8] are also implemented for comparison. We 
evaluate the above 3 algorithms both in static and dynamic approach in terms of effi-
ciency and reliability. 

The simulated MR-MC network is deployed in a 1000m×1000m area with 20-110 
nodes. Each node is equipped with four radios and twelve 2Mb/s channels are avail-
able in the system. The communication range for all nodes is 250m and the interfer-
ence range is 500m. All nodes are randomly deployed and interfaces are randomly 
assigned with a constraint of full network connectivity. The “Hello” message interval 
is 1s and every node gathers 2-hop local topology and channel assignment informa-
tion. 1-hop broadcasting routing history information is piggybacked in the broadcast 
packet. We use channel degree | ( ) |

k
N v  followed by interface ID and node ID to 

break tie as interface’s priority value.  
Figure 6 and 7 present the comparison of CBA, OSP and MCSP in generated num-

ber of forward nodes and forward channels. Generally speaking, the static approach 
has a larger set of forward nodes and forward channels than dynamic approach. The 
centralized broadcast algorithm (CBA) has the smallest set of forward node set and 
forward channels. The OSP protocol have a little smaller forward nodes set than 
MCSP protocol, but has much more forward channels thus more transmission cost 
than MCSP protocol, especially when node number is large. When node number is 
larger than 60, MCSP can save 25-30% of OSP’s transmission cost. 

MCSP and other neighbor-knowledge-based broadcast protocol can cover all 
nodes. But because of the deficiency of the contention-based 802.11 MAC mecha-
nism, collisions are likely to occur and cause some damage. Fig. 8 compares reliabil-
ity in terms of delivery ratio. Flooding achieves almost 100 percent delivery in  
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Fig. 6. Forward node number. (a) in static approach (b) in dynamic approach. 

 

Fig. 7. Transmission cost. (a) in dynamic approach, (b) in static approach. 

 

Fig. 8. Delivery ratio versus network size 

networks with more than 60 nodes. The delivery ratios of MCSP and OSP are less 
than that of flooding, but when the node number is larger than 100, they achieve al-
most the same level. 

6   Conclusion 

This paper aims to provide a general model for broadcasting in multi-radio multi-
channel multi-hop networks that uses self-pruning techniques to reduce the transmis-
sion cost. We reduce the efficient broadcast problem into the minimal strong  
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connected dominating set of the interface-extend graph. We propose our MCSP pro-
tocol, both in virtual backbone approach and dynamic approach. The simulation result 
shows that our protocol can significantly reduce the transmission cost. In our future 
work, we will jointly consider the channel assignment and broadcasting problem that 
will take into account the impact of interference.  
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Abstract. In this paper we propose a new explicit congestion control approach, 
Open Box Protocol (OBP). The OBP gives sources the capacity to look inside 
the network and to make their congestion control decisions, based, not only on 
packets loss or packets delay, but also based on another kind of information. 
For example, the most restricted interface capacity, the available bandwidth, the 
RTT variations or the presence of heterogeneous transmission means. In the 
paper we describe the OBP and discuss its evaluation results based on ns-2 
simulations. The results show the OBP´s capacity to provide traffic sources 
with the required information, in static or dynamic network scenarios, and to 
make correct and quick congestion control decisions. Also, it is visible that the 
OBP avoids the full queue problem and tries to keep the queues near zero 
occupation. 

1   Introduction 

Congestion control algorithms have many objectives to address. They must maintain 
the performance independently of the flows size distribution; they must guarantee 
short flow completion times in presence of a mix of flows; they have to ensure all 
flows with a fair share of available bandwidth; they have to make an efficient use of 
high bandwidth-delay links; they must have the capacity to react to sudden changes in 
network paths (wireless links); algorithms must be stable, robust [1], [2] and 
deployable in the Internet. On the other hand, implicit congestion control algorithms 
[3], [4], [5], [6], the most used in the Internet [7], give traffic sources poor 
information about network state, typically information about packets loss [3] and / or 
round trip time (RTT) variations [5], [6], [8]. With these two pieces of information, 
congestion control algorithms have to control the congestion inside the network. The 
great number of proposals about congestion control algorithms shows that any 
algorithm that only uses these two pieces of information will have limitations in 
making a better use of network capacity. 

Internet traffic is of dynamic nature and the characteristics of this traffic are 
changing. Beyond the traditional applications, Internet is used by a set of new 
applications, for example the multimedia applications VoIP and IPTV. This kind of 
applications has changed the characteristics of the internet traffic and therefore the 
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congestion control actions must be adjusted. Besides that, the wireless networks are in 
expansion. In this case the congestion control decisions may not be the best when 
using the detection of packets loss as the only criterion to identify the congestion 
situations. In wireless networks the corruption in packets is more frequent than in 
wire networks. Moreover, the current network capacity is larger than in the past. This 
new Internet has new congestion control challenges and the transport protocols have 
to control the congestion situations and efficiently use the network resources. It is 
important to bear in mind that short capacity networks still exist and need to coexist 
with high capacity networks. 

Congestion control solutions based on router collaboration have good potential 
because routers are the place where the congestion normally occurs. Therefore, they 
can quickly detect the congestion situations. Using routers, the congestion symptoms 
are identified in a direct way because routers detect that the amount of packets that 
arrives at interfaces is bigger than the capacity of the interface to process all the 
packets. Router based congestion control mechanisms allow quick congestion 
detection and the actions taken to control the congestion can be more effective. The 
actions to control the congestion are taken with delay in reference to the instant when 
the congestion began. This factor is important because the congestion duration can be 
shortened, the packet loss reduced and the network resources better used. 

Traditional TCP's congestion control and avoidance algorithms [14] are powerful 
but not enough to provide good service in a lot of network conditions since they 
handle the network as if it were a black box [9]. The goal of our work is to create a 
new congestion control model, which we call Open Box Protocol (OBP), using router 
collaboration to identify the network resources along the path and to provide this 
information to end systems. Additionally, the congestion control decisions are made 
by the end systems by using the information received from routers. Moreover, the 
model must have the capacity to efficiently use the network resources, avoid 
congestion, reacting well to sudden changes in network paths, being easily deployed 
in the Internet and coexisting with other congestion control protocols.  

2   Background and Related Work 

Over the past few years, several solutions have been proposed to give TCP better and 
more network feedback, beyond packets loss information and RTT variations. In 
addition, the research community has been specifying alternative solutions to the TCP 
architecture. As the OBP, some of these models are classified in category of 
“modification of the network infrastructure”. They are briefly explained as follows. 

The ECN [9], [10] and the Quick-Start [11] are two solutions that use the router 
collaboration to address the congestion control problem. With the ECN, the router 
collaboration is done by detecting congestion situations and by informing the end 
systems about this situation. 

With the Quick-Start, the collaboration of routers is used to decide the value of the 
initial congestion window. The algorithms slow start, congestion avoidance, fast 
retransmission and fast recovery [14] are still used and therefore the problems 
associated to theses mechanisms remain.  
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Explicit Control Protocol (XCP) [12], [13] is designed to work well in networks 
with large bandwidth-delay products. The XCP generalizes the Explicit Congestion 
Notification proposal (ECN). Routers provide feedback, in terms of incremental 
window changes, to the sources in multiple round-trip times, which works well when 
all flows are long-lived. 

Rate Control Protocol (RCP) [1] is designed to efficiently use high bandwidth-
delay product networks, such as the long optical links; to be stable independently of 
link-capacity, round-trip times and number of active flows and to try to emulate 
processor sharing. Each router maintains a single fair-share rate per link. Each packet 
carries the rate of the bottleneck link. The RCP gives the same transmission rate to all 
flows. Another relevant point, at routers, the RCP uses information presents in 
packets, and received from end systems, to decide the fair-share rate. This means that 
routers cannot simultaneously receive RCP packets and packets from other transport 
protocols. The implementation of this model in Internet is conditioned by this factor. 

The differences between the XCP, the RCP and the OBP are the kind of feedback 
that end systems receive and the entities that have to make decisions about congestion 
control. Opposite to the ECN and the Quick-Star, the OBP makes all congestion 
control decisions based on information received by routers. The OBP is 
computationally simpler than the XCP and the RCP, since routers do not have to 
make decisions about congestion control and only need to provide feedback 
information about the network state. 

3   Open Box Protocol (OBP) 

We will answer the following question: Is it possible for end systems to constantly see 
the network state between the source and the receiver? The answer is yes if we can 
represent the network path through a small set of variables and if we can continually 
put this information at sources. With this information, the sources can quickly make 
decisions about the efficient use of network capacity and quickly adapt to sudden 
network changes.  

Any flow begins with an SYN packet that will be acked to give the initial values of 
the OBP protocol parameters. When this packet arrives at first router, the variables 
that represent the network state are updated. At second router the packet is evaluated 
and if any variable needs to be updated the router performs this exchange. 
Information about the network state will arrive at the end system inside the ACK 
packets. The end system, with this information, can make congestion control 
decisions for efficiently use the network resources and avoid the congestion. 

3.1   State of Network Path 

To represent the network path we only need the information that is used or important 
to make decisions about congestion control. It is not relevant to represent the network 
path at other levels. Fig.1 shows a network path with four routers. Each box 
represents the router output interface and has two kinds of information: the output 
interface capacity and the available bandwidth. In this example the narrow link is 45 
Mbps (the most restricted interface capacity) and the available bandwidth is obtained 
in tight link (the most restricted available bandwidth). 
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Fig. 1. Network state 

To represent the network path from one end system to another one needs the 
following variables: narrow link (NL) - along the path, this is the link with the most 
limited capacity (Mbps); tight link (TL) - along the path, this is the link with the least 
available bandwidth (Mbps); round trip time (RTT) - time needed to send a data 
packet and to receive the associated ACK packet (seconds); heterogeneous path (HP) 
- having or not heterogeneous means along path (boolean), for example wireless links. 
With the exception of RTT, which is obtained by using information from TCP header, 
all the other variables are carried inside data packets in IP header. 

3.2   Router Processing 

The OBP considers that, when a new packet is inside the first router of the network 
path, and before the packet leaves, the router updates three variables: NL, TL and HP. 
When this packet is at the second router these variables are changed or not. The value 
of the NL is changed if the output interface capacity is less than the previous one. The 
value of the TL is changed if the available bandwidth is less than the previous one. 
The value of the HP is changed if this router has a wireless link. The available 
bandwidth at the TL is obtained through the following steps: at the output interface, 
and for short periods of time, all packets that get in are counted. Then, all of the 
packets that got in are divided by the period of time. This procedure gives us the used 
bandwidth.  

3.3   Source and Destination Processing 

Unlike other explicit congestion control protocols, the OBP congestion control 
decisions are made in sources. However, the OBP makes decisions using explicit 
information received from the network.  

New flows begin with a high transmission rate allowed by the network. The initial 
transmission rate depends on the available bandwidth at TL and the interface capacity 
at NL, and is calculated after the sources have received the SYN-ACK packet. This 
method assures short completion times for short flows. Every time the sources receive 
an ACK packet the transmission rate is tuned. This is done using the feedback 
information received from the network. These transmission rate adjustments are done 
to come near to zero the available bandwidth and the RTTs near the minimum. The 
RTT near minimum means that the queue occupation is near zero. The OBP model 
tries to efficiently use the network path capacity and tries avoiding congestion. This 
means that the available bandwidth must always be near zero; 
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The following equations show how the transmission rate is adjusted. The initial 
transmission rate W(t0) depends on the available bandwidth AB(t0), the capacity 
CN(t0) at NL and the constants α and β. 

W(t0) = α*AB(t0)+ β*CN(t0) 

Every time a new ACK packet is received, the feedback information inside the 
packet is used to make adjustments in transmission rate. These adjustments are done 
based on feedback information and based on an equilibrium point. The equilibrium 
point is updated in multiples of RTT and is calculated based on the mean of the 
transmission rate during the previous period (this period is equal to an RTT average). 
The transmission rate is updated whenever an ACK packet is received and is always 
around the equilibrium point. Fig. 2 shows, for a flow, an example of the behavior of 
these two variables: the transmission rate and the equilibrium point. In this example, 
at the beginning, we can see that the transmission rate is always higher than the 
equilibrium point. This means that there is available bandwidth to be used. After the 
first RTTs the source finds the equilibrium point that enables filling the entire 
network path between the source and the destination. 

The network warnings can include negative available bandwidth - this case 
corresponds to a transmission rate below the equilibrium point; or positive available 
bandwidth – in this case corresponds to a transmission rate above the equilibrium 
point. Although this image is obtained from a test with 100 flows, it is visible, for this 
flow, that the OBP quickly finds the maximum equilibrium point and stabilizes in this 
value. This situation corresponds to the efficient use of network resources. 

 

Fig. 2. Transmission rate vs Equilibrium point of a flow. This test had 100 flows, a bottleneck 
link equal to 1 Gbps and the RTT equal to 0.1 ms. 

The transmission rate is updated every time an ACK packet is received. The 
transmission rate W(t) depends on the current equilibrium point EP(k), the available 
bandwidth AB(t), the capacity CN(t) at NL and a constant δ. Also, it is affected by the 
RTT if this value is different from the minimum RTT, affected by a constant µ.  

W(t) =  EP(k) + EP(k)*[(δ*AB(t))/( AB(t)+CN(t) )] + EP(k)*µ*[RTTmin - RTT] 
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This formula allows obtaining transmission rates around the equilibrium point. If 
the AB(t) is near zero the W(t) obtained is the EP(k). However, if the AB(t) received 
is negative or if the RTT is large, the value obtained of W(t) is less than the EP(k). In 
an extreme case, the W(t) obtained may be near zero, for example if the AB(t) has a 
high negative value or if the RTT is very high. This solution protects the network 
against congestion collapse, because it can instantly reduce the transmission rate to 
few packets [2]. This formula also enables a quick adaptation to sudden or transient 
events [2] as it admits changes in the transmission rate whenever ACK packet is 
received. 

The equilibrium point is updated one time per RTT. When this occurs, the 
equilibrium point is updated with the mean of all transmission rates calculated 
whenever an ACK packet is received during the previous period. 

EP(k) = mean(∑W(t)); during last RTT 

The formulas used by OBP assure that the increase in transmission rate is always 
decided by the feedback received from the routers. Also, the transmission rate can be 
updated every time an ACK packet is received. Opposite to this behavior the 
traditional congestion control algorithms allow the sources to increase the 
transmission rate without knowing if the network is near congestion. 

At destination end systems, and at transport level, the ACK has three new 
variables, NL, TL and HP. These variables are filled with information received from 
data packet. Information present in ACK packet arrives at the source. 

3.4   Deployable in Internet 

To be deployable in internet any new congestion control approach should consider the 
overhead in terms of packet header size, the added complexity at end systems or 
routers and the interaction with other transport protocols [16]. In terms of packet size 
overhead this model has three new variables: NL, TL and HP. The NL and the TL are 
represented in units of KBps and use 3 bytes each. The HP is a boolean (1 bit). 

In terms of complexity, the OBP implementation puts the load processing in the 
sources side. Moreover, we can have the network being used by flows that are 
controlled by different congestion control algorithms, among which the OBP. 

4   Evaluation 

To evaluate the OBP model, we have created simulations on the ns-2 simulator [15] 
(version 2.30) with the OBP implementation. Fig. 3 shows the network topology used 
in the simulations. 

To evaluate the performance of OBP we did tests with long flows. We also did 
with flows created by Poison distribution and the flows size was defined by Pareto 
distribution. We equally tested the OBP and compared it with the TCP Reno, the 
XCP, the RCP and the TCP Reno with Quick-Star. 
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Fig. 3. Network topology 

4.1   Behavior with Long Flows 

In these two tests we generated 100 flows at instant 0 seconds. The bottleneck link 
was equal to 1 Gbps or 2.4 Gbps. The RTT was 100 ms, and the size was 1000 bytes 
per packet. The transmission rate used the following configurations: α = 0.0, β = 
0.002, µ = 1.0, δ = 1.0. The objective of these tests was to verify if the available 
bandwidth, at bottleneck link, was near zero; which meant that sources generated 
enough traffic to fill the path, and if the RTT had no oscillations, which meant that the 
routers’ queues were near zero occupation.  

Convergence and stability. We can see in Fig. 4 that, in few RTTs, the sources 
generated traffic to fill the path and the feedback received about the available 
bandwidth was near zero. The available bandwidth can be less than zero. This means 
that, at those instants the amount of traffic generated is greater than the capacity of 
output interface. In this case, packets were momentarily stored in the routers’ queues. 

 

Fig. 4. Available bandwidth sent to sources by the bottleneck router, with the bottleneck 
interface equal to 1 Gbps and 2.4 Gbps 

The state of routers’ queues. The OBP also uses the time that a packet spends inside 
the routers’ queues to make congestion control decisions. This situation allows 
maintaining the queues’ occupation near zero, or with tendency to near zero. Fig. 5 
shows that the RTT is always near 0.1 ms. By these results we can conclude that the 
OBP has capacity to generate traffic that tends to use the path capacity, without filling 
the routers’ queues. 
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Fig. 5. Packets’ RTT received at sources. The bottleneck link is 1 Gbps and 2.4 Gbps. 

4.2   OBP Behavior with Variation of Traffic Characteristics  

In this section our goal is to find out the OBP performance in presence of traffic with 
dynamic characteristics. The simulations used the Pareto distribution to define the 
flows’ size, with the mean of 125 packets (bottleneck link 1 Gbps) and 300 packets 
(bottleneck link 2.4 Gbps), and the shape was 1.8. The arrival of flows was defined by 
the Poisson distribution with the lambda equal to 950 packets. The duration of the 
tests was 20 seconds and the packets had 1000 bytes. 

The results of these tests are analyzed through the available, the average completion 
time per flow and the RTT. The average completion time represents the difference 
between two instants, SYN packet departure and arrival of the last data packet. 

Convergence and stability. Fig. 6 shows the available bandwidth. Although these 
tests generated 950 new flows per second and the flows’ size varied between 56 and 
16340 packets (1 Gbps) or between 134 and 39216 packets (2.4 Gbps), the results 
show the capacity of OBP model to manage the transmission rate and to fill the 
network path without congesting the bottleneck link. The Poisson distribution is used 
to define the instant of flows creation, so there are some variations in the available 
bandwidth along the time. The stability of the OBP is equally confirmed through 
these results and the available bandwidth tends to zero. 

 

Fig. 6. Available bandwidth. The bottleneck is 1 Gbps and 2.4 Gbps. 
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The state of routers’ queues. The RTT calculated at the sources is always near the 
minimum RTT. The OBP tries to use the available bandwidth, without filling the 
routers’ queues. This is visible in Fig. 7, which shows the RTT that includes the 
propagation delay (0.1 ms) and the extra time spent inside routers’ queues. This extra 
time is near zero. 

 

Fig. 7. Packets’ RTT. The bottleneck link is 1 Gbps and 2.4 Gbps. 

Average completion time. The average completion time is a good metric for elastic 
flows and for short flows because it gives the necessary time to transfer all data of the 
flow. Fig. 8 shows that there are not great variations in completion time of flows with 
identical size. The exceptions are related to the instants of flows’ creation and, also, to 
the network load at those instants. The behavior of the OBP is good with the 
bottleneck link of 1 Gbps likewise 2.4 Gbps. These results are again analyzed in the 
next section where they will be compared with the results of other transport protocols.  

 

Fig. 8. Average completion time per flow size. The bottleneck link is 1 Gbps and 2.4 Gbps. 

4.3   Comparative Results Among the OBP, the TCP Reno, the TCP Reno with 
Quick-Start, the XCP and the RCP 

In this section our goal is to compare the OBP performance with other transport 
protocols. In these tests we compare the OBP with the TCP Reno, the XCP, the RCP 
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and the TCP Reno with Quick-Start with the request rate equal to 100 KBps. These 
tests were done using the Pareto distribution to define the flows’ size, with mean of 
1250 packets and shape 1.8. The bottleneck link was 1 Gbps and the queue’ size was 
2000 packets. The arrival of flows was by Poisson distribution with lambda 95. The 
duration of tests was 20 seconds and packets had 1000 bytes. The results of these tests 
are analyzed through the average completion time per flow, the average throughput 
and the RTT of each packet. 

Completion time and Throughput. From Fig. 9 and Fig. 10, the average completion 
time for the OBP is more stable than for the TCP Reno, the TCP Reno with Quick-
Start and the XCP. This is visible by the smallest variations between flows with near 
sizes. The longer flows are also concluded more quickly by the OBP than by the TCP 
Reno, the TCP Reno with Quick-Start and the XCP. 

 

Fig. 9. Average completion time per flow 

 

Fig. 10. Packets’ RTT 

The results of the RCP have to be analyzed together with the packets’ RTT results. 
The RCP is very aggressive and defines high transmission rates. This is visible in Fig. 
10 where the packets’ RTT is always higher than the propagation delay value. The 
consequence of this aggressiveness is the packets loss, showed by Fig. 11, where the 
RCP’ throughput is less than the OBP or the XCP. 
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Fig. 11. Average throughput reached in 20 second 

5   Conclusions and Future Work 

In this paper we present Open Box Protocol (OBP). This solution enables the efficient 
use of the network capacity because the sources make congestion control decisions 
based on information about the network state. The OBP gives sources capacities to 
look inside the network and to make their congestion control decisions, based on the 
most restricted interface capacity, the available bandwidth, the RTT variations and the 
heterogeneous transmission means. 

We have shown through analysis and experimental evaluation that the OBP has 
capacity to put information about the network state in the sources. Also, it is visible 
that the OBP can efficiently use the network bandwidth, keeping the routers’ queues 
near zero occupation. We have equally shown that OBP can have better performance 
than others congestion control solutions. Moreover, the OBP implementation puts the 
load processing on the sources side, in opposition to other congestion control 
approaches, which make congestion control decisions for all flows by the same 
routers, as the case of the XCP and the RCP. The OBP can be used in networks where 
there are flows that use other congestion control protocols, because the OBP only 
needs to receive from routers congestion control information. 

As part of our future work, we plan to test the OBP in wireless networks as in 
networks shared by flows that use different congestion control approaches. 
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Abstract. The highly dynamic character of a mobile ad-hoc network
(MANET) poses significant challenges on network communications and
resource management. Previous work on routing in MANETs has re-
sulted in numerous routing protocols that aim at satisfying constraints
such as minimum hop/distance or low energy. Existing routing proto-
cols often fail to discover stable routes between source and sink when
route availability is transient, e.g., due to mobile devices switching their
network cards into low-power sleep modes whenever no communication
is taking place. In this paper, we introduce a stability aware dynamic
source routing protocol (SA-DSR) that is capable of predicting the sta-
bility (i.e., expiration time) of multiple routes. SA-DSR then selects the
route that minimizes hop count while staying available for the expected
duration of packet transmission. Comparisons of SA-DSR to the original
DSR (Dynamic Source Routing) protocol indicate a significant (up to
31%) increase in successful packet transmissions with comparable route
establishment and maintenance overheads.

1 Introduction

Conventional MANET routing protocols do not consider power as a design con-
straint, instead, they tend to search for optimal routes in terms of delay. In such
algorithms, connection between two nodes is established through nodes on the
shortest path routes, which may however result in quick depletion of the battery
of the nodes along the most heavily used routes in the network and eventual
network partition and low connectivity.

Dynamic Power Management (DPM) in MANETs has gained huge popularity
over the last decade. Mobile nodes in wireless ad-hoc networks often put their
wireless network cards to sleep when they are not transmitting or receiving
data. In most MANETs, wireless traffic is infrequent and recent work [1] shows
that wireless network cards should be turned inactive for 50% or less of the
entire lifetime to obtain a balance between optimal power-saving and sustained
network connectivity. But sleep modes can lead to loss of network connectivity

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 508–520, 2007.
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Fig. 1. DSR Packet Delivery Ratio with varying Sleep-Awake Intervals

and hence lower the packet delivery ratio. Figure 1 shows DSR’s rate of successful
packet transmissions in a MANET of 100 nodes with arbitrarily chosen routes
and periods of network activity ranging from 0% to 100% in repeated random
interval in the ranges of [0..0.1] seconds, [0..1] seconds, [0..10] seconds, and [0..20]
seconds, respectively.

This paper1 focuses on routing in MANETs with transient route availabilities,
i.e., route establishment takes into consideration the expiration time and there-
fore the stability of a potential route. This approach, called Stability Aware Dy-
namic Source Routing (SA-DSR), is based on the prediction of future sleep times
of mobile nodes (i.e., the times when mobile nodes’ DPM techniques will turn off
their network cards). The goal of this approach is to introduce DPM-awareness in
routing decisions and thereby to increase the number of successful packet trans-
missions. While SA-DSR is an extension to the well-known on-demand Dynamic
Source Routing (DSR) [10], the concept of stability awareness can be added
to any routing protocol. A variety of stability predictors can be used, including
hints given by applications and/or the DPM mechanism. In this paper, SA-DSR
monitors the packet scheduler queue for the network driver and predicts the next
down-time of the network card. That is, SA-DSR conservatively predicts that
the network card will enter its next sleep mode after all packets in the queue
have been transmitted plus a driver-specific timeout value.

The remainder of the paper is organized as follows: Section 2 compares SA-
DSR to previous work. Section 3 discusses the system model for the proposed
routing protocol. In Section 4, we describe the details of SA-DSR, followed by
simulation results in Section 5. Finally, Section 6 concludes the paper.

2 Related Work

In [2], Chin et al. present their experience of implementing two popular MANET
protocols, AODV [11] and DSDV [12], and report that due to fading and tran-
sient network links both of these protocols fail to offer a stable route over any
1 This work was made possible by NSF grant 0545899.
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multi-hop network connection. They also suggest the need for using a route sta-
bility metric during the route discovery phase of MANET routing protocols. This
observation has given rise to a number of algorithms that address energy man-
agement and routing in wireless ad-hoc networks. We broadly classify these al-
gorithms into three categories: Transmit Power Aware Routing, Residual Energy
Aware Routing and Network Sleep Time-Aware Routing. This section compares
our SA-DSR protocol to these related categories.

2.1 Transmit Power Aware Routing

Such algorithms minimize the transmit power required for packet transmission
or adjust the transmit power of nodes with varying network traffic and remaining
node energy. In [3], Toh et al. propose the conditional max-min battery capac-
ity routing algorithm which chooses the route with minimal total transmission
power if all nodes in the route have remaining battery capacities higher than a
threshold; otherwise, routes that consist of nodes with the lowest remaining bat-
tery capacities are avoided. In [4], Tarique et al. integrate two common energy
management approaches: they use a load sharing approach for routing decisions
and a transmit power control approach for link by link power adjustments. They
employ their approach to enhance DSR [10].

Such algorithms in general select the minimum transmit power cost routes.
Though some of them take the node residual energy into account, but mostly
nodes along the least transmit power cost routes tend to die soon since these
routes now become the most heavily used ones instead of the min-hop ones.
This is harmful since the nodes which die early are precisely the ones that are
needed most to maintain network connectivity. The SA-DSR protocol does find
the optimal route not only based on a metric like min-hop, but also a second
metric (reliability). It finds multiple stable routes for a particular pair of source
and sink nodes and thus maintains the network connectivity.

2.2 Residual Energy Aware Routing

Such algorithms minimize the residual energy of the nodes and select the most
residual energy or least battery cost routes. In [5], Marbukh et al. aim at preserv-
ing network connectivity by choosing routes according to the remaining battery
life of nodes along the route. They use a power draining factor to accurately
predict the residual battery life time. In [6], Venugopal et al. study various ad-
hoc network protocols in terms of robustness and conclude that the robustness
of a routing protocol is restricted by its remaining energy. Further, they present
a Max-Min Energy DSR (MME-DSR) route selection algorithm to select the
optimal energy route. In [7], Maleki et al. propose a lifetime prediction routing
protocol for MANETs that maximizes the network lifetime by selecting routes
that minimize the variance of the residual energies of the nodes in the network
and include the rate of energy discharge into the cost function to improve net-
work lifetime. They argue that mobility of nodes can affect the traffic pattern
through the nodes and the recent history is a good indicator of this traffic.
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These works assume that it is better to use a higher transmit-power cost
route if the least transmit-power cost route consists of nodes with small amount
of residual energy. Nodes usually do idle listening when there is no significant
traffic. Such algorithms never completely turn off the nodes in absence of traffic.
SA-DSR realizes a better approach for power-saving by utilizing a Dynamic
Power Management (DPM) module that puts wireless nodes into a sleep mode
when the node is not transmitting or receiving data. It finds stable routes as
predicted by a DPM-aware Route Stability Prediction Algorithm and thus ensures
acceptable network connectivity.

2.3 Network Sleep Time Aware Routing

In [8], Chia et al. propose that devices which are not currently active in any data
communication may enter a sleep state, but can be powered up remotely through
a signal using a simple circuit based on RF technology. Radio devices select
different time-out values (sleep patterns), to enter various sleep states depending
on their battery status and quality of service. In [9], Singh et al. employ a
MAC layer protocol for PAMAS (Power Aware Multiple Access protocol with
Signaling) in which nodes overhearing transmissions between two other nodes
turn themselves off and wake up after an interval of time equal to the total
transmission time as indicated in the RTS/CTS message exchange between the
sender-receiver pairs. They deploy metrics such as minimize energy consumed
per packet or minimize time to network partition, and verify these metrics with
their proposed MAC layer protocol.

In our SA-DSR protocol, the sleep and awake schedule is determined from
prediction of link expiration based on the queue contents of the packet scheduler
and the network interface device timeout value. The DPM schedule is somewhat
conservative since it ignores the possibility of more packets being added before
the timeout expires.

3 System Model

DPM supports energy conservation by making mobile nodes put their wireless
network cards to sleep when no data communication is taking place. A con-
sequence of this technique is that mobile nodes will be unreachable for large
periods of time. Therefore, we need to know the accurate network ‘up’ and
‘down’ times (DPM schedule) in order to introduce DPM awareness in rout-
ing decisions. Currently SA-DSR predicts the DPM schedule for mobile nodes
from the queue contents of the packet scheduler and the network device timeout
value. Toward that end, the SA-DSR protocol computes the minimum time to
transmit all packets currently residing in the packet scheduling queue and adds
the device-specific timeout value, i.e.: texp = n ∗ tsend + ttimeout, where n is the
number of bytes to be sent, tsend is the minimum time needed to transmit one
byte over the medium, and ttimeout is the amount of time the network card stays
in active mode after the last transmission.
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We define the route uptime factor (RUF) as a metric which indicates the next
earliest time when the link between any pair of adjacent nodes on a route is
going to be interrupted due to one (or both) of the nodes being put to sleep.
Now we derive RUF as follows:

If we assume nodes as vertices and the links between the nodes as edges con-
necting them, then let G(V,E) be the graph representing the network topology
where V is the set of vertices and E is the set of edges. Let

Rij = (Vi, Vi+1, Vi+2, . . . , VK , VK+1, . . . , Vj−1, Vj) (1)

be the route from source node Vi to Vj through intermediate nodes Vk,Vk+1,
etc. Let Ωij be the set of all possible alive routes between Vi and Vj . The DPM
sleeping schedule Sij for the route Rij is defined as

Sij = (tioff , ti+1
off , ti+2

off , . . . , tK
off , tK+1

off , . . . , tj−1
off , tj

off) (2)

where ti
off is the next earliest time to sleep for node Vi.We define the link uptime

vector or Lij for the route Rij as

Lij = (tiuptime, ti+2
uptime, ti+2

uptime, . . . , tK
uptime, tK+1

uptime,

. . . , tj−1
uptime) (3)

where ti
uptime is the uptime of the link Ei,i+1 connecting nodes Vi and Vi+1

and is defined by min(tioff , ti+1
off), since uptime of a link is determined by

how long the link will be alive before breaking down due to one of its end nodes
going to sleep and thus essentially is expressed by the minimum of the DPM
sleeping schedule of the end nodes. The route uptime factor RUF ij for route Rij

can be expressed as the minimum of the link uptime vector Lij along the route
since it will indicate how long the route will be alive before breaking down due
to the break in any of its constituent links:

RUF ij = min(tiuptime, Vi ∈ V, ti
uptime ∈ Lij) (4)

Therefore, we can summarize the problem as obtained in Problem 1.

Problem 1. Given the next earliest time to sleep ti
off for each node Vi ∈ V in

the graph G(V,E), accumulate the set of all possible routes Ωij between nodes
Vi and Vj with the corresponding route uptime factors RUF ij for each Rij ∈ Ωij

and find the min-hop route Rij from the set of all stable routes Ωij . If there
are more than one routes with the same min-hop length, then the one with the
maximum route uptime factor value is selected.

4 Stability Aware Dynamic Source Routing

There are two key differences between SA-DSR and standard DSR. Firstly, SA-
DSR introduces DPM Awareness in routing decisions at intermediate nodes. The
discovered routes are always stable since the routing module employs a Route
Stability Prediction (RSP) Algorithm (Algorithm 1) and proactively discards
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the forwarding of RREQ packets for predicted unstable routes, on the basis of
the Link Uptime Vector Lij contained in the RREQ packet. Lij is dynamically
formed by intermediate nodes during the route discovery phase. Secondly, unlike
DSR, SA-DSR finds multiple stable routes to the target node by allowing the in-
termediate nodes to rebroadcast multiple RREQ packets with the same <source
address, request id> pair containing distinct source routes. Although having
more route discovery can contribute to an increase in the total network traffic,
this increase in traffic is expected to be compensated by proactively avoiding
the forwarding of RREQ packets for predicted unstable routes by intermediate
nodes.

SA-DSR consists of three steps which will be described in the remainder of
this section; (1) Route discovery phase, (2) Route reply phase, and (3) Route
selection phase in the source node.

4.1 Route Discovery Phase

When a source node needs to send a data packet to a target node, it first searches
its routing table for any entry using the target node address as the key. An
entry in the routing cache contains a list of stable routes to the target node.
If a routing cache entry is found, then the source node picks a route based on
the Route Selection (RS) Algorithm (Algorithm 3). If no entry is found for the
target node, then the source node initiates a route discovery for the target.

SA-DSR adds five new entry types to the RREQ packet format of standard
DSR.

– Link Uptime Vector (tiuptime, i ∈ (1, . . . , N − 1)) for the route,
– DPM Sleeping Schedule for the last upstream node (tupstrm

off),
– Timestamp at source node (Tstamp

src),
– Timestamp at last upstream node (Tstamp

upstrm) and,
– Per Hop Transmission Time (Ttrans

perhop).

SA-DSR allows intermediate nodes to forward multiple RREQ packets with
the same <source address, request id> pair if the packets contain distinct source
routes. During the RREQ lookup at intermediate nodes, the 4-tuple <source
address, request id, last upstream node address, partial route length> is checked
with each entry in the recently seen requests list for possible match. If no match
is found, then the RREQ contains a distinct source route and is eligible to be
forwarded if the contained source route is predicted to be stable.

Route Stability Prediction (RSP) Algorithm: SA-DSR predicts the route stability
using a link by link stability prediction. Each intermediate node executes the
RSP algorithm for each received RREQ and predicts the stability of the link
between itself and the last upstream node. All previous links in the source route
are assumed to be stable, otherwise the previous upstream nodes would not have
forwarded the RREQ packet. Thus the stability of the current link ensures the
stability of the entire source route. For each received RREQ, the RSP algorithm
in the K+1-th intermediate node VK+1 calculates the uptime of the link between
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itself and the last upstream node recorded in the RREQ and appends it to the
Link Uptime Vector in the RREQ. It also calculates a running average of the per
hop transmission time from the source node to itself Ttrans

perhop, which takes
into account varying per hop latency in case of the mobile nodes having various
types of wireless interface devices (i.e., 802.11 or Bluetooth). If the uptime is less
than Tstamp

src + (3 ∗ K ∗ Ttrans
perhop), then the link will not be stable for the

entire period of 3-way exchanges of the RREQ, the following RREP and then
the data packet. Hence the intermediate node discards the RREQ. The detailed
RSP algorithm is described in Algorithm 1.

Algorithm 1. Route Stability Prediction (RSP) Algorithm
at the local intermediate node VK+1

Input: received RREQ packet from last upstream node,

next earliest time to sleep tK+1
off for itself.

Output: boolean true is route predicted alive, or false
1 boolean alive:= true;
2 /*Compute Uptime tK

uptime of the link EK,K+1*/
3 tK

off := packet.getSleepingScheduleUpstreamNode();

4 tK
uptime:= min(tK+1

off ,tK
off );

5 /*Compute Trans Time from Last Upstream Node to itself*/
6 Tstamp

upstrm:= packet.getTimeStampAtUpstreamNode();
7 Ttrans

perhop:= packet.getPerHopTransTime();
8 Ttrans

upstrm:= Current System Time - Tstamp
upstrm;

9 /*Compute Per Hop Trans Time from Source Node to itself*/
10 K:= packet.getNumLinkUptimeVector();

11 Ttrans
perhop:= ((K ∗ Ttrans

perhop)+Ttrans
upstrm)/(K+1);

12 /*Predict if the route will be stable*/
13 Tstamp

src:= packet.getTimestampAtSourceNode();
14 TtransTot

src:= Tstamp
src + (3 ∗ K ∗ Ttrans

perhop);
15 if (TtransTot

src > tK
uptime)

16 alive:= false;
17 return alive;

If the partial source route Rsrc,K+1 is predicted stable, then the intermediate
node VK+1 rebroadcasts the augmented RREQ which has the following fields as
modified:

– The route record list appended by its own address.
– The Link UptimeVector augmented by the uptime of the link (EK,K+1)
– Its own next earliest time to sleep as the DPM Sleeping Schedule of the last

upstream node.
– The calculated running average Per Hop Transmission Time from the source

node to itself as the Per Hop Transmission Time.
– Its current time as the new TimeStamp at the last upstream node.

The intermediate node VK+1 stores the <source address, request id, last up-
stream node address, partial route length> 4-tuple in its recently seen requests
list.
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4.2 Route Reply Phase

When the RREQ reaches the target node, it executes the RSP algorithm in the
same way as the intermediate nodes. If the source route is predicted to be stable,
the target node sends an RREP packet back to the source along the reverse path
recorded in the RREQ. SA-DSR adds three new entry types to the standard DSR
RREP packet format:

1. Link Uptime Vector: The Lij for the entire source route.
2. Earliest Down Time: Tdown

route The minimum of all the Link Uptime Vector
elements.

3. Estimated Transmission Time: TtransTot
src, as calculated in the route sta-

bility prediction phase.

The RSP algorithm during the route discovery phase did not take into ac-
count the length of the entire source route to the target node and hence made
a prediction based on the stability of the partial route from the source node to
itself. This might lead to some false predictions and hence needs to be corrected
at the intermediate nodes during forwarding of the RREP packet. The interme-
diate nodes execute the Modified Route Stability Prediction (MRSP) Algorithm
(Algorithm 2). Suppose there are total L links recorded in the source route of
the RREQ and it arrives at the K-th intermediate node VK (counting from the
source node). VK computes the time TK

more at which the data packet will arrive
at the target node after a two-way travel of total (L + K − 1) number of links,
since the RREP travels another K −1 links to arrive at the source node and the
data packet travels L links to arrive at the target node. If this TK

more is less
than Tdown

route of the route, then VK discards the RREP.

Algorithm 2. Modified Route Stability
Prediction (MRSP) Algorithm

Input: received RREP packet from last upstream node.
Output: boolean true is route predicted alive, or false

1 L:= packet.getNumLinkUptimeVector();
2 K:= packet.retNodeNum(localAddr);
3 /*Given the address of the current node, the above function
4 returns its node number in the source route*/
5 TtransTot

src:= packet.getTransTime();
6 TtransPerHop:= TtransTot

src/L;
7 TK

more:= current System Time + (L + K − 1)*TtransPerHop;
8 Tdown

route:= packet.getEarliestDownTime();
9 if (TK

more <= Tdown
route)

10 return true;
11 else
12 return false;
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4.3 Route Selection Phase at the Source Node

A successfully received RREP in SA-DSR always ensures that the route is pre-
dicted to be stable for the estimated data transmission period (because of the
conservative stability prediction used in our approach). A source node on having
a successful RREP packet back, caches the learned route, the RUF for the route
and estimated transmission time along the route in its routing table (the last two
items are obtained from the Earliest Down Time and Estimated Transmission
Time fields of the RREP respectively). The routes are stored in increasing order
of their length in the routing table. When the source node sends a data packet,
it exhaustively searches its routing table according to the Route Selection (RS)
Algorithm, (Algorithm 3). The RS algorithm selects the min-hop stable route
(the first entry in the routing table) for the target node. If there are more than
one entry with the same min-hop length, then the route with the maximum value
of RUF is chosen, since it has the highest predicted lifetime.

Algorithm 3. Route Selection (RS) Algorithm

Input: routing table and the target node address
Output: the min-hop route from the set of stable routes.

1 /*initialize pointer to the first entry of routing table*/
2 rt ptr:= routingTable.returnEntry(targetAddr);
3 min hop:= MAX HOPCOUNT;
4 route:= rt ptr->entry;
5 /*extract the min hop stable route from the set of stable routes and
6 if more than one entries with same length then extract the max-RUF one*/
7 while (rt ptr){
8 if (rt ptr->entry.hopCount == min hop){
9 minRUFvalue:= min(route.RUFvalue , rt ptr->entry.RUFvalue);
10 if (minRUFvalue == rt ptr->entry.RUFvalue)
11 route:= rt ptr->entry;
12 }
13 if (rt ptr->entry.hopCount < min hop){
14 min hop:= entry.hopCount;
15 route:= rt ptr->entry;
16 }
17 rt ptr:= rt ptr->next;
18 }
19 currentRUFvalue:= route.RUFvalue;
20 totalTransTime:= current System Time + route.TransTime;
21 if (totalTransTime < currentRUFvalue)
22 return route;
23 else
24 return NULL;

5 Experimental Results

In order to evaluate the performance of SA-DSR, we performed simulations
to study large and complex network topologies. We chose the JiST/SWANS
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simulation environment. JiST2, Java in Simulation Time, is a discrete event
simulator designed to run over a standard Java virtual machine. SWANS, a
Scalable Wireless Ad hoc Network Simulator, is built on top of the JiST platform
to provide the tools needed to construct a wireless mobile ad hoc network.

5.1 Simulation Setup

– The simulation driver gives us one sink node and a variable number of trans-
mitting source nodes. SA-DSR will be implemented in a distributed event-
based publish subscribe system where there will be only one event broker to
match and deliver the events to the corresponding customers. The reason to
use only one sink node is that the customers should be able to find stable
routes to the single broker node.

– The simulated network area is 2500mX2500m with 100 source nodes. Each
transmitting source node has a bandwidth of 1 Mb/s and attempts to trans-
mit one data packet of length 40 bits to the sink node.

– The simulation driver simulates a random interval repeatedly for each trans-
mitting node. Each node stays awake for the input awake percentage of the
simulated random interval and notifies the routing module about its next
earliest time to sleep each time when it awakes.

– Each simulation was run for 5 trials, with a full range of awake percentages
from 0% to 100% with an interval of 10%. Each trial was run for 500 seconds.
Each transmitting source node attempts to send one data packet to the sink
node.

– Nodes intermittently turn off their network cards for power-saving in absence
of significant communication, which leads to link failures and low network
connectivity. SA-DSR does not consider mobility as the cause of link break-
age. The nodes used in the simulation are therefore stationary.

5.2 Results

We evaluate and compare the performance of SA-DSR to that of standard DSR
in terms of five metrics as follows:

In Figure 2(a), we measure the route discovery success rate for both of the pro-
tocols. We define route discovery success rate as the ratio of number of successful
source nodes getting RREP packets back to the number of source nodes sending
a RREQ packet. This graph gives an impressive performance improvement of
SA-DSR over standard DSR (up to 60%). It is expected because SA-DSR uses
both the min-hop and stability metrics in route discovery and finds more routes
than standard DSR, which never takes into account the link down times of nodes
along the source route. At awake percentage of 100%, DSR should have the same
route discovery success rate, the slight difference between the DSR and SA-DSR
performance is due to the difference in network connectivity during various sim-
ulation trials.
2 http://jist.ece.cornell.edu/
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(a) Route Discovery Success Rate (b) Packet Delivery Rate

(c) Average number of routes per source
nodes

(d) Average hop count

Fig. 2. Simulation results for SA-DSR

In Figure 2(b), we measure the packet delivery rate of both protocols. We
define packet delivery rate as the ratio of number of data packets received at the
sink node to the number of data packets transmitted by source nodes having a
route in their routing table after a successful route discovery. In all of the cases
SA-DSR provides better packet delivery rate than DSR (up to 31%). Even with
lower awake percentage such as 10% SA-DSR gives 20% better packet delivery
ratio than standard DSR. Three noticeable patterns are revealed in this figure:

1. Figure 2(b) shows that for lower awake percentages standard DSR has nearly
40% of packet delivery rate, but Figure 2(a) shows that it has only 25%
of route discovery success rate. Although these two measurements seem to
contradict each other, this anomaly can be explained as follows. When an
intermediate nodes on a particular source route forwards a RREP back
in standard DSR, it updates its own routing table with the partial route
from itself to the target node. Thus the intermediate nodes often get a
route to the target node without having to initiate any route discovery.
Since in our simulation scenario there is only one sink node, such occu-
rances are naturally expected. But since such nodes do not initiate any
route discovery themselves, they are not considered in the route discovery
success rate. But they can successfully send data packets to the target node,
thus leading to some cases where packet delivery rate is higher than route
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discovery success rate. But SA-DSR still offers better performance than DSR
instead of inflated packet delivery rate of the latter protocol.

2. Figure 2(b) shows that SA-DSR offers nearly 65% packet delivery rate, but
Figure 2(a) shows that it offers nearly 85% of route discovery success rate.
This drop occurs because the MRSP algorithm is not implemented at the
RREP phase and stability predictions during the RREQ phase do not con-
sider the length of the route, leading to some false route stability predictions.
With MRSP implemented at the RREP phase, SA-DSR performance in
Figure 2(b) should be like that in Figure 2(a).

In Figure 2(c), the average number of routes per node has been depicted. It
shows how SA-DSR finds more routes per node (almost more than 3 times in
some cases) with increasing awake percentage.

In Figure 2(d), the average hop count has been measured for both protocols.
It shows quite expectedly that the hop count for SA-DSR is much higher than
standard DSR since the former finds multiple possible alive routes instead of
only the min-hop one as in the case of standard DSR.

6 Conclusion and Future Work

In this paper, we introduce Stability Aware DSR (SA-DSR), which introduces
DPM awareness into the routing decisions and finds multiple stable routes to the
target node. We compare it to standard DSR, which does not consider power-
saving but optimizes routing for shortest delay. We show that SA-DSR provides
a significant increase in successful packet transmissions with comparable route
establishment and maintenance overheads.

Future work will consider the following cases:

– Probabilistic Stability: We understand that there might be some specific sce-
narios in which the RSP algorithm in an intermediate node finds all routes to
the sink node to be unstable and hence discards all corresponding RREQs,
so that the source node does not get any stable path to the sink node in
response to its route request. But in case of non-time-critical applications
even a less aggressive approach could be acceptable, i.e., an intermediate
node measures a probabilistic stability of the routes and forwards all the
RREQs which gives stability guarantees above the desired level. The desired
level could be input by the users.

– Multi Constraint Routing: SA-DSR finds multiple stable routes for a partic-
ular target node and picks the min-hop one from the set of stable routes.
While SA-DSR combines the two metrics stability and hop count, our future
work will study how the combination of multiple metrics such as real-time
deadline-aware or residual-energy aware routing with stability aware routing
influences the performance of the protocol, i.e. we plan to make the protocol
a multi-constraint one.
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Abstract. Due to dense deployment and innumerable amount of traffic flow in 
wireless sensor networks (WSNs), congestion becomes more common phe-
nomenon from simple periodic traffic to unpredictable bursts of messages trig-
gered by external events. Even for simple network topology and periodic traffic, 
congestion is a likely event due to time varying wireless channel condition and 
contention caused due to interference by concurrent transmissions. Congestion 
causes huge packet loss and thus hinders reliable event perception. In this pa-
per, we present a congestion avoidance protocol that includes source count 
based hierarchical medium access control (HMAC) and weighted round robin 
forwarding (WRRF). Simulation results show that our proposed schemes avoid 
packet drop due to buffer overflow and achieves more than 90% delivery ratio 
even under bursty traffic condition, which is good enough for reliable event  
detection.  

1   Introduction 

Wireless Sensor Networks (WSNs) are densely deployed for a wide range of applica-
tions in the military, health, environment, agriculture and smart office domain. These 
networks deliver numerous types of traffic, from simple periodic reports to unpredict-
able bursts of messages triggered by sensed events. Therefore, congestion happens 
due to contention caused by concurrent transmissions, buffer overflows and dynami-
cally time varying wireless channel condition [1][2][3]. As WSN is a multi-hop net-
work, congestion taking place at a single node may diffuse to the whole network and 
degrade its performance drastically [4]. Congestion causes many folds of drawbacks: 
(i) increases energy dissipation rates of sensor nodes, (ii) causes a lot of packet loss, 
which in turn diminish the network throughput and (iii) hinders fair event detections 
and reliable data transmissions. Therefore, congestion control or congestion avoid-
ance has become very crucial to achieve reliable event detection for the practical 
realization of WSN based envisioned applications.  
                                                           
* This research was supported by the MIC , Korea, under the ITRC support program 

supervised by the IITA, Grant no-(IITA-2006-(C1090-0602-0002)).  
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We find that one of the key reasons of congestion in WSN is allowing sensing 
nodes to transfer as many packets as they can. This is due to the use of opportunistic 
media access control. The high amount of data transferred by sensing nodes can over-
whelm the capacity of downstream nodes, particularly the nodes near to sink. Hence, 
we propose source count (defined in section 3) based hierarchical medium access 
control (HMAC) that gives proportional access, i.e. a node carrying higher amount of 
traffic gets more access to the medium than others. Therefore, downstream nodes 
obtain higher access to the medium than the upstream nodes. This access pattern is 
controlled with local values and is made load adaptive to cope up with various appli-
cation scenarios.  

Congestion due to buffer overflow is not insignificant [9][10]. To avoid conges-
tion, before transmitting a packet each upstream node must be aware whether there is 
sufficient free buffer space at the downstream node. To implement this notion, we 
restrict an upstream node from delivering packets when its downstream node has not 
sufficient amount of free buffer space. This is achieved by our proposed source count 
based weighted round robin forwarding (WRRF).  

Even though the sensor network can tolerate a certain percentage of packet loss, 
data transmission in such network is termed as unreliable if the packet delivery ratio 
decreases to very low value so that the event can not be detected reliably. We thus 
seek an efficient way to avoid congestion within the sensor network to ensure good 
delivery ratio for reliable event detection. Integrated effort of our proposed source 
count based HMAC and WRRF reduces packet drop due to collision and avoids 
packet drop due to buffer overflow and finally achieves more than 90% delivery ratio 
which is good enough for reliable event perception. 

The rest of the paper is organized as follows: section 2 briefly discusses the related 
works, section 3 articulates the network model and assumption, section 4 describes 
our proposed protocol, section 5 discusses the performance evaluation and finally we 
conclude in section 6. 

2   Related Work 

A good number of transport layer protocols have been proposed for wireless sensor 
network [1]-[10]. These works aimed to provide reliability guarantee either by con-
gestion detection and control or by congestion avoidance [1][9][14]. Few of these 
techniques are described below: 

ESRT [4] allocates transmission rate to sensors such that an application-defined 
number of sensor readings are received at a base station, while ensuring the network 
is not congested. On reception of packets with congestion notification bit high, sink 
node regulates the reporting rate by broadcasting a high energy control signal so that 
it could reach to all sources. This high powered congestion control signal may disrupt 
some other transmissions. Also the assumption of congestion notification by the sink 
node is very optimistic. CODA [1] uses a combination of the present and past channel 
loading conditions and the current buffer occupancy, to infer accurate detection of 
congestion at each receiver with low cost. As long as a node detects congestion, it 
sends backpressure messages to upstream nodes for controlling reporting rate hop-by-
hop. It is also capable of asserting congestion control over multiple sources from a 
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single sink in the event of persistent congestion. Even though it overcomes some of 
the limitations of ESRT [4], it doesn’t consider the event fairness and packet reliabil-
ity at all.  PSFQ [11] is scalable and reliable transport protocol that deals with strict 
data delivery guarantees rather than desired event reliability as it is done in ESRT. 
However, this approach involves highly specialized parameter tuning and accurate 
timing configuration that makes it unsuitable for many applications. Also PSFQ has 
several disadvantages (i) it cannot detect single packet loss since they use only 
NACK, (ii) it uses statically and slowly pump that result in large delay and finally (iii) 
it requires more buffer as hop-by-hop mechanism is used. As defined in Many-to-One 
Routing [2], event fairness is achieved when equal number of packets are received 
from each node. In this proposal, individual nodes divide its effective available band-
width equally amongst all upstream nodes. This, in turn ensures fairness. Several 
disadvantages are including: (i) It provides no reliability guarantee. (ii) The effective 
throughput may decrease due to implementation of ACK in transport layer.  RMST 
[12] is a transport layer paradigm designed to complement directed diffusion [13] by 
adding a reliable data transport service on top of it. It’s a NACK based protocol like 
PSFQ, which has primarily timer driven loss detection and repair mechanisms. It does 
not provide with any congestion control mechanism. TARA [14] discusses the net-
work hotspot problem and presents a topology aware resource adaptation strategy to 
alleviate congestion in sensor network.  

In our approach two key reasons of packet loss have been taken into account: loss 
due to collision and loss due to buffer overflow. Our proposed HMAC scheme takes 
care of hierarchical medium access and thereby reduces packet drops due to collision. 
WRRF controls the number of packets to be received from upstream nodes in each 
round (single-hop control). Round operation is controlled by estimating buffer status 
at each individual downstream node using exponential moving average (EWMA). A 
downstream node allows packet from its upstream nodes only if there is available 
buffer and thereby avoid drops due to buffer overflow. 

3   Network Model and Assumptions 

We consider a network of N  sensing nodes, deployed with uniform random distribu-
tion over an area A . Node density is defined as /N Aρ = . Therefore, the approximate 

number of nodes within the sensing radius of a particular event is calculated as:  

2
s sN Rπρ=  (1) 

Where, sR is the sensing range of each node. We consider a single sink in the network, 

placed at anywhere within the terrain. All sensors are static; we do not consider mo-
bile sensors that form a dynamic ad-hoc network. 

All sensors are static and the network is homogeneous i.e., all nodes have the same 
processing power and equal sensing and transmission range. Data generation rate of 
each sensing node is also assumed to be equal. Since receiving explicit ACK from the 
downstream node incurs huge overhead on energy constraint sensor nodes [6][7] [8], 
we have used snoop-based implicit acknowledgement. Modified CSMA/CA is used as 
MAC protocol. We do not need binary exponential backoff, as we exclude ACK 
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packets in response of reception of data packets. Therefore, the backoff value is uni-
formly random within the range )1(~0 −W , where W  is the size of contention win-

dow. The value of W  is dynamically updated as traffic load varies (subsection 4.1). 
We consider that all data packets have the same size and the amount of buffer at each 
node is represented by the number of packets it can store. We also consider that con-
gestion does not occur if there is no data transmission in the network. 

1

1

1 1 12 

8
2

4

9

1

12 

1
1 1

S

Event Radius Er

S Node Source node Forwarding node Source and forwarder  Sink  

12 

 

Fig. 1. Event to sink routing path and source count value of nodes 

We have considered a tree based hierarchical static routing protocol. Hence, the 
route from each source to the sink is predetermined and unchanged during the data 
delivery of a certain event. The network is event driven; nodes within the event radius 
generate traffic and the sensed data eventually reach to the sink, forwarded by inter-
mediary downstream nodes. Downstream node may also generate its own data by 
sensing the vicinity of its sensing range. As defined in subsection 1.1, source count 
value of any node i, denoted as SCi, is the total number of source nodes for which it is 
forwarding data. If uS  represents the set of single hop upstream nodes of i, its source 

count value is calculated as follows 

u

i k
k S

SC SC I
∀ ∈

= +∑  (2) 

Where, I is the source indicator function; I=1, if the node i is generating data, 0 oth-
erwise. We do not use any type of control packets in designing different schemes of 
the proposed protocol. Since a downstream node requires knowing its source count 
value whenever it has some data packets to send, it is sufficient to propagate SC value 
along with the data packet. While transmitting data packets, each upstream node in-
serts its source count value in the packet header and the downstream node can easily 
calculate its SC value using Eq. 2. An upstream node learns the source count value of 
its downstream by snooping packets transmitted by the latter. Note that, a transient 
state exists between the event occurrence and the SC values of all downstream nodes 
are being stabilized. SC value of a downstream node is stabilized whenever it receives 
at least one packet from all of its upstream nodes and therefore the network enters into 
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steady state when the sink node receives at least one packet from each source node. 
Since the duration of transient state is very short (less than a second in our simula-
tion), the effectiveness of the proposed protocol is not hampered. It is notable that, 
source count values of each node along the routing path are updated without transfer-
ring any additional control packets. Fig. 1 shows the updated source count values for 
each node in the routing path. This source count parameter works as a driving entity 
for all schemes of our proposed protocol. 

4   Proposed Protocol 

The key idea of our proposed congestion avoidance protocol is as follows. We do not 
allow any node the opportunistic access to the medium; rather we grant proportionate 
access that does not overwhelm the capacity of downstream nodes. From each down-
stream node, we allow upstream nodes to transfer their weighted-share number of 
packets in a round robin fashion. An upstream node forwards packets if its down-
stream node has sufficient buffer space.  

4.1   Hierarchical Medium Access Control (HMAC) 

Due to many-to-one routing generalization [2] in sensor network (shown in Fig. 1), 
downstream nodes have to carry more traffic than upstream nodes. Therefore, as sim-
ple CSMA/CA gives equal opportunity to all contending nodes, it might cause huge 
loss of packets due to collision and increase media contention.  

Sensing nodes must not transfer so high amount of data that can overwhelm the ca-
pacity of downstream nodes, particularly the nodes near to sink. Hence, we propose 
hierarchical medium access control (HMAC) that gives proportional access based on 
source count value, i.e. a node carrying higher amount of traffic gets more accesses 
than others. Each node then calculates its contention window using equation (3). 

min( ) s

i

N
W i CW

SC
= ×  (3) 

We consider sN , a global system parameter, in calculating W as because it has 

noteworthy impact in handling bursty traffic condition as well as aggregated load on 
downstream nodes. As we use implicit ACK, the transmitting nodes do not use binary 
exponential backoff procedure; instead they choose a uniformly random backoff value 
using equation (4). 

))1(~0( −= Wrandbackoff  (4) 

This proportional media access significantly reduces the media contention and con-
gestion due to collision. The value of W calculated from equation (3) is the approxi-
mate value of sN , which may not be equal to the approximate number of nodes in a 

practical sensor network all the times. This may lead to low medium utilization or 
overshoot the network capacity. To ensure the optimal contention window value, we 
incorporate the packet loss rate of each individual node for calculating W . So, load 
adaptive equation is expressed as follows: 
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min

1
( ) s

i

N
W i CW

SC α
= × ×

 
(5) 

Where, α  is a scaling factor that ranges from 0.5 to 1.5 based on channel contention.  
When a node has a packet to transmit, it gets the backoff value using Eq. 4 and trans-
mits the packet when backoff value reduces to zero. Therefore, if the number of con-
tending neighbors of a transmitting node is very low, lower value of α simply in-
creases the medium access delay and reduces the network throughput. On the other 
hand, if the number of contending neighbors of a transmitting node is very high, a 
higher value of α increases the collision probability and thereby increases packet 
loss. The value of α is initialized to 1, which nullify its effect. Later on, to ensure 
efficient medium utilization, the value of α should be set carefully. A sharp increase 
or decrease of the value of α  may also hinder the throughput of the network. There-
fore, we have divided the range of α into 10 discrete values. Each node can easily 
identify the number of contending neighbors during the time between backoff assign-
ment and packet transmission. In a round, if a node experiences collision with the 
current number of contending neighbors, it decreases the current value of α by 0.1 for 
the next round. Accordingly, if the node does not experience any collision, the 
α value is increased by 0.1. 

4.2   Weighted Round Robin Forwarding (WRRF) 

Even though the HMAC gives more accesses to nodes with higher source count val-
ues than others, it does not guarantee that upstream nodes will transfer their weighted-
share amount of packets.  Probability exists that a node may get multiple chances in 
succession and injects packets more than its share, depriving other nodes and worsen-
ing the fairness. Highly imbalance number of packets received at sink from different 
nodes engenders several potential problems: (i) event detection may be biased, (ii) 
nodes’ battery will be drained quickly resulting early node failure and (iii) increased 
channel contention.  

To address this issue, we propose source count based weighted round robin for-
warding (WRRF) that implements hop-by-hop fair packet scheduling. In each round, 
a downstream node allows all of its upstream nodes to transmit their weighted-share 
amount of packets. If the downstream node allows R packets to be transmitted by all 
of its upstream nodes in a round and dSC is its source count value, the weighted-share 

number of packets of any of its upstream node i , wS , is calculated as follows: 

( ) u
w

d

SC
S u R

SC
= ×  (6) 

Round is controlled by downstream node and a single bit field, round control, is 
appended with each packet forwarded from it. Rounds cycle with 0 and 1 values, a 
new round is started with 0 in round control bit and it remains unchanged until down-
stream node receives weighted-share number of packets from all of its upstream 
nodes. Upstream nodes get round value by snooping packets transmitted by its down-
stream node. An upstream node restricts itself from transmitting any further packet if  
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Fig. 2. Weighted round robin packet forwarding 

it completes its share in that round. Thereafter, the downstream node switches round 
control bit to 1 and transmits further packets.  

For instance, we consider R=6 in Fig. 2, the downstream node C allows 2 packet 
from A and 2 packet from B in each round. Similarly E allows 4 packets from C and 1 
packet from D in a round. The value of R and the round control mechanism are much 
related with the amount of buffer space in a node and are explicitly discussed in sec-
tion 4.3. 

Thus controlling packet transmission in round robin fashion provides fair packet 
delivery in each routing path. It decreases channel contention and also takes care of 
nodes energy by allowing equal packets from all nodes. 

4.3   Congestion Avoidance 

The proposed mechanism avoids packet drops due to congestion by not allowing 
upstream nodes to transmit if there is not available buffer. This is achieved by control-
ling the transmission round explained in section 4.2. A downstream node changes the 
round based on its buffer status. In a round, the downstream node allows R  packets 
to be transmitted by all the upstream nodes. Given the condition that the downstream 
node has proportionally higher probability to access the medium, even then the down-
stream node may not be able to forward all R packets. So, in the next round, the 
downstream node will have some packets from the previous round, which might cause 
congestion within few successive rounds. Therefore, two important things to be con-
sidered are: 

• The value of R and its relations with buffer size 
• After getting R packets from the upstream node whether the downstream node 

immediately change the round or not. More specifically, should the downstream 
node forward all R packets before changing the round?  

Definitely, this will guarantee no packet drop due to congestion. However, such 
strict round robin forwarding will block the upstream nodes to transmit, even though 
there may be empty buffer in the downstream node. Therefore, it is important to know 

eR  the number of empty buffers in the downstream node, where eR R≤  is required 

to change the current round. If the number of packets forwarded by the downstream 
node is F , when it receives the last packet of that round from one of the downstream 
nodes, then the downstream node should have at least eR R F= − empty buffers.  
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Similarly, in the next round, the downstream node requires eR empty buffers to change 

the round and thus can avoid congestion. But eR is not a constant and depends on the 

network load. We therefore find the value of eR using the exponential weighted mov-

ing average (WEMA) and given by: 

_ _ _(1 )e estimated e estimated e currentR R Rβ= − × +  (9) 

Finally, as long as there are not at least eestimitedR number of empty buffers, the 

downstream node will not change the transmission round. This ensures near to zero 
packet drops and at the same time ensures efficient buffer utilization. 

5   Performance Evaluation 

To evaluate the performance of our proposed schemes we have performed extensive 
simulations using ns-2[15]. Proposed protocol implementation includes a tree based 
hierarchical static routing protocol, HMAC and WRRF. The tree based hierarchical 
static routing module creates parent (downstream) and child (upstream) hierarchy 
among the nodes in the network. The routing tree is constructed using Warshall’s 
algorithm so that the sensed data could reach the sink with shortest number of hops. It 
may be mentioned here that, the choice of downstream nodes does not depend on any 
traditional parameters of sensor network routing e.g., energy or delay. An event is 
generated at a random location and we have assigned source IDs randomly to the 
nodes within the event radius. We have modified the CSMA/CA MAC implementa-
tion of ns-2 as follows. We have added two additional fields in the MAC frame 
header: source count and round control. At each downstream node, virtual queues are 
created using link list data structure for storing packets from individual upstream 
nodes. Dissemination and update operation of source count value is described in sec-
tion 2. When a node has data to transmit, HMAC takes care of assigning its backoff 
value and WRRF calculates the weighted-share number of packets to transmit. 

Following matrices are used to realize the performance of proposed schemes: 

• Delivery Ratio: It indicates the ratio of number of packets sent by the sources to 
the number of packets successfully received at sink. 

• Packet Drop: The ratio of dropped packets due to collision and buffer overflow to 
the number of sent packets 

• Efficiency: Number of hops traveled by each successful reception of a packet at 
the sink divided by the total number of transmission required for the packet in en-
tire path.  

• Energy Dissipation: Amount of energy dissipated per node per unit time, meas-
ured in Joule 

We have compared our protocol with the following four mechanisms: 

• No Congestion Control (NoCC): Under this scheme packets are transmitted using 
a hierarchical routing without controlling transmission rates at the sources and 
forwarders.  
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• No Congestion Control with Implicit ACK (NoCC-IA): This is the same scheme 
as NoCC without RTS-CTS-DATA-ACK handshake. It uses snoop based im-
plicit ACK.   

• Backpressure: It is a hop-by-hop rate control based congestion control mecha-
nism explained in CODA [1]. If a sensor gets congested, the mechanism adver-
tises congestion using explicit congestion notification bit to reduce the transmis-
sion rate of its upstream sensors by a factor of 0.5.  If an upstream neighbor is a 
data source, the neighbor reduces the rate at which it generates new data by the 
same percentage. 

• Proposed Protocol: It includes load adaptive hierarchical medium access 
(HMAC) and weighted round robin forwarding (WRRF).  

5.1   Simulation Setup Parameters 

Table 1. Simulation parameters 

Parameter  Value 
Total Area 100m X 100m 
Number of nodes 100 
Initial Energy  5 Joule/Node 
Transmission power 5.85e-5 
Receive signal threshold 3.152e-20 
Data rate 300 kbps 
Transmission Range 30m 
Packet size 64 bytes 
Initial α value 1.0 
Range of α  0.5~1.5 
Buffer size 20 
Data Sources 1~15  
Offered load 4~6 pkts. per sec. (pps)  
Sink location [3.6148, 99.2246] 
Simulation Time 50 Sec 

5.2   Simulation Results 

Fig. 3.a shows collision drop rate for various protocols. In case of NoCC, drop rate 
increases sharply with the increased data sources. Since nodes within the event radius 
generate bursts of data packets and opportunistic medium access (CSMA/CA) pro-
vides equal share to all nodes, huge collision occurs and it becomes severe with the 
increase of number of sources. Algorithms using backpressure also cannot reduce the 
collision drop rate by a significant amount, since they also use opportunistic medium 
access for all nodes. On the other hand, the proposed protocol exhibits very less colli-
sion drop due to the use of hierarchical and controlled medium access which is im-
plemented by the integrated employment of HMAC and WRRF. 

Buffer drop rates of different protocols are plotted in Fig. 3.b In fact, buffer drop  
is relatively much less than collision drops [5]. Uncontrolled rate of transmission 
mechanism in NoCC is the main reason of higher packet drops. Backpressure  
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          a. Drops due to collision                b. Drops due to buffer overflow 

Fig. 3. Packet drop rate due to collision and buffer overflow with increasing number of sources 
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a. Comparison among individual schemes    b. Comparison with other protocols 

Fig. 4. Delivery ratio of individual schemes as well as their integrated effort and other protocols 
with a load of 5 pps 

algorithms experience lower packet drops than NoCC, since they use rate control 
mechanism to control congestion. However, our algorithm completely avoids packet 
loss due to buffer overflow. 

Fig. 4.a depicts the effectiveness of proposed HMAC and WRRF schemes indi-
vidually and their combined effort in terms of delivery ratio. Only WRRF can achieve 
the least delivery ratio since in this case all nodes equally contend for the medium 
irrespective of their source count values and, thereby, increase the collision drop rate. 
HMAC exhibits lower delivery ratio than the combined effort of HMAC and WRRF 
as it does not care about the buffer drops. Our proposed protocol can achieve around 
90% delivery ratio. According to Fig. 3.a and Fig. 3.b, since both NoCC and back-
pressure algorithms experience comparatively large amount of collision and buffer 
drops, their ultimate delivery ratio is very poor. While, the integrated employment of  
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Fig. 5. Average energy dissipation with a load of 5 pps 

HMAC and WRRF in our proposed protocol provides better delivery ratio than other 
protocols (NoCC, NoCC-IA and Backpressure) as depicted in Fig. 4.b.   

Average energy dissipation of individual nodes for various protocols is depicted in 
Fig. 5. Proposed protocol achieves better energy efficiency than NoCC, NoCC-IA and 
backpressure algorithms, on an average, approximately by a factor 1.998, 1.586 and 
1.808 respectively. The rationale behind this result can be explained as follows: 
firstly, loss of energy due to packet drops (collision and buffer drops) is greatly re-
duced in the proposed protocol as compared to the existing ones and secondly, num-
ber of retransmissions at each downstream node is also reduced which in turn saves 
energy. Finally, the use of snoop based acknowledgement further reduces energy 
consumption. 

6   Conclusions 

Reliable event perception is essential for collaborative actions in many envisioned 
applications of sensor networks. Congestion in WSNs causes huge packet loss and 
thereby hinders reliable event detection. We found that two major reasons of con-
gestion are (i) congestion due to collision and (ii) congestion due to buffer over-
flow. To reduce packet loss and achieve a fair delivery ratio we propose a source 
count based hierarchical medium access control (HMAC) and weighted round 
robin forwarding (WRRF). HMAC ensures a hierarchical access of the medium 
according to the source count value. While WRRF assigns a weighted-share of 
packet delivery to the downstream node. These two schemes together greatly 
reduce media contention and thereby congestion due to collision. Congestion due 
to buffer overflow is completely avoided. We have utilized the source count value 
as a driving parameter for the schemes of our proposed protocol.  Our proposed 
protocol greatly reduces packet loss due congestion, exhibits a higher delivery 
ratio, which is very necessary for reliable event detection.  
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Abstract. We present an all-optical ring network architecture with log-
arithmic shortcuts and a systolic routing protocol for it. An r-dimensional
optical ring network with logarithmic shortcuts (ORLS) consists of n =
2r nodes and r2r optical links. We study a systolic routing protocol that
is based on cyclic changes of the states of routers and scheduled send-
ings of packets. The protocol ensures that no electro-optical conversions
are needed in the intermediate routing nodes and all the packets injected
into the routing machinery reach their targets without collisions. A work-
optimal routing of an h-relation is achieved with a reasonable size of h ∈
Ω(n log n).

1 Introduction

Most of the parallel computers on the market use an electronic communication
network to transmit packets between processors. A possibility to increase the
efficiency of communication is the use of optics. Optical communication offers
several advantages in comparison with its electronic counterpart, for example,
a possibility to use broader bandwidth and insensitivity to external interfer-
ences. For example, Saleh and Teich have presented opto-electronic components
in detail [1].

Our work is motivated by another kind of communication problem, namely,
the emulation of shared memory with distributed memory modules [2]. If a
parallel algorithm has enough parallel slackness, the implementation of shared
memory can be reduced to the efficient routing of an h-relation [3]. An h-relation
is a routing problem where each processing node has at most h packets to send
and it is the target of at most h packets [2]. An implementation of an h-relation is
said to be work-optimal at cost c, if all the packets arrive their targets in time ch.
A precondition for work-optimality is that h ∈ Ω(φ), where φ is the diameter of
a network (or the maximum of hop-distances), and that the network can move
Ω(nφ) packets in each step, where n is the number of processors. Otherwise
slackness cannot be used to ”hide” the latency influenced by the diameter.

In recent years, optical ring networks have been widely deployed as regional
and enterprise networks [4]. Advantages of ring networks are, e.g., simplicity of
the system hardware and of routing algorithms and easiness of restoration. The

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 533–544, 2007.
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average diameter of an n-node ring network is, however, rather high (Θ(n)).
In order to decrease the diameters of ring networks, a number of strategies
have been studied. First, embedding of virtual topologies by using wavelength-
division multiplexing can be applied [5,4]. Second, networks can be supplied with
a number of shortcut links [6,7].

Small et al. have presented the use of Vortex networks using semiconductor
optical amplifiers (SOA) as switching elements [8,9]. In their construction an op-
tical packet consists of payloads of multiple WDM channels that are propagated
through cascaded SOA-based switching nodes [8]. Barker et al. have considered
the feasibility of optical circuit switching network network handling long-lived
bulk data transfers [10]. We use, however, a predefined routing bit sequence and
scheduled sendings of packets to make routing decisions for a large number of
small packets. Liben-Nowell et al. have presented Chord, a scalable Peer-to-Peer
lookup protocol for Internet applications that can find in logarithmic routing
hops the node responsible for a given hash key [11,12,13]. In this work we use
the idea of lookup protocol of Chord in a logarithmic all-optical network.

In this work we present an all-optical ring network architecture and a systolic
routing protocol for it. An r-dimensional optical ring network with logarithmic
shortcuts, ORLS , consists of n = 2r nodes and r2r optical links of equal length.
The routing time of the system is divided into time slots, whose length tp equal
to the bypass time of a packet between two consecutive nodes. The system op-
erates synchronously under a common clock. Every node has r incoming and r
outgoing links, therefore the routing machinery can move r2r packets in each
time slot. For an r-dimensional ORLS having n = 2r processing nodes, the di-
ameter φ = r fulfills the preconditions for work-optimality when h ∈ Ω(n log n).
Additionally, an advantage of our design is that the overall number of optical
links is Θ(n log n). Honkanen presented the systolic routing protocol for Sparse
Optical Torus (SOT ) in his paper [14]. For SOT , the number of optical links is
Θ(n2).

We present a packet routing protocol, called the systolic routing protocol.
Packets are routed address-freely. Additionally, when a packet is injected into the
routing machinery, neither electro-optic conversions are needed during its path
from a source to the target processor, nor any collisions may happen between
two distinct packets. Section 2 presents the structure of ORLS . In Section 3 we
introduce routing in the network proposed. Section 4 presents an analysis of the
routing protocol for the ORLS. Conclusions and future work are presented in
Section 5.

2 Optical Ring with Logarithmic Shortcuts

We study the r-dimensional structure of ORLS having the diameter φ = r and
having n = 2r nodes. Each node consists of a router and a processor. Section 2.1
presents the design of nodes. In Section 2.2 we introduce the construction of an
ORLS. Section 2.3 discusses the feasibility of our construction.
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Fig. 1. A node of a 3-dimensional ORLS

2.1 Construction of Nodes for ORLS

An r-dimensional ORLS consists of n = r2r nodes Ni = (Ri, Pi), 0 ≤ i < n,
where Ri and Pi are the router and the processor of a node Ni. Each router Ri of
an r-dimensional ORLS has r incoming links i0, i1, . . . , ir−1 from its predeces-
sors, r outgoing links o0, o1, . . . , or−1 to its successors, r inputs u0, u1, . . . , ur−1

from the transmitters of a processor Pi, and r outputs v0, v1, . . . , vr−1 to the re-
ceivers of the processor Pi. The basic component of the routers is an electrically
controlled all-optical 2×2 switch. Switches can be implemented by LiNbO3 tech-
nology [1]. We can construct a router of any degree with edge-disjoint paths, e.g.,
by using Beneš networks structure [15]. In Figure 1, a node of a 3-dimensional
ORLS is presented.

Each router implements an injective function π : {i0, i1, . . . , ir−1}
∪ {u0, u1, . . . , ur−1} → {o0, o1 . . . , or−1} ∪ {v0, v1, . . . , vr−1}. The definition of
the mapping π simply means that signals never collide at the outgoing links.
The mapping can be different at different moments, corresponding to the state
of the router. All the routers are set in the same state at a certain moment.

2.2 Design of ORLS

An r-dimensional ORLS consists of n = 2r nodes and r2r edges. Two nodes Ni

and Ni′ are connected with an unidirectional edge (optical link) if

(1) i′ = (i + 1) mod n or
(2) i′ = (i + 2j) mod n, 1 ≤ j < r.

We call edges by condition (1) ring edges and edges by condition (2) short-
cut edges. A consequence of the definition is that the routing machinery looks
exactly the same from the viewpoint of each node. Owing to the definition of
ORLS, a larger network can be recursively built by combining two smaller ones.
That is, an r-dimensional ORLS can be constructed by joining two (r − 1)-
dimensional ORLSs together. In Figure 2 a 2-dimensional ORLS is built from
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Fig. 2. Construction of a 2-dimensional ORLS

two 1-dimensional ORLSs by rearranging connections and relabeling the nodes.
In Figure 2 a circle presents a node and the dotted arrows new links to be formed.

Lemma 1. The average hop-distance in an r-dimensional ORLS is r/2.

Proof. By induction of r. When r = 1, the result is true by an inspection.
Let us assume that the result is true for r − 1. The average hop-distance from
the node N0 to the other nodes in an (r − 1)-dimensional ORLS having n =
2r−1 nodes can be evaluated by dr−1 = (|N0| + |N1|, . . . , |Nn−1|)/n, where |Ni|
means the minimum of the hop-distances from the node N0 to a node Ni. When
two (r − 1)-dimensional ORLSs NW and NW ′ are connected to form an r-
dimensional ORLS , each node Ni of NW is connected to the node N(i+n) mod 2n

of NW ′ in the new network. A consequence is that the average hop-distance
of an r-dimensional ORLS can be evaluated by dr = (2|N0| + 1 + 2|N1| +
1+, . . . , +2|Nn−1| + 1)/2n = (n + 2(|N0| + |N1|+, . . . , +|Nn−1|))/2n = dr−1 +
1/2 = (r − 1)/2 + 1/2 = r/2.

Lemma 2. The maximum of hop-distances (diameter) between any two nodes
Ni and Nj (i �= j) in an r-dimensional ORLS is r.

Proof. Lemma 2 is a direct consequence of the definition of ORLS .

2.3 Feasibility of ORLS with Systolic Routers

The switching time of LiNbO3 switches lies in the range of 10–15 ps [1]. The
length of a packet (lp) can be evaluated by equation lp = Np×vc

B×r , where Np is the
size of a packet in bits, vc = 0.3 m/ns is the speed of light in vacuum, r = 1.5
is the refractive index of a fiber [1], and B is the link bandwidth. Assuming the
bandwidth to be B=100 Gb/s, the length of a bit in the fiber is vc

B×r = 2 mm.
In order to estimate the feasibility of a 6-dimensional ORLS (having 64 pro-

cessing nodes) let us assume the link bandwidth to be B = 100 Gb/s, and the
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size of packets to be Np = 256 b. The corresponding length of a packet in the
fiber is lp � 512 mm, and the length of a time slot is tp � 2.6 ns. Assuming
the length of a clock cycle of the processors to be tcc = 1 ns (corresponding
to the frequency of 1 GHz), it will take 2.6 clock cycles for a packet to travel
between two adjacent routing nodes. The overall amount of fibers is Lf � 200
m, and the average routing time of a packet is tr � 8 clock cycles.

However, a couple of drawbacks arise, when the system is scaled up. First, the
degree of the routing nodes in an ORLS increases logarithmically with respect to
the size of the network. Second, putting M elements in the physical space requires
at least volume of size Ω( 3

√
M) [16,17]. We consider the requested parameters

to be reasonable and the design to be feasible if the number of processing nodes
is restricted up to a few hundreds of nodes.

3 Routing in ORLS

We develop a routing algorithm for ORLS. Routing in ORLS can be divided
into two phases, namely, a preprocessing phase and a routing phase. Section 3.1
presents the preprocessing phase. Section 3.2 presents the routing algorithm for
our design.

3.1 Preprocessing Phase of Routing

The preprocessing phase consists of determining routing paths for packets, de-
termining the states of routers, and determining routing tables for the nodes.
Section 3.1 presents determining routing paths. Section 3.1 introduces determin-
ing routing tables and the states of routers.

Determining Routing Paths. Let us consider an “arithmetic distance” from
the node N0 to a node Ni in an r-dimensional ORLS. It can be expressed as
i = xr−12r−1 + . . . + x020, xl ∈ {0, 1}. For example, the distance from the
node N0 to the node N27 in an 5-dimensional ORLS can be expressed as 27 =
1× 24 +1× 23 +0× 22 +1× 21 +1× 20. The series 24 + 23 + 21 + 20 corresponds
to the optical link path N0 → N16 → N24 → N26 → N27 in the 5-dimensional
ORLS using the longest shortcut at each hop step. Let 〈4, 3, 1, 0〉 denote the
corresponding routing path of the length of four from N0 to N27 using three
times shortcut edges and once a ring edge.

Figure 3 presents the routing groups of a 3-dimensional ORLS. Table 1
presents the corresponding routing paths between the nodes presented in Figure
3. Consider routing from the node N0. Paths are divided in r = 3 groups. Group
G0 consists of the routing path 〈0〉 leading to the node N1, group G1 consists
of the routing paths 〈1〉 and 〈1, 0〉 leading to the nodes N2 and N3, and finally
group G2 consists of the routing paths 〈2〉, 〈2, 0〉, 〈2, 1〉, and 〈2, 1, 0〉 leading to
the nodes N4, N5, N6 and N7 correspondingly. Routing paths between nodes
can be evaluated by Algorithm Routing Paths.
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Fig. 3. Routing groups of a 3-dimensional ORLS

Algorithm Routing Paths
Input: The set of nodes N of an r-dimensional ORLS
Output: Groups of routing paths G0 . . .Gr−1

for each Ns ∈ N pardo {each node evaluates}
for 0 ≤ d < 2r do

Find the binary presentation sk for which
|s − d| = sk = xr−12r−1 + . . . + x121 + x020;

Evaluate the corresponding routing path
〈α〉 = 〈z1, z2, . . . , zk〉 for which zi is
the exponent of the ith term in sk having xi = 1
and add it into the routing path Gz1

Obviously, Algorithm Routing Paths divides paths in r groups (if the path
leading to the processor itself is omitted) so that the size of the ith group is 2i.
Let 〈z1, αk〉 ∈ Gi denote the kth routing path of group Gi and αk denote the
”tail” of it. For a half of routing paths of group 〈z1, αk〉 ∈ Gi (1 < i < r) holds
true 〈αk〉 ∈ Gi−1.

Determining Routing Tables and the States of Routers. The structure of
ORLS is node and edge symmetric. That is why it is enough to consider routing
from the node N0 to the other nodes in the network. Routing in ORLS has a
number of properties. First, at each time step t all the routers of the network are
set in the same state corresponding to an injective mapping function πi. Second,
any two packets sent at the same time may never collide if those are chosen from
different routing groups and their routing paths differ from each path positions.
Finally, a packet can be sent into an output link oi if there is no packet sent
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Table 1. Routing paths in 3-dimensional ORLS

N0 N1 N2 N3 N4 N5 N6 N7

N0 〈〉 〈0〉 〈1〉 〈1, 0〉 〈2〉 〈2, 0〉 〈2, 1〉 〈2, 1, 0〉
N1 〈2, 1, 0〉 〈〉 〈0〉 〈1〉 〈1, 0〉 〈2〉 〈2, 0〉 〈2, 1〉
N2 〈2, 1〉 〈2, 1, 0〉 〈〉 〈0〉 〈1〉 〈1, 0〉 〈2〉 〈2, 0〉
N3 〈2, 0〉 〈2, 1〉 〈2, 1, 0〉 〈〉 〈0〉 〈1〉 〈1, 0〉 〈2〉
N4 〈2〉 〈2, 0〉 〈2, 1〉 〈2, 1, 0〉 〈〉 〈0〉 〈1〉 〈1, 0〉
N5 〈1, 0〉 〈2〉 〈2, 0〉 〈2, 1〉 〈2, 1, 0〉 〈〉 〈0〉 〈1〉
N6 〈1〉 〈1, 0〉 〈2〉 〈2, 0〉 〈2, 1〉 〈2, 1, 0〉 〈〉 〈0〉
N7 〈0〉 〈1〉 〈1, 0〉 〈2〉 〈2, 0〉 〈2, 1〉 〈2, 1, 0〉 〈〉

during the previous time steps preferring the same output and other packets
bypassing or to be sent differ from target address by each path positions.

Consider routing in a 3-dimensional ORLS. At the time step 0 the node N0

may send packets using the routing paths 〈2, 1, 0〉, 〈1, 0〉, and 〈0〉. The corre-
sponding mapping would be π0 : (i0, i1, i2, u0, u1, u2) → (	, 	, 	, o0, o1, o2), where
	 denotes that we do not know the state yet. Tentative mappings π1, π2, and π3

for the next three rounds would be π1 : (i0, i1, i2, u0, u1, u2) → (v0, o0, o1, 	, 	, 	),
π2 : (i0, i1, i2, u0, u1, u2) → (v0, o0, 	, 	, 	, 	), and π3 : (i0, i1, i2, u0, u1, u2) →
(v0, 	, 	, 	, 	, 	). During the time step 1 the output port o2 is free. In prin-
ciple, we could choose any of packets using the routing paths 〈2〉, 〈2, 0〉, or
〈2, 1〉 to be routed. During the time step 2, however, the output port o0 is
reserved to route a packet using the routing path 〈2, 1, 0〉 and a packet us-
ing the routing path 〈2〉 can be sent at any time. A packet using the routing
path 〈2, 1〉 is chosen to be sent and the mappings π1, π2, and π3 are updated
to π1 : (i0, i1, i2, u0, u1, u2) → (v0, o0, o1, 	, 	, o2), π2 : (i0, i1, i2, u0, u1, u2) →
(v0, o0, o1, 	, 	, 	), π3 : (i0, i1, i2, u0, u1, u2) → (v0, v1, 	, 	, 	, 	). The mappings
are updated until there are no packets left to route. The last mapping having
only one-hop paths to route can be merged with the mapping π0 because in it
all the connections to the receivers are free. The final four mappings needed are

π0 : (i0, i1, i2, u0, u1, u2) → (v0, v1, v2, o0, o1, o2),
π1 : (i0, i1, i2, u0, u1, u2) → (v0, o0, o1, 	, 	, o2),
π2 : (i0, i1, i2, u0, u1, u2) → (v0, o0, o1, 	, 	, o2), and
π3 : (i0, i1, i2, u0, u1, u2) → (v0, v1, o0, 	, o1, o2).

The corresponding states of the routers are presented in Figure 4 and the cor-
responding timing diagram of the 3-dimensional ORLS is presented in Figure 5.

Consider routing from N0 to other nodes Nd in an r-dimensional ORLS. It
is worth noting that a half of the packets must be sent using the shortcut link
leading to the node set {Nn/2, . . . , Nn−1}, a quarter of the packets using the
shortcut link leading to the node set {Nn/4, . . . , Nn/2−1}, etc. On the other hand,
the router of the node N0 is an intermediate node for a number of packets from
nodes in the upstream. The algorithm determining the mappings and routing
table is Routing Table and it can be presented as follows:
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Fig. 4. Routing states of a 3-dimensional ORLS

Algorithm Routing Table
Input: Groups of routing paths G0 . . .Gr−1 of node Ns

Output: Routing table Rs and states of routers
for each Ns ∈ N pardo {each node evaluates}

for phase = 0 to n/2 do
for group = r-1 downto 0 do

if Ggroup �= ∅ then
Pick up the longest path 〈α〉 from Ggroup

if 〈α〉 can be embedded into mappings Πphase then
Embed 〈α〉 into mappings Πphase

Update routing table R so that packets using 〈α〉
are sent at phase phase

else return 〈α〉 into Ggroup

Update mappings Π0 and Πn/2

Algorithm Routing Table needs Θ(n log n) iteration rounds to execute the
routing table. To see why, let us consider the sizes of routing groups and post-
fixes of routing paths. Obviously, the size of the largest group Gr n/2 = 2r−1 is
the minimum for iteration rounds. At the first round, the longest routing path
is selected from each routing group. The next n/4− 1 sendings from the largest
group Gr prevent sendings from the group Gr−1 because the second term in rout-
ing paths of group Gr equals to the first term of the routing paths of group Gr−1.
After n/4 = 2r−2 rounds sendings from group Gr−1 can be started overlapped
with the rest of the group Gr . Recursively, sendings from the groups Gr−2 . . .G1

can be started after rounds 2r−2 + 2r−3 + . . . + 20. The overall number of iter-
ation rounds is 2r−2 + 2r−3 + . . . + 20 = 2r−1 − 1 = n/2. The inner loop needs
Θ(r) = Θ(log n) iteration rounds to be executed. The routing table of the node
N0 in a 3-dimensional ORLS is presented in Table 2.
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Fig. 5. Timing diagram of a 3-dimensional ORLS

Table 2. Routing table of N0 in a 3-dimensional ORLS
Ni Path Phase Output

N1 〈0〉 0 o0

N2 〈1〉 3 o1

N3 〈1, 0〉 0 o1

N4 〈2〉 3 o2

N5 〈2, 0〉 2 o2

N6 〈2, 1〉 1 o2

N7 〈2, 1, 0〉 0 o2

3.2 Routing Algorithm for ORLS

At the preprocessing phase each node Ns determines routing paths to the other
nodes Nd of the system, routing table, and the states of the routers. This is done
only once when the system is set up. At the beginning of each routing phase
each node of the ORLS has a number of packets to send. Each node Ns inserts
packets destined to node Nd into sending buffer Bphase,output according to the
phase to be sent and the output port for the packet.

At each time step t each node picks up packets from sending buffers
Bt mod (n/2+1),oi

according to the routing table and injects them into outgoing
links. At the same time the routers are set in state Πt mod (n/2+1).

4 Analysis of Routing

In the preprocessing phase, each of h packets of processor Pi are inserted into the
sending buffers according to their phase and output link to be sent. Clearly, all
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of the packets have been routed after time O(S ·n/2), where S is the maximum
size of the all buffers. According to Mitzenmacher et al. [18], supposing that we
throw n balls into n bins each ball choosing a bin independently and uniformly at
random, then the maximum load is approximately log n/ log log n with high prob-
ability1. The maximum load means the largest number of balls in any bin. Corre-
spondingly, if we have n packets to send and n sending buffers during a simulation
step, then the maximum load of sending buffers is approximately log n/ log log n
whp. The overall routing time of those packets is n log n/2 log log n+Θ(1), which
is not work-optimal according to the definition of work-optimality.

If the size of an h-relation is enlarged to h ≥ n log n, the maximum load is
Θ(h/n) whp [19]. Assuming that h = n log n, the maximum load is Θ(log n) and
the corresponding routing time is Θ(n log n). A work-optimal result is achieved
according to the definition of work-optimality.

Routing an h-relation in time Θ(h) implies work-optimality. We ran some
experiments to get an idea about the cost. We ran 100 simulation rounds for each
occurence using a C program. Packets were randomly put into output buffers
and the average value of the routing time over all 100 simulations were evaluated.
The average cost were evaluated using equation c = t/h, where t is the average
routing time. Figure 6 gives support to the idea that h does not need to be
extremely high to get a reasonable routing cost.

5 Conclusions and Future Work

We have presented an all-optical ring network design with logarithmic shortcuts
and a systolic routing protocol for it. No electro-optical conversions are needed
1 We use whp, with high probability to mean with probability at least 1-O(1/nα) for

some constant α.
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during the transfer and all the packets injected into the machinery are guaran-
teed to reach their destinations. The design and the systolic routing protocol
offer a work-optimal routing of an h-relation if h ∈ Ω(n log n). We believe that
the simple structure presented and the systolic routing protocol are useful and
realistic if the number of processing nodes is restricted up to a few hundreds of
nodes. There still remain a number of open questions which we shall attempt to
answer in the future, e.g. how to deal with node fails?
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Abstract. The OTIS-Network (also referred to as two-level swapped network) 
is composed of n clones of an n-node original network constituting its clusters. 
It has received much attention due to its many favorable properties such as high 
degree of scalability, regularity, modularity, package-ability and high degree of 
algorithmic efficiency. In this paper, using the construction method, we show 
that the OTIS-Network is Pancyclic if its basic network is Hamiltonian-
connected. The study of cycle embeddings with different sizes arises naturally 
in the implementation of a number of either computational or graph problems 
such as those used for finding storage schemes for logical data structures, layout 
of circuits in VLSI, etc. Our result is resolving an open question posed in [6] 
and generalizing a number of proofs in the literature for specific Hamiltonian 
properties of similar networks.  

1   Introduction  

The Optical Transpose Interconnection System (OTIS), which was proposed in [1, 2, 
3], generates a wide class of high-performance scalable interconnection networks. It 
offers a new optoelectronic computer architecture that takes benefits from both optical 
and electronic technologies. In this architecture, processors are divided into groups 
where electronic interconnects are used to connect processors within each group, 
while optical interconnects are used for inter-group communication [3]. In such an 
OTIS system, an optical link connects processor p of group g to processor g of group 
p. It has been shown in [4] that when the number of processors in a group equals the 
number of groups, the bandwidth and the power consumption in OTIS-Networks are 
optimized and system area and volume are minimized. Thus, in an N2-processor OTIS 
network, processors are partitioned into N groups of N processors. Besides the 
electronic connections between the processors in each group, processor i in group j is 
optically connected to processor j of group i. The OTIS-hypercube and OTIS-mesh 
are two of the most widely studied instances of the OTIS architecture [5-17]. A 
number of algorithms have been developed for these networks, such as routing, 
selection, and sorting [5, 8, and 11], data rearrangement [8], matrix multiplication 
[13], and broadcasting [6]. Many of topological properties of these systems, such as 
node degree, diameter, β-cut, and bisection width are addressed in previous studies [6, 
8]. Also, in [9, 10], it was proved that if G is a Hamiltonian-connected graph, so is the 
OTIS-G. Moreover, the fault tolerance of OTIS-Networks has been addressed and the 



546 M.R. Hoseinyfarahabady and H. Sarbazi-Azad 

fault diameter of OTIS-G is derived with respect to the fault diameter of G [9]. In [15, 
17] the performance merits of the OTIS-hypercube and the effect of different 
structural and workload parameters on the overall performance are investigated. Their 
result reveals that the OTIS multi-computers are good candidates for interconnection 
networks of future generation parallel computers. 

In this paper, we prove the conjecture proposed in [6]. According to this conjecture 
if G contains a cycle of length L, then there exists a cycle of length L2 in OTIS-G. We 
also generalize this result and demonstrate that if there exists a Hamiltonian path 
between every two arbitrary nodes of graph G (or if G is Hamiltonian-connected), 
then all cycles with length 7, 8 … |V (G) |2 can be constructed in OTIS-G.  

The organization of the paper is as follows. In Section 2, OTIS-Network is 
formally defined and some basic properties of this network are reported. In Section 3, 
the Pancyclicity property of the OTIS-G with regard to the Hamiltonian property of 
the basic network G is proved. Finally, Section 4 concludes this paper. 

2   The OTIS Network: Definition and Basic Properties 

The reader is referred to [6] for an in-depth account of basic concepts and properties 
of the OTIS networks such as topology, routing algorithms, broadcasting, embedding 
of graphs, etc. In this section, more specific concepts are described. 

Definition 1. Let G = (VG, EG) be an undirected graph. The OTIS-G = (VOT, EOT) 
network is an undirected graph defined by: 

VOT = {<g, p> | g, p ∈VG } and  
EOT = {(<g, p1>, <g, p2>) | g ∈VG, (p1, p2)∈VG }U {(<g, p>,<p,g>) | 

g, p∈VG , g ≠ p }. 

The graph G is called the factor (or basic) network of OTIS-G. If G has N nodes, the 
OTIS-G is composed of N node-disjoint sub-networks G1, G2, …, GN, called groups. 
Each of these groups is isomorphic to the factor graph G. A node <g, p> in OTIS-G 
corresponds to the node of address p in group Gg. An intra-group edge of the form 
(<g, p1>, <g, p2>) corresponds to an electronic link, while an inter-group edge of the 
form (<g, p>, <p, g>) corresponds to an optical link and passing over such a link is 
referred to as an OTIS movement [6]. Figure 1 displays some examples of the OTIS-
G where G is either a Q3 (3-dimensional hypercube) or a K5 (complete graph of 5 
nodes) [15].   

A generalization of the OTIS-Networks is an l-level hierarchical swapped network 
[9], denoted SW(G, l), which is based on a nucleus (factor) graph G, too. To build an 
l-level swapped network, SW(G, l), we use Nl-1= |SW(G, l-1)|V identical copies 
(clusters) of SW(G, l-1). Each copy of SW(G, l-1) is viewed as a level-l cluster. Node i 
in cluster j  is connected to node j in cluster i for all i ≠ j, 0 ≤ i, j ≤ Nl-1. It is clear that 
SW(G, 2) is topologically equivalent to the OTIS-G network. The SW(G, 3) is 
topologically isomorphic to the OTIS-OTIS-G network and this holds for higher level 
networks. 
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(b)

 

Fig. 1. (a) A 3-dimensional OTIS-hypercube with the optical connections exiting one of the 
sub-graphs (numbers inside parenthesis are the group numbers) (b) The topologies of OTIS-K5 

Theorem 1. [9] If G has node degree d and diameter D, the degree and diameter of 
SW(G, l) are dsw = d + l and Dsw = 2l-1(D + 1) - 1, respectively. 

3   Pancyclicity of OTIS-Networks 

In this section, we propose a solution to the open question stated in [6]. Let G be a 
graph of n≥3 vertices. A k-cycle is a cycle of length k. A Hamiltonian cycle (path) of 
G is a cycle (path) containing every vertex of G. A Hamiltonian graph is a graph 
containing a Hamiltonian cycle. We prove that if there is an L-cycle in the factor 
graph G, this would give a cycle of length L2 in OTIS-G. In a special case, it would 
imply that if G is Hamiltonian, so is OTIS-G. Studying Hamiltonicity and related 
properties of interconnection networks has attracted much attention [5, 9, 14, 18-20]. 

Theorem 2. [6] If there exists an L-cycle (a cycle of length L) in G, then there exists a 
cycle of length L2-L in OTIS-G. 
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Theorem 3. If graph G contains an L-cycle, then there exists an L2-cycle in OTIS-G. 

Proof. We prove this by induction on L, the length of the cycle. By considering the 
parity of L, we regard 2 separate cases. 

Case 1. L is even: Let L = 2S and 021222210 γγγγγγγ =−− SSS ,,,...,,  be the circular 

sequence of node addresses corresponding to an L-cycle in G, )G(VL ≤ . We obtain 

such a cycle in each of 2S groups namely 
1222210 −− SS

G,G,...,G,G,G γγγγγ  of OTIS-G. 

When L is equal to 4, one can easily check the correctness of the base of induction. 
To achieve the L2-cycle within OTIS-G, for L>4, we remove from each 

cycle 021222210 γγγγγγγ =−− SSS ,,,...,,  of sub-graph 125 −≤≤ Si,G
iγ , the two edges 

),,,( ii ><>< 10 γγγγ  and ),,,( ii ><>< 32 γγγγ , and replace them by the optical 

inter-group edges ),,,( ijji ><>< γγγγ for 5≤i≤2S-1, 0≤j≤3. As well, within the sub-

graphs 
0γG and 

1γG , we remove all edges of the form  ),,,( tt ><>< +12020 γγγγ  and 

),,,( tt ><>< +12121 γγγγ  for 2≤t≤S-1. In a similar way, within the sub-graphs 

  
2γG and 

3γG , we remove all links of the form ),,,( tt ><>< − 22122 γγγγ  and 

),,,( tt ><>< − 23123 γγγγ  for 3≤t≤S. In addition, let us remove edges 

),,,( ><>< 3020 γγγγ and ),,,( ><>< 1404 γγγγ  from the corresponding subgroup 

and replace them by the inter-group edges ),,,( ><>< 0220 γγγγ , 

),,,( ><>< 0330 γγγγ , ),,,( ><>< 0440 γγγγ , and ),,,( ><>< 1441 γγγγ . Therefore, 

all of L2 nodes which have already belonged to separate cycles within separate groups 
now create a unique L2-node cycles within the OTIS-G. 

Case 2. L is odd: Let L = 2S-1 and 0122222210 γγγγγγγ =−−− SSS ,,,...,,  be the L-cycle 

in G, )G(VL ≤ . We have such a cycle in each of 2S-1 groups namely 

2222210 −− SS
G,G,...,G,G,G γγγγγ  in the OTIS-G. The following construction method 

can build all cycles of length L≥3: Remove edge ),,,( ii ><>< 10 γγγγ  from each sub-

graph 
i

Gγ , 2≤i≤2S-2, and replace it with an inter-group edges of the form 

),,,( ii ><>< 00 γγγγ  and ),,,( ii ><>< 11 γγγγ  for 2≤i≤2S-2. Also, remove all edges 

of form ),,,( tt ><>< − 20120 γγγγ  and ),,,( tt ><>< +12121 γγγγ , for 1≤t≤S-1, within 

sub-graphs 
0γG and 

1γG . Finally, add the edge ),,,( ><>< 0110 γγγγ  to close the 

cycle.                                                                                                                              □ 

Theorem 4. If G is Hamiltonian, then OTIS-G is also Hamiltonian.  

Proof. Theorem 3 implies that if G has a cycle of length )G(V , then OTIS-G has a 

cycle of length )GOTIS(V)G(V −=2
.                                                                       □ 

In the rest of this section, the relation of two important properties of Hamiltonian-
connectedness of the factor graph G and pancyclicity of the OTIS-G is studied. 
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Precisely, it will be proved that the OTIS-G network possesses all cycles of length 7, 

8, …, and 
2

)G(V ,  provided that the factor graph G is Hamiltonian-connected.  

Definition 2. For a given network G=(V, E), G is said to be Hamiltonian-connected if 
it contains a Hamiltonian path starting from any node x∈V and ending at any node 
y∈V-{x}, i.e. a path that leads from x to y and traverses every node of G exactly once. 

Definition 3. For a given network G=(V, E) and a given set { }V(G)..., 4, 3, ⊆Σ , G is 

called to be pancyclic−Σ  provided that G contains all cycles of length Σ∈δ . 

Comparably, G is said to be pancyclic−Σ  if G contains all cycles of length ∈δ {3,4 

… |V(G)|}- Σ . 

Definition 4. A graph G is said to be pancyclic, if it is pancyclic−Σ  where Σ ={3,4 

… |V(G)|}. Graph G is said to be weakly pancyclic [20] if it contains cycles of all 
lengths between a minimum and a maximum cycle length that can be embedded 
within G.  

Pancyclicity is an important property determining if the topology of a network is 
suitable for an application in which mapping rings of different lengths into the host 
network is required. Such cycle embedding in various networks has attracted much 
attention and been a challenging research issue in recent years [18- 20]. For 
OTIS-networks, the only result about its Hamiltonian property is the one in [9, 10]. 
There, authors showed that if the factor graph G is Hamiltonian, so is the OTIS-G. 
However, the following theorem presents a remarkable relation between Hamiltonian-
connectedness of the factor graph G and pancyclicity of the OTIS-G.  

Theorem 5. The OTIS-G network is pancyclic−Σ , for Σ ={3,4,5,6}, provided that 

the factor graph G is Hamiltonian-connected (i.e. OTIS-G is weakly pancyclic).  

Proof. To construct an L-cycle within the OTIS-G graph, for 7 ≤ L ≤ 
2

)G(V , we 

consider two different cases. First, we deal with the problem of finding the cycles of 
length L, 7 ≤ L ≤ 12 +× )G(V , and then we consider other remaining cycle lengths.  

Case 1. Since G is Hamiltonian-connected, we are able to find a Hamiltonian path 
between two arbitrary neighboring nodes u and v in G. Let 

v)G(V)G(Vu ,,..., γγγγγγ == −− 1210  be the nodes address sequence corresponding to 

this −)G(V cycle in G. Two following methods construct all cycles of length 7 ≤ L ≤ 

12 +× )G(V  within OTIS-G. 

When L is odd: Let 12 += ξL , for L≤≤ ξ3 . We build the L-cycle within OTIS-G 

graph as follows. (Note that these cycles only use three different groups in OTIS-G)   

12 +ξC : ),,,( ><>< 0110 γγγγ || ),,,( ><>< 1101 γγγγ || ),,,( ><>< 2111 γγγγ || … || 

),,,( ><>< −− 1121 ξξ γγγγ || ),,,( ><>< −− 0111 γγγγ ξξ || ),,,( ><>< −− 2010 ξξ γγγγ || 

… || ),,,( ><>< 1020 γγγγ . 
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When L is even: Let 42 += ξL , for 22 −≤≤ Lξ . We build the cycle of length L 

within OTIS-G as follows (we assume 3>)G(V ): 

42 +ξC : ),,,( ><>< 0220 γγγγ || ),,,( ><>< 1202 γγγγ || ),,,( ><>< 3121 γγγγ || … || 

),,,( ><>< +111 ξξ γγγγ || ),,,( ><>< ++ 0111 γγγγ ξξ || ),,,( ><>< + ξξ γγγγ 010  || 

… || ),,,( ><>< 2030 γγγγ . 

The above-mentioned cycle consists of joining two paths of length ξ  within the 

groups  g0 and g1, and two path of length 2 within groups g2 and ξg , respectively. For 

the case of 3=)G(V , we compose the cycle of length 8 as follows: 

8C : ),,,( ><>< 0220 γγγγ || ),,,( ><>< 2202 γγγγ || ),,,( ><>< 1222 γγγγ  

|| ),,,( ><>< 2112 γγγγ  || ),,,( ><>< 1121 γγγγ || ),,,( ><>< 0111 γγγγ  || 

),,,( ><>< 1001 γγγγ  || ),,,( ><>< 2010 γγγγ . 

Case 2. To build a cycle of length L, for 12 +× )G(V  ≤ L ≤ 
2

)G(V , L could be 

written as ξ+= )G(VKL , where )G(V<< ξ2  and )G(VK <≤3  (case of  

)G(VK =  could be treated according to theorem 3). The following method generates 

a cycle of length ξ+)G(VK  within OTIS-G. The sequence 

v)G(V)G(Vu ,,..., γγγγγγ == −− 1210  forms a Hamiltonian path between two arbitrary 

nodes of u and v in G showed by HP(u, v). Furthermore, we choose group Gm to 
construct a path of length ξ  within it, where ),Kmax(m ξ= .  

ξ+)G(VKC : ),,,( mmmm ><>< −− 21 γγγγ  || ),,,( mmmm ><>< −− 32 γγγγ  || … || 

),,,( mmmm ><>< −+− ξξ γγγγ 1  || ),,,( mmmm ><>< −− γγγγ ξξ  

|| ),,,(HP mmmm ><>< +−−− 1ξξξ γγγγ  || ),,,( mmmm ><>< −+−+−− ξξξξ γγγγ 11  || 

),,,(HP mmmm ><>< +−+−−+− 211 ξξξξ γγγγ  || ),,,( mmmm ><>< +−+−+−+− 1221 ξξξξ γγγγ  

|| … || ),,,(HP mmmm ><>< ++−++−+−++− 211 ζξζξζξζξ γγγγ  ||  

),,,( mmmm ><>< ++−++−++−++− 1221 ζξζξζξζξ γγγγ  || … || 

),,,(HP mkmkmkm ><>< −−+−−+−−+− 1232 γγγγ ξξξ  || 

),,,( kmmmkm ><>< −+−−−−+− 2112 ξξ γγγγ  || ),,,(HP mmkmm ><>< −−+−− γγγγ ξ 121   || 

),,,( mmmm ><>< −− 11 γγγγ . 

In the above cycle, variable ζ changes between 0 and k-3.  
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For the special case of 1+= )G(VKL , )G(VK <≤3 , the following construction 

method could be used. Let ),,,(BackP jiji ><>< ′γγγγ , for 10 −≤′<≤ )G(V|jj  

denote a path within group Gi which starts from node >< ji ,γγ , ends at node 

>< ′ji ,γγ , and does not include any node of the form >< li ,γγ  for all jlj ′<< . 

This path can be easily constructed as follows: 

),,,(BackP jiji ><>< ′γγγγ : >< ji ,γγ || >< −1ji ,γγ  || … || >< 0γγ ,i  || 

>< −1)G(Vi ,γγ  || … || >< +′ 1ji ,γγ || >< ′ji ,γγ . 

Now, we can easily state our method to build a cycle of length 1+= )G(VKL : 

1+)G(VKC : ),,,(BackP )G(V ><>< − 1010 γγγγ  || ),,,( ><>< 0110 γγγγ  || 

),,,(BackP ><>< 2101 γγγγ  || … || ),,,(BackP iiii ><>< +− 11 γγγγ  || 

),,,( iiii ><>< ++ γγγγ 11  || … || ),,,(BackP KKKK ><>< −−−− 1232 γγγγ  || 

),,,( KKKK ><>< −−−− 2112 γγγγ  || ),,,(BackP )G(VKKK ><>< −−−− 1121 γγγγ  || 

),,,( K)G(V)G(VK ><>< −−−− 1111 γγγγ  || ),,,(HP )G(VK)G(V ><>< −−− 0111 γγγγ || 

),,,( )G(V)G(V ><>< −− 1001 γγγγ . 

The abovementioned cycle consists of concatenating K-1 paths of length |V(G)|-1, 
one path of length K, and one Hamiltonian path of length |V(G)|, contributing in a 
cycle of length K|V(G)|+1 in the OTIS-G.                                                                     □ 

The above cases show that the Hamiltonian-connectedness of factor graph G implies 
the weak Pancyclicity of the OTIS-G for Σ = {7,8 … |V(G)|2}. 

4    Conclusions and Future Work 

The OTIS structure is an attractive inter-node communication network for large 
multiprocessor systems as it offers benefits from both optical and electrical 
technologies. A number of suitable properties of OTIS-G networks including basic 
topological properties, embedding, routing, broadcasting, and fault tolerance have 
been studied in the past. As well, a number of parallel algorithms like parallel sorting 
and Lagrange interpolation algorithm have been studied [5-14]. In this paper, we 
addressed an open question stated in [6]; it says that the OTIS-G possesses an 
L2-cycle provided that the factor graph G contains an L-cycle. Moreover, embedding 
of different size cycles into networks is an important issue for development of some 
algorithms of control/data flow for distributed computation, which is also known as 
Pancyclicity. We have expressed in mathematical terms a general definition for 
Pancyclicity of a graph which can cover all the different cases previously stated in the 
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literature. In this connection, we have proved the Weak Pancyclicity of OTIS-G when 
the factor graph G is Hamiltonian-connected.  

The future work, in this line, includes identifying the necessary and sufficient 
conditions of factor graph G for the Pancyclicity of the OTIS-G.  
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Abstract. Even though there have been many research works on dis-
tributed deadlock detection and recovery mechanisms, the multi-cycle
deadlock problems are not extensively studied yet. This paper proposes
a multi-cycle deadlock detection and recovery mechanism, named as
MC2DR. Most existing algorithms use edge-chasing technique for dead-
lock detection where a special message called probe is propagated from
an initiator process and echoes are sent back to it that carries on nec-
essary information for deadlock detection. These algorithms either can’t
detect deadlocks in which the initiator is indirectly involved or a single
process is involved in multiple deadlock cycles. Some of them often de-
tect phantom deadlocks also. MC2DR defines new structures for probe
and victim messages, allows any node to detect deadlock dynamically,
which overcomes the aforementioned problems and increases the dead-
lock resolution efficiency. The simulation results show that our algorithm
outperforms the existing probe based algorithms.

1 Introduction

A distributed deadlock can be defined as cyclic and inactive indefinite waiting
of a set of processes for exclusive access to local and/or remote resources of
the system. Such a deadlock state persists until a deadlock resolution action is
taken. Persistence of a deadlock has two major deficiencies: first, all the resources
held by deadlocked processes are not available to any other process and the
second, the deadlock persistence time gets added to the response time of each
process involved in the deadlock. Therefore, the problem of prompt and efficient
detection and resolution of a deadlock is an important fundamental issue of
distributed systems [1, 3, 10]. 1 The state of a distributed system that represents
the state of process-process dependency is dynamic and is often modeled by a
directed graph called Wait-for-Graph (WFG), where each node represents a
process and an arc is originated from a process waiting for another process
holding that resource [13, 14]. A cycle in the WFG represents a deadlock. From
now on, processes in the distributed system will be termed as nodes in this paper.

1 This research was supported by the MIC, Korea, under the ITRC support program
supervised by the IITA, Grant no - (IITA-2006 - (C1090-0602-0002)).
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(a) (b) (c)

Fig. 1. Wait-for-Graphs, some example node-node dependency scenarios

As shown in Fig. 1(a), node ‘2’ is called successor of parent node ‘1’ and {7, 8,
11, 12} is called a deadlocked set of processes. Such state graph is distributed
over many sites, may form multiple dependency cycles and thereby many nodes
are blocked indefinitely [12, 13].

The most widely used distributed deadlock detection scheme is edge-chasing
that uses a short message called probe. If a node suspects the presence of a dead-
lock, it independently initiates the detection algorithm, creates a probe message
and propagates it outward to all of its successor nodes. Deadlock is declared
when this probe message gets back to the initiator i.e., forming a dependency
cycle [1, 2, 3, 4, 5, 6]. The key limitation of these algorithms is that they are
unable to detect deadlocks whenever the initiator is not belong to the deadlock
cycle. In the worst case, this may result in transmission of almost N2 messages
to detect a deadlock, where N represents the number of blocked nodes in the
WFG. Algorithms proposed in [7, 8, 9, 10, 11] overcome this problem but some
of them detect phantom deadlocks and the rests can’t detect deadlocks in the
case that a single node is involved in multiple deadlock cycles.

Our proposed algorithm, MC2DR, introduces a modified probe message struc-
ture, a victim message structure and for each node a probe storage structure.
The contributions of MC2DR includes: (i) it can detect all deadlocks reachable
from the initiator of the algorithm in single execution, even though the initiator
does not belong to any deadlock, (ii) it can detect multi-cycle deadlocks i.e.,
deadlocks where a single process is involved in many deadlock cycles, (iii) it
decreases the deadlock detection algorithm initiations, phantom deadlock detec-
tions, deadlock detection duration and the number of useless messages and (iv)
it provides with an efficient deadlock resolution method.

The rest of the paper is organized as follows. A thorough study and critics of
state-of-the-art probe based algorithms are presented in section 2.
Section 3 introduces the network and computation models, section 4 and 5 de-
scribe the proposed algorithm and its correctness proof respectively. Simulation
and performance comparisons are presented in section 6 and section 7 concludes
the paper.
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2 Related Works

The key concept of CMH algorithm [1, 2] is that the initiator propagates probe
message in the WFG and declares a deadlock upon receiving its own probe gets
back. Sinha and Natarajan [3] proposed the use of priorities to reduce the no. of
probe messages. Choudhary et. al. [4] found some weaknesses of this algorithm
and Kashemkalyani and Singhal [5] proposed further modifications to this and
provided with a correctness proof. Kim Y.M. et. al. [6] proposed the idea of
barriers to allow the deadlock to be resolved without waiting for the token to
return, thereby reducing the average deadlock persistence time considerably.

None of the above algorithms can detect deadlocks in which the initiator is not
directly involved. Suppose in Fig. 1, node ’1’ initiates algorithm execution, the
deadlock cycle {7, 8, 12, 11, 7} can’t be detected by any of the above algorithms
as because in all those algorithms, deadlock is declared only if the initiator ID
matches with the destination ID of the probe message.

S. Lee in [7] proposed a probe based algorithm that exploits reply messages
to carry the information required for deadlock detection. As a result, the probe
message does not need to travel a long way returning back to its initiator and
thereby time and communication costs are reduced up to half of those of the
existing algorithms. Even though this algorithm can detect deadlocks where the
initiator node is not directly involved, but except the initiator no other nodes
will be able to detect deadlocks. For instance in Fig. 1(a), if node 1, 7 and 12
initiate algorithm executions one after another in order with little time intervals,
then the same deadlock cycle {7,8,12,11,7} will be detected by all of them, which
is a system overhead.

S. Lee and J. L. Kim in [8] proposed an algorithm to resolve deadlock in sin-
gle execution even though the initiator doesn’t belong to any deadlock. This is
achieved by building a tree through the propagation of the probes and having
each tree node collects information on dependency relationship (route string)
among its subtree nodes to find deadlocks based upon the information. But, we
found several drawbacks and incapabilities of this algorithm. First, all deadlocks
reachable from the initiator may not be resolved by a single execution of the
algorithm since a deadlock may consist of only tree and cross edges in the con-
structed tree. Second, deadlock detection algorithm works correctly for single
execution of the algorithm, but it would detect phantom deadlocks in case of
multiple executions. To prove the above statement, let we consider in Fig. 1(b),
node ’e’ initiates algorithm at sometime later than node ’a’ and in addition to
dependency edges shown in the figure, there are two other edges, one from ’e’
to ’c’ and another from ’c’ to ’b’. Node ’b’ forwarded probe message initiated by
’a’ and then as the steps of algorithm [8] phantom deadlock will be detected if
it receives probe message initiated by ’e’ before receiving one from ’d’. This is
happened due to appending unique bits for each successor (0, 1, 2,...,m) to its
own path string. Our algorithm resolves this problem by appending system wide
unique ID of individual nodes.
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The algorithm [9] proposed by the same authors, criticized [8] for not giving
any deadlock resolution method and proposed priority based victim detection.
This may lead to starvation for low priority nodes. N. Farajzadeh et. al. in [10,
11] considered simultaneous execution of many instances of the algorithm but
what happens if a single process is involved in multiple deadlock cycles was not
illustrated. Simulation has not also been carried out. Hence, their algorithm is
so weak that even in simple example scenarios it can’t detect deadlocks.

Suppose in Fig. 1(c), node ‘3’ stores the initiator ID (1) and route string (00)
of the probe message initiated by node ‘1’, forwards the message with necessary
modification to node ‘4’ and ‘6’, and then receives another probe message initi-
ated by node ‘7’, at this stage according to their algorithm node ‘3’ replaces the
stored route string with new one (0). Due to this incorrect replacement, node
‘3’ will not be able to detect deadlock cycle {3, 4, 5, 3} although it does exist.
It is not necessary to unfold that such incorrect replacement of existing route
string might also cause the probe message infinitely moving around the cycle
and increase the number of algorithm initiations as well as message passing.

3 Network and Computation Model

3.1 Network Model

We assume that each data object in our distributed system is given a unique
lock that can’t be shared by more than one node. A node can make request for
locks residing either at local or remote sites. A request for a lock is processed by
the lock manager to determine whether the lock can be granted. If the requested
lock is free, it is granted immediately; otherwise, the lock manager sends a reject
message to the requesting node and inserts the requesting node ID into the
waiting list for the lock. A reject message carries the identifier of the node which
is currently holding the resource. Upon receiving a reject message for any of the
locks requested, the node remains blocked until the lock is granted, and inserts
the lock holder’s ID into the successor list.

It is assumed that there might be one or more nodes running on each site
as we are concerned with both distributed and local deadlocks. There is no
shared memory in the system, nodes communicate with each other by message
passing. Each node is uniquely identified by its {site id:process id} pair. But for
simplicity of explanation of the proposed algorithm, we have assigned unique
integer numbers (0, 1, 2, 3,...,m) to all nodes as shown in Fig. 3.

Another important characteristic of our network model is that the underlying
channel is FIFO, i.e., messages are arrived at the destination nodes in the order
in which they were sent from the source nodes without any loss or duplication.
Message propagation delay is arbitrary but finite. MC2DR is proposed for multi-
resource model where a single process may make multiple lock requests at a time.
In this model, the condition for a blocked node to get unblocked is expressed as
a predicate involving the requested resources. In the WFG, there will be no
self-loop i.e., no node make requests for resources held by itself.
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(a) Probe Message (b) Victim Message

Fig. 2. Structure of Probe and Victim Messages

3.2 Computation Model

A node can be in any of the two states at any time instant: active and blocked. If
the requested lock is not available i.e., it is being used by some other node then
the requesting node will enter the blocked state until the resource is obtained.
Deadlock occurs when a set of nodes wait for each other for an indefinite period
to obtain their intended resources.

The probe message used for deadlock detection in MC2DR consists of four
fields as shown in Fig. 2(a). The first field InitID contains the identity of ini-
tiator of the algorithm. VictimID is the identity of the node to be victimized
upon detection of the deadlock and DepCnt of a node represents the number
of successors for which it is waiting for resources. The fourth field, RouteString,
contains the node IDs visited by probe message in order.

At each node there will be a probe message storage structure, named ProbeStor-
age, same as that of probe message for temporary storage of probes. At most one
probe message is stored in ProbeStorage at a particular time. MC2DR is history
independent and upon detection of a deadlock, respective probe message is erased
from storage. The node that detects the deadlock sends a victim message to the
node found to be victimized for deadlock resolution. This message will also be
used for deleting probes from respective storage entries. This short message con-
tains just first two fields of probe message as shown in Fig. 2(b).

4 Proposed Algorithm

4.1 Informal Description of the Algorithm

We have found in our study that a correct and efficient deadlock detection algo-
rithm needs to consider a number of parameters and corresponding strategies.

Strategies for algorithm initiation. A node initiates the deadlock detec-
tion algorithm execution if it waits for one or more resources for a predefined
timeout period, T0 and its probe storage is empty. But if T0 is shorter, then
many nodes may be aborted unnecessarily, and if it is longer, then deadlocks
will persist for a long time. Choosing appropriate value of T0 is the most critical
issue as because it does depend on several system environment factors such as
process mix, resource request and release patterns, resource holding time, and
the average number of locks held (locked) by nodes. As the above dependency
factors change dynamically, the value of T0 is also set dynamically in our algo-
rithm. If the value of T0 is decreased (or increased) at a node for each increase
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(a) (b)

Fig. 3. Example WFGs in our network model with edges labeled by probe messages

(or decrease) of DepCnt (defined in section 3.2) our simulation results show that
average deadlock detection duration and the average number of algorithm execu-
tions are decreased. Dynamic updating of T0 value also increases the probability
that the node involves in multiple deadlock cycles would initiate the algorithm
execution.

Probe message forwarding policy. On reception of probe message, a node
first checks the emptiness of its ProbeStorage. If it is found to be empty (i.e.,
till now no probe message is forwarded by this node), then it compares its own
DepCnt value with probe’s DepCnt value. If this node’s DepCnt is higher, then
probe’s VictimID and DepCnt values are updated with this node’s ID and De-
pCnt values respectively; otherwise the values are kept intact. Before forwarding
the probe message to all successors of this node, probe’s RouteString field is
updated by appending this node’s ID at last of existing string (i.e., concatenate
operation). One copy of updated probe message is saved in ProbeStorage of this
node. For example, in Fig. 3(a), node ‘0’ has initiated execution and send probe
message (0,0,1,“0”) to its successor node 1. As node 1’s ProbeStorage is empty
and DepCnt value is 2, it has updated the probe message, stored the modified
probe (0,1,2,“01”) in ProbeStorage and forwarded to its successors 2 and 4. Nodes
2, 3, 4, 5 and 6 have updated only the RouteString field of the probe message
and forwarded to their successors.

Deadlock detection. If the ProbeStorage is nonempty, the node first goes for
checking whether the stored route string is a prefix of the received probe’s route
string. If it is, deadlock is detected and otherwise the probe message is discarded.
Probe message is also discarded by a node that has just detected a deadlock.
So, MC2DR can detect deadlock cycle at any node right at the moment the
traveled path of probe message makes a dependency cycle. Node ‘1’ in Fig. 3(a)
has eventually got back its forwarded probe and detected one of the two deadlock
cycles {1,2,3,1} and {1,4,5,6,1}. If the probe message for deadlock cycle {1,2,3,1}
is received first then that from node ‘6’ is discarded or vice-versa. Again, if node
‘4’ would be the successor of node ‘6’ then two deadlock cycles {1,2,3,1} and
{4,5,6,4} would be detected (by a single probe) by node 1 and 4 respectively,
even though none of them is the initiator.
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Strategies for deadlock resolution. A deadlock is resolved by aborting at
least one node involved in the deadlock and granting the released resources to
other nodes. When a deadlock is detected, the speed of its resolution depends on
how much information about it is available, which in turn depends on how much
information is passed around during the deadlock detection phase. We opine that
rather than victimizing initiator node or node with lowest priority, it is better to
victimize a node which is more likely to be responsible for multiple deadlocks.
To make the above notion a success, MC2DR selects the node with highest
DepCnt value as victim and the deadlock detector node sends a victim message
to all successors. If the detector node is not the initiator, it also sends the victim
message to all simply blocked (node that is blocked but not a member of deadlock
cycle) nodes. On reception of this message, the victim node first forwards it to
all of its successors and then releases all locks held by it and kills itself, other
nodes delete deadlock detection information from their ProbeStorage memories.
Node ‘1’ in Fig. 3(a) has killed itself as because it has the highest DepCnt value
amongst the members in any of the cycles. Node ‘1’ is not the initiator, so it has
also sent the victim message to simply blocked node ‘0’. Node ‘3’ and node ‘6’
stop further propagation of victim message.

One exceptional condition. Even though the probability of appearing the
following exceptional condition in our algorithm is very low, we have to block it
for the sake of algorithm’s correctness. One exception of the above mechanism
in probe message discard policy is that only if any node Q is the initiator of
another probe message then rather than discarding, Q will keep the message
in a buffer space and waits for Q’s probe to return back. If Q’s probe gets
back to it or Q receives a victim message within average deadlock detection
period Td (computed as in [9]), then the buffered probe is discarded, otherwise
it is forwarded to Q’s all successors. The last one is a worst case situation in
MC2DR where node Q defers from detecting any deadlock. Let we consider in
Fig. 3(b), immediately after node ‘0’ has initiated execution, node ‘5’ starts
another one and node ‘1’ receives second probe from node ‘6’ after it has for-
warded the first one, so the second probe is discarded. Node ‘5’ has blocked first
probe from further forwarding as it is the initiator of second probe and waited
for Td. In this scenario, the chance is very high that within Td, node ‘5’ re-
ceives victim message sent by node ‘1’ (on detection of deadlock cycle 1) and
discards first probe message, deletes second probe from it’s ProbeStorage and
forwards victim message to its successor node ‘6’; otherwise, node ‘5’ forwards
first probe as described in previous part and keeps itself away from detecting any
deadlock.

4.2 Deadlock Detection and Resolution Algorithm

For a particular node i, pseudo code for deadlock detection and recovery algo-
rithm is presented in Fig. 4.
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Algorithm_Initiation() {

int W; //waiting time for a particular resource

probe p; allocate memory for p;

if (W > To && ProbeStorage == NULL) {

p = Create_Probe(i); Send_Probe(i, p);}

}

probe Create_Probe(node i) {

p.InitID = i.ID;

p.VictimID = i.ID; p.DepCnt = i.DepCnt;

p.RouteString = i.ID; return (p);

}

Send_Probe(node i, probe p){

int j = i.DeptCnt;

while (j){ //sends probe to all successors, j

send (j, p); j--; }

}

Receive_Probe(probe p){

if (ProbeStorage == NULL){

if( p.DepCnt < i.DepCnt) { p.VictimID = i.ID; p.DepCnt = i.DepCnt;}

p.RouteSting = p.RouteString + i.ID;

Send_Probe(i,p); }

else if( i.RouteString is prefix of p.RouteString){

Deadlock is detected.

//send victim message to all successors and simply blocked nodes

Send_Victim(j, p.VictimID); }

else if (i is the initiator of another probe)

Exception_Handling(p);

else { Discard (p);} //probe message is discarded

}

Receive_Victim(int VictimID){

//forward victim message to all successors

Send_Victim(j, VictimID);

if(VictimID == i.ID){ // this node is vicitimized

Release (All locks held by this node);

Kill (this node); }

else {Erase Probe message from ProbeStorage;}

}

Exception_Handling(probe p){

int Td; //avg. deadlock detection period

put p in a buffer space;

wait for Td and check for i’s receiving probe

if(i’s probe is received){ Discard (p);}

else { p.RouteSting = p.RouteString + i.ID;

Store(p); //Store p in ProbeStorage

Send_Probe(i, p); }

}

Fig. 4. Pseudo code of MC2DR
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5 Correctness Proof

Theorem 1. If a deadlock is detected, the corresponding nodes are really in
deadlocked state. Phantom deadlocks are not detected.

Proof. Let’s prove it using proof by contradiction. A set of nodes could be de-
tected as in a phantom deadlock, when the detection algorithm misinterprets
the existence of a deadlock cycle. This type of misinterpretation can be taken
place in MC2DR only and if only at least any two nodes have the same ID. In
the case, a false deadlock is detected even though the traveling path of probe
message does not make a cycle. But this contradicts with our network model,
described in section 3.1.

Theorem 2. A single deadlock cycle would never be detected by more than one
node.

Proof. Again, we use proof by contradiction. A single deadlock cycle could be
detected by multiple nodes if and only if any detection algorithm allows multiple
probes to be forwarded by a single node. But, MC2DR defers it by storing other
probes into node’s ProbeStorage. Only in exceptional condition case (described
in section 4.1), it is allowed but at the same time the forwarder node is kept away
from detecting any deadlock. Hence, there is no chance of multiple detections of
a deadlock. This is a distinctive contribution of MC2DR.

Theorem 3. Multiple deadlocks can be detected by a single probe message.

Proof. Let’s prove it by using proof by contradiction. Detection of multiple dead-
lock cycles by a single probe is prohibited whenever a detection algorithm does
not allow any node other than the initiator to detect deadlock cycles. It is further
restricted by priority based probing, where the higher priority nodes discard the
probe message initiated by low priority nodes. As described in section 4.1 un-
der the heading ”Deadlock Detection”, MC2DR defers both the above methods
and here the intermediary nodes forward the probe message towards multiple
directions, which enables MC2DR to detect multiple real deadlocks exist in the
system.

6 Simulation and Performance Comparison

We have run the simulation program using fixed sites (20) connected with un-
derlying network speed of 100Mbps, but with varying multiprogramming level
(MPL), ranges from 10 to 40. The interarrival times for lock requests and the
service time for each lock are exponentially distributed for each node. Only write
operations to data objects are considered. To increase the degree of lock con-
flicts, a relatively small size database in comparison with the transaction size has
been chosen. Experiments have been carried out in both the light and heavily
loaded environments. We have found that deadlocks increases linearly with the
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Simulation results showing performance comparisons

degree of multiprogramming and exponentially with average lock holding time.
We have compared the performance of MC2DR with that of Y.M. Kim et. al.’s
algorithm [6] and S. Lee’s algorithm [8].

As shown in Fig. 5(a), the number of phantom deadlocks detected by MC2DR
is 5 times less than Lee’s algorithm [8] and almost 3 times less than Kim’s algo-
rithm [6]. This is because phantom deadlocks can only be detected by MC2DR
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in the case of unusual excessive large size of deadlocks, not for any misinter-
pretation of nonexistence deadlock cycles. Fig. 5(b) shows the mean number of
algorithm initiations with varying timeout periods and multiprogramming lev-
els, MC2DR requires about 56% less number of initiations than [6] and about
45% less than that of [8]. This result shows congruence with the theoretical
expectation as because MC2DR dynamically controls algorithm initiations (see
section 4.1).

Average deadlock detection duration resulted from Kim’s algorithm [6] and
our algorithm is almost same for higher MPL values (>25) and is slightly less
than that from Lee’s algorithm [8], as shown in Fig. 5(c). For low to medium
MPL values (<20) MC2DR takes 30% to 50% less time than Kim’s algorithm
[6]. It is observed that the deadlock detection duration increases with MPL until
the number of nodes reaches to 30 for most graphs and then become almost flat.
The reason behind this could be the increase of simply blocked nodes with MPL
and the increased chance of algorithm initiations by nodes having higher DepCnt
values. As shown in Fig. 5(d), Kim’s algorithm passes 2 times more messages
than MC2DR and almost 1.5 times than Lee’s algorithm [8] for higher MPL
values (>33). This is because in some cases Kim’s algorithm requires multiple
executions for detecting a single deadlock. For lower to medium MPL values (10-
30), it is observed that proposed algorithm and [8] need almost same number of
messages to detect deadlocks.

Fig. 5(e) indicates that the mean deadlock persistence duration is nonlin-
ear for all the algorithms. In case of exceptional conditions arisen in MC2DR,
the persistence time may be much longer. Graphs of Fig. 5(f) shows that the
number of aborted nodes is very less in MC2DR as compared to [6] (almost
50% decreased) and [8] (almost 65% decreased). This is happened as because in
MC2DR, node having highest DepCnt value is aborted and it is more likely that
abortion of single node might untie more than one deadlock cycles. It’s a key
contribution of MC2DR.

7 Conclusion

Even though the deadlock persistence duration of MC2DR is increased highly
in some rarely occurred exceptional conditions, it is more reliable and robust as
because it does detect real deadlocks on single execution of the algorithm and
ensures detection of all deadlocks reachable from the initiator including multi-
cycle deadlocks. Algorithm initiation policy and deadlock resolution mechanism
of MC2DR make it more efficient.

References

1. Chandy, K.M., Misra, J., Haas, L.M.: Distributed Deadlock Detection. ACM Trans-
action on Computer Systems. 144–156 (1983)

2. Chandy, K.M., Misra, J.: A Distributed Algorithm for Detecting Resource Deadlocks
in Distributed Systems. In: Proceedings of the ACM Symposium on Principles of Dis-
tributed Computing, Ottawa, Canada, pp. 157–164. ACM Press, New York (1982)



MC2DR: Multi-cycle Deadlock Detection and Recovery Algorithm 565

3. Sinha, M.K., Natarajan, N.: A Priority Based Distributed Deadlock Detection Al-
gorithm. IEEE Trans. Software Engg. 11(1), 67–80 (1985)

4. Choudhary, A.N., Kohler, W.H., Stankovic, J.A., Towsley, D.: A Modified Priority
Based Probe Algorithm for Distributed Deadlock Detection and Resolution. IEEE
Transactions on Software Engg. 15(1), 10–17 (1989)

5. Kashemkalyani, A.D., Singhal, M.: Invariant Based Verification of a Distributed
Deadlock Detection Algorithm. IEEE Transactions on Software Engineering 17(8),
789–799 (1991)

6. Kim, Y.M., Lai, T.W., Soundarajan, N.: Efficient Distributed Deadlock Detection
and Resolution Using Probes, Tokens, and Barriers. In: Proc. Int’l Conf. on Parallel
and Distributed Systems, pp. 584–591 (1997)

7. Lee, S.: Fast Detection and Resolution of Generalized Distributed Deadlocks. In:
EUROMICRO-PDP 2002 (2002)

8. Lee, S., Kim, J.L.: An Efficient Distributed Deadlock Detection Algorithm. In: Proc.
15th IEEE Int’l Conf. Distributed Computing Systems, pp. 169–178 (1995)



R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 566–576, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

FROCM: A Fair and Low-Overhead Method in SMT 
Processor* 

Shuming Chen and Pengyong Ma 

School of Computer Science and Technology, 
National University of Defense Technology, Changsha. 410073 China 

mpy9608@yahoo.com.cn 
mapy@sohu.com 

Abstract. Simultaneous Multithreading (SMT)[1][2] and chip multiprocessors 
(CMP) processors [3] have emerged as the mainstream computing platform in 
major market segments, including PC, server, and embedded domains. 
However, prior work on fetch policies almost focuses on throughput 
optimization. The issue of fairness between threads in progress rates is studied 
rarely. But without fairness, serious problems, such as thread starvation and 
priority inversion can arise and render the OS scheduler ineffective. The 
fairness research methods always disturb the threads running Simultaneous, 
such as single thread sampling [4]. In this paper, we propose an approach 
FROCM (Fairness Recalculate Once Cache Miss) to enhance the fairness of 
running multithreads in SMT processor without disturbing their running states. 
Using FROCM, every thread’s IPCapproximately is re-calculated in SMT processor 
Once Cache Miss, IPCapproximately is the approximately value of IPC when the 
thread runs alone. Using IPCapproximately, the instructions’ issue priority may be 
changed in due course. We can hold the Fairness value (Fn) higher. Fn is 
fairness metric defined in this paper, when it is equal to 1, it means utterly fair. 
Results show that using FROCM, we can hold the most of Fn larger than 0.95, 
and the throughput hasn’t larger change. It needs less hardware to realize the 
FROCM, including 4 counters, 1 shifter and 1 adder. 

1   Introduction 

During the last two decades, different architectures were introduced to support 
multiple threads on a single die (chip). Simultaneous Multi-Threading (SMT) is the 
active one, in which instructions from multiple threads are fetched, executed and 
retired on each cycle, sharing most of the resources in the core. SMT processors 
improve performance by running instructions from several threads at a single cycle. 
Co-scheduled threads share some resources, such as issue queues, functional units, 
and on chip cache. The way of allocating shared resources among the threads will 
affect throughput and fairness. Prior work on fetch policies almost focuses on 
throughput optimization, such as ICOUNT2.8[1], PDG[5], and so on. The issue of 
fairness between threads in progress rates is studied rarely. But fairness is a critical 
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issue because the Operating System (OS) thread scheduler’s effectiveness depends on 
the hardware to provide fairness to co-scheduled threads. Without fairness, serious 
problems, such as thread starvation and priority inversion, may arise and render the 
OS scheduler ineffective. 

In multithread processor, we can achieve fairness by many methods. Currently, 
shared resources allocation is mainly decided by the instruction fetch policy, 
especially in SMT processor with VLIW architecture. 

Ron Gabor and Shlomo Weiss research the Fairness and Throughput in Switch on 
Event Multithreading[6]. In coarse gain multithreads processors, there is only one 
thread running in processor simultaneously, every thread’s IPCalone (IPC of thread 
when executed alone) can be accounted easily. IPCSOE (IPC of each thread when 
executed using Switch on Event with other threads) can get every clock cycle. Every 
thread’s acceleration can be easily worked out. So they can control the processors’ 
fairness according to the thread’s acceleration. But in SMT processor, the IPCalone 
can’t be accounted by this method. 

Caixia Sun, Hongwei Tang, and Minxuan Zhang proposed a Fetch Policy 
ICOUNT2.8-fairness with Better Fairness for SMT Processors [4][7]. They take 
fairness as the main optimization goal. In this policy, relative progress rates of all co-
scheduled threads are recorded and detected each cycle. If the range of relative 
progress rates is lower than a threshold, fairness is met approximately and 
ICOUNT2.8 is used as the fetch policy. Relative progress rates are used to decide 
fetch priorities. The lower a thread’s relative progress rate is, the higher its fetch 
priority is. Unfair situation is corrected by this way. But in this policy, in order to get 
IPCalone dynamically, they employ two phases: sample phase and statistic phase. 
During the sample phase, the processor has to run in single-thread mode. It will 
disturb other running threads and the throughput will be reduced. 

There are other methods to insure the fairness of system, for example static and 
dynamic resource partition[11][12], Handling long-latency load[13], and so on. 

In this paper, we propose a method FROCM to correct unfairness without sample 
phase, all the threads run from beginning to end without interrupt. Every thread’s 
IPCapproximately is re-calculated in SMT processor Real-timely, IPCapproximately is the 
approximately value of IPC when the thread runs alone. Using IPCapproximately, we can 
hold the Fn (fairness metric defined in this paper, when it is equal to 1, it means 
utterly fair) larger than a threshold. Results show that we can hold the most of Fn 
larger than 0.95. 

The rest of the paper is organized as follows. Section 2 presents the methodology 
and gives the definition of system’s fairness. In Section 3, we detail how to realize 
FROCM with less hardware in SMT processor with VLIW architecture. Section 4 
illustrates the results. Finally, concluding remarks are given in Section 5. 

2   Model Proposed and Fairness Definition 

Fairness is very important in multi-user or multi-task system. No user would like to 
wait long respond time. In SMT processor, OS assigns more time slices to threads 
with higher priority, thus priority-based time slice assignment can work in a SMT 
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processor system as effectively as in a time-shared single-thread processor system. So 
the hardware must support fairness, otherwise priority inversion may arise. In this 
paper, we detail how to support fairness by hardware. 

In order to judge whether the performance of multithreads in a SMT processor is 
fair, at first we define several conceptions. 

IC[i]: the instruction counters of thread i. 
IPCalone: IPC of thread when executed alone. 
IPCalone[i]: the IPCalone of thread i. 
IPCSMT[i]: IPC of thread i when executed in SMT processor with other threads. 

[ ]aloneT i : the runtime of thread i when executed alone,  

[ ]
[ ]

[ ]alone
alone

IC i
T i

IPC i
= .                                                 (1) 

[ ]SMTT i : the runtime of thread i when executed in SMT processor with other 

threads,  

[ ]
[ ]

[ ]SMT
SMT

IC i
T i

IPC i
= .                                                 (2) 

IPCapproximately[i]: when thread i executed in SMT processor with other threads, we 
calculate the approximately value of its IPCalone, IPCapproximately[i]≈IPCalone [i]. 

Deceleration[i]: the deceleration of thread [i]’s performance when executed in 
SMT processor. Because of sharing resource with other threads in SMT processor, it 
will cause resource confliction. The threads’ runtime will enlarge, and then the 
performance will be decelerated. 

[ ]
[ ]

[ ]
alone

SMT

T i
Deceleration i

T i
= .                                            (3)  

Apparently [ ] [0, 1]Deceleration i ∈ . 

[ , ]ratioDeceleration i j : the ration of performance deceleration when thread i and 

thread j run in SMT processor,  

[ ] [ ]
[ , ] ( , )

[ ] [ ]ratio

Deceleration i Deceleration j
Deceleration i j Min

Deceleration j Deceleration i
= ,              (4) 

Apparently [ , ] [0, 1]ratioDeceleration i j ∈ . 

Fn: The fairness value we defined in SMT processor,  

( [ , ])
, ratio

Min
Fn Deceleration i j

i j
=

∀
.                                  (5)  

It is two threads’ deceleration ratio that they deceleration value difference is 

maximal, because of ( , ), [ , ] [0, 1]ratioi j Deceleration i j∀ ∈ , so [0, 1]Fn ∈ . 

If we want that the system is fair, we should try our best to let the drop of every 
thread’s performance equally. In other words, if we ensure the Fn approximate to 1, 
the system is fair. We can know from Equation 5: 
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1

[ , ] 1

[ ]
1

[ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

ratio

ratio

ratio

alone alone

SMT SMT

SMT SMT

alone alone

SMT alone

SMT alone

Fn

Deceleration i j

Deceleration i

Deceleration j

T i T j

T i T j

IPC i IPC j

IPC i IPC j

IPC i IPC i

IPC j IPC j

=
⇒ =

⇒ =

⇒ =

⇒ =

⇒ =

                                      (6) 

In other words, if we insure that the ratio of random two threads’ IPC in SMT 
processor is equal to the ratio of the IPC when they run alone, the system is fair. 

Because [ ]aloneIPC i  and [ ]aloneIPC j  are the character of thread i and j, they don’t 

change when running in SMT processor. So if we get every thread’s IPCalone, we can 
control the system’s fairness accurately. 

Usually there are two ways to acquire the thread’s IPCalone, static method and 
dynamic sampling. Static method is that every thread run alone in processor at the 
beginning, then we can get the IPCalone statistically. This way is unpractical in most of 
application. In dynamic sampling, the processor runs in single-thread mode. Each 
thread runs alone for a certain interval respectively. This method has disadvantage 
too, if the sample phase is too frequently or too long, it will degrade the throughput of 
the SMT processor. On the other contrary, if the sample phase is infrequently or too 
short, the statistical value will largely differ from the real IPCalone. We can’t get the 
accurate IPCalone, and then we can't ensure the system’s fairness 

Now we analysis the threads’ run model in SMT and uni-core processor. The 
IPCalone is correlative with the issue cycle and the memory miss delay. 

Thread 1 run alone

Thread 1 and 2 run

simultaneously

Miss delay(T
miss

)

Miss delay(T
miss_SMT

)

Consecutive run time of thread 1(T
alone

)

Consecutive run

time of thread 2

The instruction number of thread 1(IC)

The instruction number of thread 1(IC)

Consecutive run time of thread 1(TSMT)

Miss delay(T
miss_SMT

)
Consecutive run

time of thread 2 Miss delay(T
miss_SMT

)
 

Fig. 1. The sequence of thread 1 run alone and with other thread simultaneously 
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As Fig. 1 shows, the time of thread 1 is divided into 2 parts per cache miss, the 
execute time(Talone) and miss delay (Tmiss). So we can get the IPC of thread 1.  

alone
alone miss

IC
IPC

T T
=

+
.                                             (7) 

The Tmiss is the processor’s character, and it is a constant. 
When thread 1 run in SMT processor with other threads, the run schedule as the 

bottom of Fig. 1 (suppose that the cache miss sequence as same as it when thread 1 
run alone in uni-core processor.). When cache miss occurs, the instruction counter is 
same as which when thread run alone. Tmiss is the character of the uni-core processor 
and we can acquire it at the beginning. So if we want get the IPCalone, nothing but that 
we acquire the Talone. As Fig. 1 show, TSMT is larger than Talone in evidence because of 
resource sharing, so it can’t replace the Talone. But in SMT processor, we can statistic 
the IC of thread 1, the IC is equal to the issue cycle for single issuing processor, that 
is to say IC=Talone. But it doesn’t fit for supper scalar or VLIW processor. In super 
scalar or VLIW processor, the IC or instruction issuing cycle is not equal to Talone. 

As Fig. 2 shows, in VLIW SMT processor, there are five instructions of thread 2 
may be issued in time T0, because of share 8 execute units and thread 1 with high 
priority, only SUB and MPY were issued in T0. The remainder instructions ADD, 
ADD and MPY were issued in T1. If we counter the issue cycle, the issue cycle of 
these five instructions is 2. But when thread 2 run alone in uni-core processor, the 
execute time of these 5 instructions is only 1 cycle. So no matter how many clock 
cycle one execute packet issued, we only counter once. When thread run alone in uni-
core processor with VLIW architecture, one cycle issue one execute packet (EP), so in 
SMT processor, the number of EP is equal to Talone. EP = Talone. 

Substituting EP = Talone into equation 7,  

approximately
miss

IC
IPC

EP T
=

+
                                          (8) 

In SMT processor, because of source shared by several threads, the Cache miss 
ratio may be increased. So in equation 8, we use IPCapproximately instead of IPCalone. If 
system ensures Cache partition is fair, then the increase ratio of threads Cache miss 
are close to each other. The decrease ratios of threads’ IPCalone are approximately, so 
the system is fair too. 

ADD SHL ADD MPY LDW SUB ADD SUB ADD MPY MPY

Instructions issued in T0 ADD SUB SHL ADD MPY MPY LDW SUB

Thread 1 Thread 2

ADD ADD MPY

AL1 LS2LS1MU2MU1BC2BC1AL2

AL1 LS2LS1MU2MU1BC2BC1AL2

AL1 LS2LS1MU2MU1BC2BC1AL2

AL1 LS2LS1MU2MU1BC2BC1AL2

Instructions issued in T1  

Fig. 2. Separate issue the instructions of thread 2 
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Substituting IPCapproximately=IPCalone into equation 6,  

[ ][ ]

[ ] [ ]
approximatelySMT

SMT approximately

IPC iIPC i

IPC j IPC j
= .                                 (9)  

If system ensure equation 9, It is a fair system. 

3   Realization with Low-Hardware 

Equation 8 shows that if we want acquire the approximate IPCalone of thread: 
IPCapproximately, it needs a division unit. It needs lots hardware to realize a division unit, 
so we should avoid using it. YHFT DSP/900 is an instance of SMT processor. It is a 
two-ways SMT with 8 execute units shared. Because that it issues 8 instructions one 
cycle at most, so the IPCapproximately value is a real number between 0 and 8, we use a 
integer register to store it, in order to enhance the precision, we enlarge both threads’ 
IPCapproximately to 8 times. It is a value between 0 and 64, so a 6-bits integer register is 
enough. We may use subtraction instead of division. When we subtract (EP+Tmiss) 
from IC, if the remainder larger than 0, add 1 to IPCapproximately. Repetition until the 
remainder is less than 0. Fig. 3 shows the arithmetic flow of IPCapproximately. 

I P C a p p r o x i m a te l y
i n i t i a l i z e d  t o  8

I P C a p p r o x im a t e ly = 1

E P
in i t i a l i z e d  t o  0

E P＝ E P＋ 1

I s s u e  o n e  E P
c o m p l e te l y

W h e n  t h r e a d  I  m e e t  C a c h e  m is s

E P＝ E P＋ T m is s

I C＝ I C－ E P

I C > 0

Y e s

I P C a p p r o x im a te l y＝ I P C a p p r o x i m a te ly＋ 1

F i n i s h

N o

I C  s h i f t  3 b i t s  t o  l e f t

 

Fig. 3. FROCM arithmetic flow 
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Level 1 Level 2

Beginning _ [ ] [ ]last execute approximatelyIC i IPC i≥

_ [ ] [ ]last execute approximatelyIC i IPC i1− ≥ 1−
 

Fig. 4. Transition of thread[i] issue priority 

For each thread, processor set a 6-bits register to record the number of issued 
instructions IClast_execute after the last modifying issuing priority. Once IClast_execute is 

larger than or equal to IPCapproximately, _ _last execute last execute approximatelyIC IC IPC= − , 

and then the thread reduces its instruction issued priority to level 2, enhance the other 
thread’s instruction issued priority to level 1. Fig. 4 shows the transition of thread[i] 
issue priority. 

For example, thread 0 and 1 run in SMT processor simultaneously. 
IPCapproximately[0] is equal to 2.5, and IPCapproximately[1] is equal to 3.7. After enlarge 8 
times, the values are 20 and 30. After instructions issued in one clock cycle, the 
IClast_execute[0] is 24, and IClast_execute[1] is 29, this means that thread 0 run rapidly. 

_ _[0] [0] [0] 24 20 4last execute last execute approximatelyIC IC IPC= − = − = , and then 

thread 0 reduces its instruction issued priority to level 2, enhance the priority of thread 
1 to level 1 simultaneously. 

Now we analyze the cost of hardware. 

Counter IC: in order to record the number of issued instructions per Cache miss. A 
16-bits register is enough; it can record 216=65536 instructions. 

Counter EP: in order to record the number of execute packet per Cache miss. It is 
less than IC, so a 16-bits register is enough. 

Shifter: in order to enhance the precision, IC shift 3-bits to left. 
Adder: use it to calculate EP=EP+Tmiss and IC=IC-EP. 
Counter IPCapproximately: it is about 8 times of IPCalone, because IPCalone is a value 

between 0 and 8, so IPCapproximately is between 0 and 64. A 6-bits register is enough. 
Counter IClast_execute: the number of issued instructions after last modifying issuing 

priority. In FROCM, it is less than IPCapproximately, so a 6-bits register is enough. 

4   Results 

4.1   Environment Establishing 

In order to test the performance of FROCM, we realize RR(round robin) and FROCM 
of issuing priority in YHFT DSP/900[8][9] simulator respectively. Several program 
combination run in the simulator with both RR and FROCM respectively. 

Now we introduce the architecture of YHFT DSP/900 at first. It is a two-ways 
SMT processor with VLIW architecture. Each thread hold private fetch instructions 
unit, register files, and so on. They share 8 execute units, Cache on chip, peripheral 
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function, and so forth. The pipeline is divided into 3 stages, fetch, dispatch and 
execute. Every clock, it can issue 8 instructions at most. 

Fig. 5 is the diagram of YHFT DSP/900 core. The gray area in Fig. 5 is the shared 
resource. It has two levels Cache. Once level one data or Instruction Cache miss 
occurred, the delay Tmiss is 5 clock cycles. The delay of level 2 Cache miss Tmiss is 60 
clock cycles. 

Table 1 shows the character of YHFT DSP/900’s memory system. It lists the 
architecture and the bandwidth of data bus. The delay of L2 and the delay of memory 
is the value in uni-core processor YHFT DSP/700. In other words, it is the delay when 
only one thread miss request. 

 

Fig. 5. The diagram of YHFT DSP/900 core 

Table 1. The character of memory system 

Fetch width 8 32bits instructions
Bandwidth between L1 I-Cache and L2 256bits
Bandwidth between L1 D-Cache and L2 128bits

L1 I-Cache
4KB, direct mapping, 512bits per line, single port,

read miss allocation

L1 D-Cache
4KB, 2 ways, 256bits per line, two ports, read miss

allocation

L2
64KB 4 ways, 1024bits per line, single port,

read/write miss allocation
latency of L2 5 cycles

latency of memory 60 cycles
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4.2   Test Benchmarks 

The program is divided into 2 types. One type is the program, which don’t aim at any 
type processor. It includes FFT, the decode/encode of ADPCM in Mibench, the 
decode/encode of G721 in MediaBench. The other type is the benchmarks that aim at 
DSP processor, these benchmarks has high parallel and includes dotp_sqr, fir, matrix, 
and fftSPxSP. When two threads run in YHFT DSP/900 simultaneously, the runtimes 
aren’t equal to each other. In order to test the performance of FROCM exactly, we 
ensure there are two threads running in processor from beginning to end. When the 
first thread finished, it will restart again until the second thread finish too. Then we 
take the time that two threads finished respectively as the threads’ runtime in  
SMT TSMT.  

Fig. 6 shows the Fn of various instructions issued priority, RR(round robin) and 
FROCM. Fig. 7 shows the throughput of system when they adopt RR and FROCM. In 
Fig. 7, we take the IPC as the system’s throughput. 

From Fig. 6 and 7, we can find that the fairness of system is enhanced 5% after 
adopting FROCM policy. The most of Fn are larger than 0.95 without dropping the 
system’s throughput. From Fig. 6, we find the Fn of four program-combinations 
enhanced greatly. There are FFT+fftSPxSP, dotp_sqr+fir, matrix+fftSPxSP, 
G721_D+matrix. Because that dotp_sqr, fir, matrix and fftSPxSP are the assemble 
code, they have high parallel. When they run with other programs, there are many 
instructions may issued every clock cycle, more than 8 instructions sometime. So the 
conflict of execute units is frequently. If processor adopt RR policy, it always result in 
overbalance of execute units allocation, so the Fn is lower. After use FROCM policy, 
processor control threads run speed by the IPCalone, and allocate the units fairly. So the 
Fn is enhanced largely. 
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Fig. 6. Fairness for RR and FROCM 
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Fig. 7. Throughput for RR and FROCM 

5   Conclusions 

Because that we can’t get the IPC of thread running alone in uni-core process when it 
runs with other threads in SMT processor, then the system’s fairness is difficult to 
balance. This paper proposes a low and less-hardware fairness policy FROCM. In 
FROCM, the IPCalone will be recalculated again once the thread meets a Cache miss, 
then the system will adjust the threads’ priority depending on the IPCalone and balance 
the processor’s fairness. The FROCM policy has several advantages. The first is that it 
doesn’t need sample phase; it doesn’t interrupt the simultaneous running threads, so the 
throughput will not be dropped. The second is that it can recalculate the thread’s 
IPCalone at the real time, and then adjust the threads’ priority. So it can control the 
fairness accurately. The last is the low-hardware. Such as a two-ways thread SMT 
processor with 8words VLIW architecture, it only needs two 16bits counter, two 6bits 
counter, one shifter and a 16bits adder. The simulations show that FROCM can ensure 
the most Fn of program-combination larger than 0.95, this indicates that it is an 
effective fairness policy. 
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Abstract. This paper proposes a highly efficient MBRP parallel algorithm for 
H.264 encoder, which is based on the analysis of data dependencies in H.264 
encoder. In the algorithm, the video frames are partitioned into several MB 
regions, each of which consists of several adjoining columns of macro-blocks 
(MB), which could be encoded by one processor of a multi-processor system. 
While starting up the encoding process, the wave-front technique is adopted, 
and the processors begin encoding process orderly. In the MBRP parallel 
algorithm, the quantity of data that needs to be exchanged between processors is 
small, and the loads in different processors are balanced. The algorithm could 
efficiently encode the video sequence without any influence on the compression 
ratio. Simulation results show that the proposed MBRP parallel algorithm can 
achieve higher speedups compared to previous approaches, and the encoding 
quality is the same as JM 10.2. 

1   Introduction 

Compared with previous standards, H.264 developed by the JVT(Joint Video Team 
formed by ISO MPEG and ITU-T VCEG) achieves up to 50% improvement in bit-
rate efficiency and more than 4 times of the computational complexity [1], due to 
many new features including quarter-pixel motion estimation (ME) with variable 
block sizes and multiple reference frames (up to 16), intra-prediction, integer 
transformation based on discrete cosine transform (DCT), alternative entropy coding 
mode Context-based Adaptive Variable Length Coding (CAVLC) or Context-Based 
Adaptive Binary Arithmetic Coding (CABAC), in-loop de-blocking filter and so on 
[2]. Therefore, the parallel structure and parallel algorithm are an alternative ways for 
real-time H.264 video application. 

Multi-processor and multi-threading encoding system and parallel algorithms have 
been discussed in many papers [3][4][5][6]. In [3], the H.264 encoding algorithm is 
mapped onto multi-processor DSP chips, C3400 MDSP of CRADLE, in which, 
computing subsystem of 2 RISC core and 4 DSP are used to implement the baseline 
encoder, forming three pipeline stages, implementing a CIF resolution H.264 codec. 
However, as a traditional parallel mechanism, task pipelining is not appropriate for 
H.264 codec due to two reasons: 1) large amount of data need transferring between 
processors, which demand a lot for the system bandwidth; 2) functions in the H.264 
codec have different computing complexity, and it is hard to map the algorithms 
among processors uniformly, so the final performance is always restricted by the 
processor with the heaviest load. 
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Because there are a lot of data parallelisms in the video codec, many parallel 
algorithms are proposed exploiting data parallelism [4][5]. Y. K. Chen, et al. give the 
parallel algorithms of H.264 encoder based on Intel Hyper-Threading architecture [4], 
they split a frame into several slices, which are processed by multiple threads, 
resulting speedups ranging from 3.74 to 4.53 on a system of 4 Intel Xeon processors 
with Hyper-Threading technique. However, this brings additional overheads on bit-
rates: splitting frames into slices increases the bits for information of slice header; 
macro-blocks (MB) between slices do not need ME and MC, which increases the bits 
for the transformed coefficients.  

Z. Zhao and P. Liang propose the parallel algorithms with wave-front technique 
based on the analysis of the data dependencies in the H.264 baseline encoder [5], data 
are mapped onto different processors at the granularity of frames or MB rows, and the 
final speedups are over 3.0 on software simulator with 4 processors. This method of 
data partition with the wave-front technique avoids the damage on compression ratio 
by splitting frames into slices. However, in the motion estimation of H.264 encoder, 
the search center is the predicted motion vector (PMV), which leads to the data 
dependencies introduced by ME are not confined by the search range and have the 
property of uncertainty, however, the analysis in [5] is unsatisfactory, in fact, their 
method confines the search center at the position of (0,0). 

In this paper, we present a method of data partition based on the analysis of the 
data dependencies in the H.264 encoder, in which, frames are split into several MB 
regions, each of which includes several adjoining columns of MBs and is mapped 
onto a different processor, while starting up the encoding process, the wave-front 
technique is adopted. At last, we give a new efficient parallel algorithm for H.264 
encoder based on the MB region partition, i.e. MBRP parallel algorithm. 

The rest of the paper is organized as follows: Section 2 provides an overview of the 
data dependencies in H.264 encoder and the homologous limitative factor to exploit 
data parallelism. Section 3 details our data partition method based on the MB region 
and our MBRP parallel algorithm. Section 4 provides the simulation results and 
Section 5 concludes our work and gives the future work. 

2   Data Dependencies in H.264 

In the H.264 encoder, a MB is composed of 16×16 luma pixels and 8×8×2 chroma 
pixels. The reference software JM 10.2 provided by JVT processes each MB in 
sequence [7], which results in several types of data dependencies that should be 
avoided in parallel algorithm.  

2.1   Data Dependencies Introduced by Inter-prediction 

In inter-prediction, the PMV defines the search center of ME, which comes from the 

motion vectors (MV) of the neighboring sub-blocks, AMV , BMV , CMV , and the 

corresponding reference indexes [7], as shown in Fig.1 (a). Only the difference 
between the final optimal MV and the PMV will be encoded. Accordingly, the ME 
processes of the left, top, and top-right neighboring MBs should be finished before 
encoding the current MB. Besides, data of the reconstructed pixels in the search  
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Fig. 1. Data dependencies introduced by inter-prediction 

window should be available at that time, if the search range is 16, at least the 
reconstructed pixels of 9 MBs should be available, as shown in Fig.1 (b). 

What should be noticed is, in H.264 encoder the search center of ME is the PMV, 
which results in that the data dependencies introduced by ME are not confined by the 
search range and have the property of uncertainty, especially when the RDO is used 
(there is no restriction for the search center), the final optimal MV may go far beyond 
the search range. We have collected the final MV of each MB using the JM10.2 
software, and the evaluation is carried out on the standard video sequence 
"Foreman"(CIF, 300 frames), and the main encoder parameters are shown in Table 1. 
The results show that the biggest MV value is 61 pixels (in horizontal axis), which 
means that the final MV may be as four times long as the search range. The value 
may be bigger for sequence with high amount of movement. If RDO is not used, the 
search center is restricted to be smaller than search range; therefore the final MV 
could be as two times long as the search range at most. 

Table 1. Encoder parameters used for evaluation 

Search range 16 QP 28 

ME algorithm FS Hadamard transform Used 
Number of reference frames 1 RDO mode decision Used 

Sequence type IPPP Entropy coding method CAVLC 

2.2   Data Dependencies Introduced by Intra-prediction and In-Loop Filter 

In the intra-prediction, the reconstructed pixels of the neighboring MBs in the same 
frame should be available before encoding the current MB, as shown in Fig. 2 (a), in 
which the white field figures the current MB and the grey field figure the 
reconstructed pixels, which are distributed in the left, top-left, top and top-right 
neighboring MBs. What should be noticed is that these reconstructed data are not the 
same as those used in the inter-prediction; the latter are produced after the former are 
in-loop filtered. 
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Fig. 2. Data dependencies introduced by intra-prediction and in-loop filter 

In the process of in-loop filtering the current MB, the reconstructed and half-
filtered data of the neighboring MB should be available, as shown in Fig. 2 (b), in 
which, the white field figures the current MB and the grey field figures the 
reconstructed and half-filtered pixels, which are distributed in the left and top 
neighboring MBs. And we must know that these data in the neighboring MBs are not 
full-filtered. 

2.3   Data Dependencies Introduced by CAVLC 

CAVLC is the entropy-coding tool in the baseline of H.264 encoder. In the process, 
the total number of non-zone transformed coefficients and the number of tailing ones 
are coded firstly, and there are 4 look-up tables to choose from according to the 
number of none-zero transformed coefficients of the left and top neighboring MB, 
which means the number of none-zero transformed coefficients of the left and top 
neighboring MB must be available before coding the current MB. 

2.4   Data Dependencies Summary 

As analyzed above, there are 3 types of data dependencies: 1) data dependencies 
between frames, which means MB could not be processed until the reconstructed and 
filtered pixels needed for inter-prediction are available; 2) data dependencies between 
MB rows in the same frame, which means MB could not be processed until the three 
neighboring MBs above are encoded and reconstructed; 3) data dependencies in the 
same MB row, which means MB could not be processed until the left neighboring 
MB is encoded and reconstructed. The three types of data dependencies must be 
avoided to exploit the data parallelisms in the H.264 encoder. 

3   MBRP Parallel Algorithm 

Firstly, we partition a frame into several MB regions, as shown in Fig.3, in which 
each little square stands for a MB, and each MB region comprises several adjoining  
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Fig. 3. Partition for MB region 

columns of MBs; then, these MB regions are mapped onto different processors, and 
the data is exchanged appropriately according to the three types of data dependencies; 
at last, we propose our MBRP parallel algorithm with the wave-front technique. 

3.1   The MB Region Partition 

In order to achieve high performance, we must try to minimize the amount of data 
that needs to be exchanged between processors. In H.264 encoder, the data must be 
exchanged are those which are involved in the data dependencies but encoded by 
different processors. 

Firstly, the data dependencies between frames are uncertainty because of the 
uncertainty of the search center in inter-prediction, and all the position in  
the reference frame may be the candidate to be checked in theory. Thereby, the 
reconstructed and filtered data of a MB region must be transferred to all the other 
processors as the reference data, no matter how the data is partitioned. 

As for the data dependencies between MB rows in the same frame, because the 
three neighboring MB above are all involved, it seems that no matter how to partition 
the data, a processor always needs to exchange data with the processors which encode 
the neighboring MB regions. However, considering the data dependencies in the same 
MB row, if a MB region comprises only one column of MBs, the neighboring MB 
regions could not be processed simultaneously, which is opposite to our objective, 
thereby each MB region should comprise two columns of MBs at least. 

On the other hand, when we implement the parallel H.264 encoder, the number of 
the processors in the multi-processor system is another important factor to determine 
the MB region partition. If the processors number is not too large (smaller than half of 
the number of MB columns of a frame), the number of MB columns each MB region 
comprises should be equal or close as much as possible, so that the load of each 
processor could be balanced; if the processor number is larger than half of the number 
of MB columns of a frame, each MB region should comprise two columns of MBs, 
and we should combine our MBRP algorithm with some other parallel algorithms, e. 
g., methods in [4] or [5], to improve the performance further. 
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3.2   The Data Exchanging Between Processors 

Now, we analyze the necessary data exchanging between processors due to the three 
types of data dependencies and the data partition based on MB region. There are 5 
types of data that need exchanging: 1) reconstructed and unfiltered data, which are 
used in the intra-prediction; 2) MVs of the MBs or sub-macro-block, which are used 
in the inter-prediction; 3) entropy coding information of MBs, which are used in the 
entropy coding for neighboring MBs; 4) reconstructed and half-filtered data, which 
are used in in-loop filter for the neighboring MB; 5) reconstructed and filtered data, 
which are used in the inter-prediction. According to the analysis of data dependencies 
and the description of the data partition, it is clear that the types of exchanging-data 
and the quantity of data that need to be exchanged are different, therefore, we must 
arrange the time and manner to exchange these data appropriately. 

3.3   The Wave-Front Technique 

After the data partition, we can map the MB regions to different processors. 
Considering the data dependencies in the same MB row, MBs in a MB row must be 
encoded in sequence, therefore we adopt the wave-front technique, starting up the 
encoding process of processors orderly to encode MBs in the same MB row but 
different regions. After adopting the wave-front technique, processors start to encode 
data after a short time one by one, and during the time a processor could encode a row 
of MBs in a MB region and transfer required reconstructed data to the next adjoining 
processor, thus avoiding the data dependencies in the same MB row, and processors 
could encode MBs in different MB rows of respective MB regions synchronously, as 
shown in Fig.4, squares with single diagonal denote the encoded MBs while squares 
with chiasm diagonal stand for the MBs being encoded by processors synchronously. 

 

Fig. 4. Wave-front technique based on MB region partition 

3.4   The Parallel Algorithm Based on the MB Region Partition 

At last, we present our MBRP parallel algorithm for H.264 encoder: Firstly, we 
determine the MB region partition according to the encoder parameters and the 
processor number of the multi-processor system, insuring that each MB region 
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comprises equal or close number of columns of MBs. Then, we map the MB regions 
onto different processors to be encoded. While starting up the encoding process, we 
adopt the wave-front technique, and the processors begin to encode data orderly after 
a short time to avoid the data dependencies in the same MB row. Each processor 
encodes a MB region in the order of MB rows, after encoding the boundary MB (the 
first and the last columns of MB in MB region), required reconstructed and unfiltered 
data, the MVs and the number of non-zero transformed coefficients of the boundary 
MB are transferred to the neighboring processors (which encode the neighboring MB 
regions). After the in-loop filtering of the MB region, the half-filtered data are 
transferred to the next neighboring processor (which encodes the right neighboring 
MB region), and the filtered data are broadcasted to all the other processors. When the 
required data are available, all the processors work synchronously, encoding different 
MB regions of video frames respectively. 

4   Simulation Results 

The simulator of our MBRP parallel algorithm for H.264 encoder is developed using 
C language and implemented on a PC with a P4 1.7GHz processor and a 512MB 
memory. The simulation results are compared with those from JM10.2, which is a 
sequential encoding structure. In our software simulation of H.264 encoder, four 
processors are simulated. The main encoder parameters are shown in Table 1. The 
simulator collects the maximal encoding time among every 4 concurrently processed 
MB regions and the corresponding time spent on data exchanging. Some of the 
simulation results are presented in Table.2 and Table.3. For Table.2, we used 
"Foreman" (CIF) as video source, and 300 frames were encoded. And for Table.3, we 
used "Foreman" (SDTV) as video source, and 300 frames were encoded. Experiments 
show that the speedups higher than 3.3 are achieved and the encoding quality is the 
same as JM10.2. 

Table 2. Simulation results for “Foreman” (CIF) 

 
Encoder time 

/frame 
PSNR 

(Y) 
PSNR 

(U) 
PSUN 

(V) 
Bits/frame Speedup 

JM10.2 5.5656 s 36.12 40.48 42.02 
15295.87 

bits 
1 

MBRP Algorithm 1.67045 s 3612 40.48 42.02 
15295.87 

bits 
3.33 

Table 3. Simulation results for “Foreman” (SDTV) 

 
Encoder time 

/frame 
PSNR 

(Y) 
PSNR 

(U) 
PSUN 

(V) 
Bits/frame Speedup 

JM10.2 22.343 s 37.84 42.67 44.14 
58437 

bits 
1 

MBRP Algorithm 6.73535 s 37.84 42.67 44.14 
58437 

bits 
3.32 
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In figure 5, we give the relationship between the speedup and the number of 
processors in multi-processor system, and we used the "Foreman" (CIF) and the 
"Foreman" (SDTV) as the video source. As seen in Fig.5, when the number of 
processors is small, the compressing performance improves linearly approximately as 
the number increases; when the numbers are of some values, the speedups keep 
unchanged, this is because the loads of different processors are imbalanced, and the 
most heavy load is the same for these number values; when the numbers reach certain 
values, 11 and 23 for “Foreman” (CIF) and “Foreman” (SDTV) respectively, the 
speedups get the highest value. 

 

Fig. 5. The relationship between the speedup and the processor number 

In table 4, we give the comparison between different parallel algorithms of H.264 
encoder. Compared to other parallel algorithms, MBRP algorithm achieves higher 
speedup, there are 2 reasons: 1) as a MB row is partitioned into different part and 
mapped onto different processors, the parallel granularity in MBRP algorithm is 
smaller, which means the loads between processors could be balanced more easily; 2) 
each MB region comprises several adjoining columns of MBs, which means the 
amount of data that need to be exchanged between processors are smaller. On the 
other hand, since each MB region should comprise 2 columns of MBs at least, the 
highest speedup our MBRP parallel algorithm could achieve is restricted by the 
resolution of the video source. However, our algorithm could be combined with some 
other parallel algorithms easily to improve the performance further. 
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Table 4. Comparison between different parallel algorithms 

Parallel  
Algorithm 

Parallel 
Granularity 

Number of 
Processors 

Compression 
Ratio degradation 

Speedup 

Algorithm 
in [4] 

Frame and 
Slice 

4 (8 logic 
processors) 

Yes 3.74~4.53 

Algorithm 
in [5] 

Frame and MB 
 Row of frame 

4 No 3.1 

MBRP 
Algorithm 

MB row of  
MB region 

4 No 3.3 

5   Conclusions and Future Work 

We propose the MBRP parallel algorithm for H.264 encoder in this paper, in which 
frames are split into several MB regions; each MB region includes several adjoining 
columns of MBs and is mapped onto a different processor to be encoded; with the 
wave-front technique, data in different MB regions could be encoded synchronously. 
The simulation results show that the MBRP parallel algorithm is quite efficient, and 
the compressing performance improves linearly approximately as the number of the 
processors in the multi-processor system increases. 

Future work includes the implementation of the algorithm on a multi-core SoC and 
the investigation on parallel algorithm of H.264 encoder with CABAC entropy coding 
mode. 
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Abstract. I/O Virtualization provides a convenient way of device sharing 
among guest domains in a virtualized platform (e.g. Xen). However, with  
the ever-increasing number and variety of devices, the current model of a cen-
tralized driver domain is in question. For example, any optimization in the  
centralized driver domain for a particular kind of device may not satisfy the 
conflicting needs of other devices and their usage patterns. This paper has tried 
to use IO Virtual Machines (IOVMs) as a solution to this problem, specifically 
to deliver scalable network performance on a multi-core platform. Xen 3 has 
been extended to support IOVMs for networking and then optimized for a 
minimal driver domain.  Performance comparisons show that by moving the 
network stack into a separate domain, and optimizing that domain, better effi-
ciency is achieved.  Further experiments on different configurations show the 
flexibility of scheduling across IOVMs and guests to achieve better perform-
ance. For example, multiple single-core IOVMs have shown promise as a scal-
able solution to network virtualization. 

1   Introduction 

I/O Virtualization provides a way of sharing I/O devices among multiple guest OSes 
in a virtualized environment (e.g., Xen [2]). Take network virtualization for example 
(see Fig. 1), here the platform has one Gigabits/second network link, but a guest OS 
may only need 100Mbps network bandwidth, so it would be very cost-efficient to 
share this Gigabit link among several guest OSes. In order to support this kind of de-
vice sharing, Xen has employed a split-driver design, where the I/O device driver is 
split into a backend and a frontend. The physical device is managed by a driver do-
main which acts as a proxy between the guest OSes and the real device. The driver 
domain creates a device backend, and a guest OS which needs to access the device 
creates a frontend. The frontend talks to the backend in the driver domain and creates 
an illusion of a physical device for the guest OS. Multiple guest OSes can share a 
physical device in this way through the backend in the driver domain. 
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The most common way of deploying driver domains in Xen is to have the service 
OS (e.g. domain 0) as the single driver domain (called centralized I/O Virtualization 
in this paper), as shown in Fig. 1. However, this centralized architecture is not scal-
able when the platform has many devices, as in a server consolidation environment. 
Specifically, as the number and variety of shared devices increase, the centralized I/O 
Virtualization has the following problems. First, the Service OS can be easily over-
loaded by I/O virtualization. Second, any optimization of the Service OS for better 
I/O virtualization performance needs to consider all other tasks in the service OS 
(e.g., service daemons and management tasks), so it may not be easy to do such op-
timizations. Third, different devices may have different needs for better performance. 
For example, a graphics device may be more sensitive to latency while a network de-
vice may be more interested in throughput, so it may be difficult to find an optimiza-
tion that satisfies both graphic devices and network devices at the same time. 

 

Fig. 1. Centralized I/O Virtualization Architec-
ture 

Fig. 2. IOVM Architecture 

One possible solution to the scalability problems with centralized I/O Virtualization is 
scale-up (e.g., adding more resources to the Service OS). However, our experience 
with Xen (version 3.0.2) shows that allocating more computing resources (e.g., more 
CPUs) does not necessarily translate into better I/O virtualization performance. For 
example, we found that a Service OS domain (uniprocessor Linux) with only one 
CPU saturates before it can support 3 Gigabits/second NICs (Network Interface 
Cards) at full capacity. Adding one more CPU to this domain (SMP Linux) does not 
show much improvement - the receive throughput increases by 28%, but at the cost of 
reduced efficiency (by 27%); the transmit throughput even decreases by 6.6%, and the 
transmit efficiency drops by 88%. The definition of efficiency can be found in  
Section 4.1. 

The difficulties of scale-up lead us to consider another way of deploying driver 
domains: scale-out, e.g., using dedicated guest domains other than the service OS as 
driver domains. This idea was suggested by Fraser [5] and Kieffer [7], and we have 
also proposed IOVMs [1]. The IOVM approach can solve the three problems with 
centralized I/O Virtualization. The first problem is solved by moving the I/O Virtual-
ization out of the service OS, so it will not be overloaded by I/O Virtualization. Sec-
ond, any possible optimization is performed in a different domain from the service OS 
so it does not affect the existing tasks. Third, when different devices have different 
requirements for high performance, we can create different IOVMs and optimize each 
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one in a different way, according to the characteristics of the device and workload. 
Therefore the IOVM approach opens up opportunity for scalable I/O virtualization 
given that proper optimizations are done in the IOVMs and the addition of IOVMs to 
the platform does not consume excessive resources. 

This paper presents our initial experience with IOVMs for network virtualization 
on a multi-core platform. The question we want to address is - Given a platform 
equipped with multi-core, how can its support for network virtualization scale as the 
number of network devices increases? By ‘scale’ we mean ‘aggregated bandwidth in-
creases linearly with the increase of computing resources (CPU cycles) on the plat-
form’. We believe that the software architecture (including the network device driver 
and protocol stack) is a key to the solution. In this paper, we show how IOVMs en-
able the division of work load among cores in such a way that scalability can be 
achieved by incrementally starting IOVMs on new cores. Specifically, this paper 
makes the following contributions: 

• It proposes a novel way of using IOVMs for scalable I/O Virtualization. Although 
dedicated driver domains were initially proposed for fault isolation [8][5], we ob-
serve and show experimentally in this paper that it is also beneficial to scalable I/O 
Virtualization. 

• The second contribution of this paper is a comprehensive set of experimental re-
sults to evaluate the idea of IOVMs. It compares the performance of three different 
configurations of network IOVMs: Monolithic IOVM, Multiple Small IOVMs, and 
Hybrid IOVMs. And it concludes that the Hybrid IOVM configuration offers a 
promising balance between scalable throughput and efficient use of core resources. 

The rest of this paper is organized as follows. Section 2 describes the IOVM architec-
ture. Section 3 briefly outlines the optimizations that we have carried out in a Net-
work IOVM. Section 4 presents a series of experimental results which evaluate the 
performance and scalability of the Network IOVM. Related work is discussed in  
Section 5 and we draw conclusions in Section 6. 

2   IOVM Architecture 

This section describes our IOVM architecture (See Fig. 2). The main idea is to move 
I/O Virtualization work out of the service OS (domain 0) and into dedicated driver 
domains. 

In Xen an IOVM is a specialized guest operating system, so it has the basic fea-
tures and structure of a modern operating system (e.g., memory management and 
process management). In addition, it has the following components. First, it contains 
the native device driver for the physical device(s) that it virtualizes. Second, it runs 
the backend drivers for guest domains interested in sharing the physical device. Fi-
nally, it runs any multiplexer/demultiplexer that glues the first two together (e.g., code 
for routing). A network IOVM essentially has the structure of a switch or router. 

2.1   Different IOVM Configurations 

Three different IOVM configurations can be used to virtualize devices: Monolithic, 
Multiple Small IOVMs, and Hybrid. 
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Monolithic IOVMs (Fig. 3): All devices are assigned to a single IOVM. As a result, 
the platform only has one IOVM, but this IOVM can be very heavy-weight due to a 
large number of devices to be virtualized.  

Multiple Small IOVMs (Fig. 4): Each device is assigned to a dedicated IOVM. So 
the number of IOVMs is equal to the number of physical devices being shared. When 
there are many devices, this configuration can result in many IOVMs. 

Hybrid IOVMs (Fig. 5): This configuration is a compromise between the first two 
configurations. In this configuration, there are multiple IOVMs, and each IOVM is 
assigned a subset of the physical devices being shared. The IOVMs are medium-
sized, so they are larger than those in the Multiple Small IOVMs configuration, but 
they are smaller than a Monolithic IOVM. A Hybrid IOVMs configuration results in a 
smaller number of IOVMs in the system compared with the Multiple Small IOVMs 
configuration, but a larger number of IOVMs compared with the Monolithic IOVM 
configuration. 

   

Fig. 3. Monolithic Configura-
tion 

Fig. 4. Multiple Small IOVMs 
Configuration 

Fig. 5. Hybrid Configuration 

3   An IOVM for Network Virtualization 

Having a separate IOVM gives us much freedom in terms of constructing it. For ex-
ample, we can start from a commodity OS (such as Linux) and specialize it; we can 
also build a custom OS from scratch. In this project we choose the first approach. 
Specifically, we customize the para-virtualized Linux for Xen for a network IOVM. 
The customizations (optimizations) that we perform fall into three categories: kernel, 
network protocol stack, and runtime. 

Minimal kernel for a Network IOVM: We use the Linux configuration facility to 
remove irrelevant modules or functionalities from the kernel, e.g., most of the device 
drivers, IPv6, Cryptography, and Library Routines. The essential part of the kernel 
(e.g., memory and process management) is kept. Besides, we keep the list of func-
tionalities shown in Table 1. The network interface card driver is configured to use 
polling for receive. Due to the inefficiency of SMP Linux on network virtualization, 
we turned off SMP support in the Network IOVM for the rest of the paper. By per-
forming this step, we reduce the compiled size of the “stock” kernel by 44%. 

Minimal network protocol stack: To make the network IOVM fast we use Ethernet 
Bridging in Linux kernel to forward packets between the guest OS and the NICs 
(Network Interface Cards). An Ethernet bridge processes packets at the data link layer 
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(e.g. only looking at the MAC addresses to make forwarding decisions). We do not 
use layer 3 or above forwarding, and we do not use iptables. As another special note, 
we found that bridged IP/ARP packets filtering is very CPU intensive: For example, 
although it happens at the data link layer, it computes IP checksum, looks up routing 
table, and replicates packets. In other words it adds significant processing to the criti-
cal path of every packet, even if no filtering rules are defined. So it is disabled in the 
network IOVM for better performance. 

Minimal IOVM runtime: In this part we shutdown most of the irrelevant services in 
the network IOVM (e.g., sendmail) to save CPU cycles. As a result only network, sys-
log and possibly sshd are needed to support a network IOVM. We also start the net-
work IOVM in a simple run-level (multiuser without NFS). 

Table 1. Kernel Functionality Required for the Network IOVM 

Basic TCP/IP networking support 802.1d Ethernet bridging 
Packet socket Unix domain socket 
Xen Network-device backend driver Ext2 , ext3, /proc file system support 
Initial RAM disk (initrd) support Network Interface Card driver (PCI, e1000) 

4   Evaluation of the Network IOVM 

In this section, we present several experiments which lead to a method for scalable 
and high performance network virtualization. 

4.1   Experiment Settings 

We test the idea of network IOVMs on an Intel platform with two Core Duo proces-
sors (4 cores total). This platform has several gigabit NICs. Each NIC is directly con-
nected to a client machine, and is exclusively used by a guest OS to communicate 
with the client machine (Figures 3-5). The maximum bandwidth through each NIC is 
measured by the iperf benchmark [6]. There are 4 TCP connections between each 
guest OS and the corresponding client machine, which start from the guest OS, trav-
erse through the IOVM and the NIC, and reach at the client machine. The connections 
are all transmitting 1024 byte buffers. The combined bandwidth of the NICs is con-
sidered the aggregated bandwidth (throughput) supported by the platform. Both Xen 
3.0.2 and Xen-unstable (a version before Xen 3.0.3) are used as the virtual machine 
manager, and a para-virtualized Linux (kernel 2.6.16) is used as the guest OS. The 
guest OSes and IOVMs have 256MB memory each. 

We me asured two metrics: throughput and efficiency. Throughput is measured 
using the microbenchmark iperf. Efficiency is calculated by dividing the aggregate 
throughput transferred by the IOVM(s) by the number of processor cycles used by the 
IOVM(s) during the workload run. The processor cycles used by the IOVM(s) are 
measured using xentop, a resource measurement tool included in Xen. This results in 
a value measured in bits transmitted per processor cycle utilized or bits/Hz for short. 

Network bandwidth through each NIC is measured in two directions: (1) from the 
client to the guest OS (denoted as Rx, for receive), (2) from the guest OS to the client 
(denoted as Tx, for transmit). 
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Fig. 6. Comparison of Throughput Fig. 7. Comparison of Efficiency 

4.2   Making a Case for Network IOVMs 

The first experiment compares the performance of centralized network virtualization 
versus a network IOVM. Here we use a Monolithic configuration (Fig. 3) with 3 
NICs. Fig. 6 shows the throughput results for different number of NICs and different 
virtualization architectures (Rx means receive and Tx means transmit in this paper). 
From Fig. 6 we can see that the throughputs are the same for centralized network vir-
tualization and IOVM network virtualization when only one NIC is used by iperf. It is 
so because at this load the CPU is not a bottleneck so both architectures can support 
nearly line rate (e.g. 940Mbits/sec). When we move on to 2 NICs, we can see that the 
IOVM network virtualization continues to deliver nearly line rate (1880 Mbits/sec), 
but the centralized network virtualization can not (1760Mbits/sec). This result shows 
that at 2 NICs, the Service OS in centralized network virtualization starts to be satu-
rated. The IOVM is doing better because it is optimized for networking as described 
in Section 3. When we move on to 3 NICs, it becomes more apparent that IOVM 
network virtualization can support higher throughput. E.g., 2230Mbits/sec versus 
1700Mbits/sec for transmit (denoted as Tx), and 1500Mbits/sec versus 1400Mbits/sec 
for receive (denoted as Rx). Comparatively the benefit of IOVM is not as big for re-
ceive as it is for transmit. The reason is that receive is more CPU intensive in current 
implementation (polling is used). As a result the optimization in the network IOVM is 
still not enough to meet the increase in CPU demand when there are 3 iperf loads. By 
carrying out more aggressive optimization in the network IOVM we may be able to 
support higher throughput. But the point of Fig. 6 is that using a network IOVM has 
advantage in terms of throughput. 

Fig. 7 shows the result for efficiency (Section 4.1), which is more revealing about 
the benefit of a network IOVM. For example, when there is only one NIC used by 
iperf, the efficiency is about 1.2 bits/Hz for IOVM and about 0.8 bits/Hz for central-
ized network virtualization, meaning that network IOVM is 50% more efficient than 
centralized network virtualization. In other words, although the two architectures ap-
pear to support the same level of throughput (940Mbits/sec in Fig. 6) at one NIC 
level, the network IOVM is actually using much less CPU cycles to support that 
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throughput. So a network IOVM is more efficient in terms of CPU usage. This claim 
is also true for the 2 NICs case in Fig. 7. When there are 3 NICs, the efficiency of 
IOVM is still much higher than that of centralized network virtualization in terms of 
transmit, but the efficiency difference in terms of receive becomes small. This is be-
cause in both IOVM and centralized network virtualization the CPU is saturated, but 
the throughput is nearly the same. 

Table 2.  The Static Core Assignment Schemes 

co-locate Each guest and its corresponding IOVM are on the same core. 

separate 
Each guest and its corresponding IOVM are on different cores, but a guest 
shares a core with a different IOVM. 

IOVM-
affinity 

All IOVMs are on the same core, and the guests are each on one of the re-
maining cores. 
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Fig. 8. Throughput Results for Different Static 
Core Assignment Schemes Using the Multiple 
Small IOVMs Configuration 

Fig. 9. Efficiency Results for Different Static 
Core Assignment Schemes Using the Multiple 
Small IOVMs Configuration 

4.3   Multiple Small IOVMs and Static Core Assignment 

This section evaluates the performance of using Multiple Small IOVMs (Fig. 4) for 
network virtualization, e.g., assigning each NIC to a dedicated IOVM. One concern 
about this configuration is the overhead (e.g., memory and scheduling overhead) of 
having a large number of simple IOVMs (domains). For example, the platform that 
we used only has 4 cores, but we have 7 domains in total (3 guests, 3 IOVMs and 
domain 0) when there are 3 test loads. Obviously some of the domains must share a 
physical CPU core. Xen 3.0.2 allows the assignment of a domain to a physical core, 
and this section shows that the way that the IOVMs and the guest domains get as-
signed is very important to the virtualization performance. 
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Specifically, we have tried 3 different assignment schemes as shown in Table 2. 
Fig. 8 and Fig. 9 show the evaluation results. 

Fig.8 compares the 3 different assignment schemes in terms of throughput. We can 
see that given a certain number of NICs (test loads), no matter if it is transmit or re-
ceive, co-locate has the lowest throughput, IOVM-affinity has the highest through-
put, and separate has a throughput in between the other two schemes. 

That co-locate performs worse than separate is somewhat surprising: one would 
expect the other way around because if a guest and its corresponding IOVM are on 
the same physical core, there will be no need for InterProcessor Interrupts (IPIs) when 
packets are sent from the guest to the IOVM. However, the benefit of eliminating 
such IPIs is offset by a more important factor: the elimination of opportunities for 
parallelism between the guest and the corresponding IOVM. Specifically, there are 
pipelines of packets between the guest and the IOVM, so when they are assigned on 
different cores (as in the separate assignment scheme), they can run concurrently so 
that while the IOVM is processing the nth  packet the guest can start sending the n+1th 
packet. However, when these two domains are assigned on the same core, they lose 
such opportunities. As a result, there is no pipeline for co-locate and the throughput is 
lower. 

But why is the throughput of IOVM-affinity the best? We found that a guest needs 
more CPU cycles than the IOVM to drive the same test load because the guest needs 
to run the network stack as well as iperf, which does not exist in an IOVM. Thus the 
bottleneck for CPU occurs in the guest. By assigning the IOVMs on the same core we 
reserve the most cores possible for the guests (each guest is running on a dedicated 
core in this case). As a result, the guests are able to drive more network traffic and we 
get the highest throughput. But this assignment can not be pushed too far, because if 
too many IOVMs are assigned to a same core, eventually they will run out of CPU 
cycles so there will be no further increase in throughput. In such cases, the bottleneck 
will move to the IOVMs. 

Fig. 9 compares the 3 different assignment schemes in terms of efficiency. The 
overall result is the same: Co-locate has the worst efficiency, IOVM-affinity has the 
best efficiency, and separate has efficiency in between the other two schemes. Co-
locate is the least efficient because of too much context switching overhead: for ex-
ample, whenever the guest sends out one packet, the IOVM is immediately woken up 
to receive it. There are 2 context switches for each packet sent or received. One may 
argue that separate should have the same context switching overhead, but this is not 
the case, because after the guest sends out one packet, the IOVM on a different core 
may be woken up, but the guest can continue to send another packet without being 
suspended. The Xen hypervisor is able to deliver packets in batches to the IOVM; 
running the guest and IOVM on different cores allows multiple packets to be received 
by the IOVM within one context switch. 

Finally, the workload of an IOVM is different from that of a guest, and a guest is 
more CPU intensive, so mixing them together on the same core (as in co-locate and 
separate) may result in more complicated, thus negative, interferences (e.g., cache 
and TLB misses due to context switches) to an IOVM than putting the homogeneous 
workloads of the IOVMs on the same core. Therefore, IOVM-affinity scheme is the 
most efficient. 
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One more note about Fig. 9 is that the efficiency drops with the increase of the 
number of NICs for co-locate and separate, which indicates that they are not scalable 
schemes. The reason is that each IOVM uses almost the same amount of CPU cycles 
under these schemes, so that when the number of NICs increases from 1 to 2 for ex-
ample, the CPU cycles used by the corresponding IOVMs are nearly doubled, but the 
throughput is much less than doubled (Fig. 8). As a result, the efficiency drops from 1 
NIC to 2 NICs. Similarly, efficiency drops off when moving from 2 NICs to 3 NICs. 
On the other hand, the efficiency for IOVM-affinity remains fairly constant as the 
number of NICS increases and is therefore much more scalable. 
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Fig. 10. Throughput Comparison between 
SEDF and the Credit-based Scheduler 

Fig. 11. Efficiency Comparison between SEDF 
and the Credit-based Scheduler 

4.4   Credit-Based Scheduling and IOVM Configuration 

Core Scheduling and IOVM Performance 
In the evaluation so far we have been using static core schedulers - static in the sense 
that the CPU core that a domain runs on is fixed during its lifetime. The advantage of 
such schedulers is simplicity of implementation and reduced overhead of domain mi-
gration across cores. However, the drawback is that workload is not balanced across 
multiple cores, so that the platform resources are not efficiently utilized to achieve 
better overall performance (e.g. throughput). For example, while the core that an 
IOVM is running on is saturated, another core where a guest is running on may be 
idle for 30% of the time. Obviously the IOVM becomes the bottleneck in this case 
and thus the throughput can not improve, but there are free cycles on the platform that 
are not used. So if we could give the 30% free cycles to the IOVM, we can mitigate 
the bottleneck and have higher overall throughput as a result. This is the idea of the 
credit-based scheduler [13]. In a nutshell, a credit-based scheduler allows a domain to 
change the core where it runs on dynamically. The credit-based scheduler supports 
load balancing across the cores and is helpful for better overall performance. 

Fig. 10 and Fig. 11 show the throughput and efficiency comparison of a static 
scheduler (SEDF, or Simple Earliest Deadline First) and the credit-based scheduler, 
on a Monolithic configuration (Fig. 3). Fig. 10 shows that using credit-based sched-
uler can achieve equal or higher throughput than using a static scheduler. Especially, 
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when there are 3 test loads, the overall ‘receive’ throughput is 2070Mbits/sec for the 
credit-based scheduler, which is significantly higher than 1500Mbits/sec where the 
static scheduler is used. The credit-based scheduler does especially well for receive 
because receive is more CPU-intensive. 

Fig. 11 shows that the credit-based scheduler is not as efficient as a static scheduler 
when there are one or two test loads. This is understandable because moving the do-
mains around incurs overhead, e.g., a moving domain needs to transfer its context to 
the new core and warm up the cache at the new core. When the CPU is not the bottle-
neck, this overhead makes the network IOVM less efficient. However, when the net-
work IOVM is saturated (3 NICs), the credit-based scheduler results in better  
efficiency than the static scheduler, especially for receive. 

Credit-based Scheduling and IOVM Configuration 
Credit-based scheduling provides a solution to scalable network virtualization. This is 
because it virtualizes the core resources in a transparent way. In this sub-section we 
try to find out how to make the best use of this scheduler. We use the 3 configurations 
mentioned in Section 2.1 as the controlled variable. 

In this experiment, 3 test loads are used. We run the experiment using 3 different 
configurations: Monolithic, Multiple Small IOVMs, and a Hybrid configuration with 
2 IOVMs, where the first IOVM is assigned 2 NICs, and the second IOVM is as-
signed 1 NIC. Fig. 12 and Fig. 13 show the throughput and efficiency for the 3 con-
figurations, respectively. 
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Fig. 12. Throughput of Different IOVM Con-
figurations under the Credit-based Scheduling 

Fig. 13. Efficiency of Different IOVM Con-
figurations under the Credit-based Scheduling 

From Fig. 12 and Fig. 13 we can see that the Monolithic IOVM configuration is 
the most efficient, the Multiple Small IOVMs configuration has the highest through-
put but is the least efficient, and the Hybrid configuration has good enough through-
put and is more efficient than the Multiple Small IOVMs configuration.  

The better efficiency of the Monolithic and Hybrid configurations is due to larger 
packet batch size in their IOVMs. It turns out that Xen has optimized the network im-
plementation such that the network backend exchanges packets with the frontend in 
batches to reduce the number of hypervisor calls. The larger the batch size, the more 
savings in terms of hypervisor calls, and thus the more efficient. At runtime, the batch 
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size is influenced by workload, or the number of NICs in our case. For example, as 
Fig. 14 shows, an IOVM with 2 NICs has larger batch size than an IOVM with only 1 
NIC, so an IOVM with 2 NICs is more efficient. In our experiment, the Monolithic 
IOVM has the largest number of NICs (3), each of the Multiple Small IOVMs has the 
smallest number of NICs (1), and each of the IOVMs in the Hybrid configuration has 
1.5 NICs on average, so we get the efficiency result as shown in Fig. 13. 

Although the Monolithic IOVM is the most efficient, obviously it can not scale be-
cause it only has one core (it uses a uniprocessor kernel, see Section 3), so it can not 
support higher throughput beyond the core limit. On the other hand, the Multiple 
Small IOVMs configuration is a scalable solution because it can utilize more cores, 
but it is the least efficient. The Hybrid configuration is also scalable for reasons simi-
lar to the Multiple Small IOVMs configuration, but it is more efficient. So the Hybrid 
configuration is the best configuration in terms of scalability and efficiency. 
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Table 3. Combining Static Core Assignment 
and Credit-based Scheduler Yields Better 
Performance 

 Throughput 
(Mbits/sec) 

Efficiency 
(bits/Hz) 

Default 2,106 0.72 

Core 
Pinning 

2,271 0.82 
 

4.5   Further Improve the Efficiency of the Hybrid IOVM Configuration 

The previous section shows that a Hybrid IOVM configuration combined with Credit-
based scheduling can give us a scalable network virtualization solution. However, as 
can be seen from Fig. 13, the efficiency of a Hybrid configuration (0.7bits/Hz) is still 
not as good as that of a Monolithic configuration (1.1 bits/Hz). This section tries to 
address this problem. Specifically, we found that combining static core assignment 
and Credit-based scheduling can give a Hybrid configuration better efficiency. 

In this experiment, we have 4 NICs and we use a Hybrid configuration where 2 
network IOVMs are assigned 2 NICs each. We first run 4 test loads under the Credit-
based scheduling and measure the throughput and efficiency. We call this test result 
“Default” in Table 3. Then we change the core scheduling a little bit: instead of let-
ting the Credit-based scheduler schedule all the domains on the 4 cores, we manually 
pin the first IOVM to core 3 and the second IOVM to core 2, and let the Credit-based 
scheduler schedule the other domains on the remaining cores. We do the 4 guest  
experiment again and put the result in Table 3 denoted as “Core Pinning”. As we 
compare the two sets of results, we can see that using limited core pinning (or static 
assignment) results in improved efficiency as well as higher throughput (a pleasant 
side effect). This result suggests that it is not efficient to move the IOVMs across dif-
ferent cores. So it is more efficient to combine static core assignment (for the IOVMs) 
and Credit-based scheduling when using a Hybrid configuration for scalable network 
virtualization. 
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5   Related Work 

I/O virtualization can be carried out in the VMM [3][4], or the host OS [12], in addi-
tion to dedicated guest domains [1][5][8][10]. VMM-based I/O virtualization requires 
nontrivial engineering effort to develop device drivers in the VMM, provides inade-
quate fault-isolation, and is not flexible for driver optimization. HostOS-based I/O 
virtualization takes a further step by reusing existing device drivers, but does not sup-
port fault isolation and is still inflexible in terms of driver optimization. The IOVM 
approach supports driver reuse, fault isolation, and flexible driver optimization at the 
same time. 

There has been some related work in improving the performance of I/O virtualiza-
tion. For example, VMM-bypass IO [9] achieves high performance I/O virtualization 
by removing the hypervisor and the driver domain from the normal I/O critical path. 
But this approach heavily relies on the intelligent support provided by the device 
hardware to ensure isolation and safety, and it does not address the scalability issue. 
The IOVM approach that we proposed does not rely on such hardware support, and 
we have put much emphasis on scalability. In another work, Menon [11] proposes 
three optimizations for high performance network virtualization in Xen: high-level 
network offload, data copying instead of page remapping, and advanced virtual mem-
ory features in the guest OS. These optimizations are orthogonal to what we are doing 
in this paper, since our main concern is scalability, and incorporating such optimiza-
tions into our implementation may further improve the efficiency. Wiegert [14] has 
explored the scale-up solution by increasing an IOVMs compute resources to improve 
scalability. 

Utility Computing has been a hot research area in recent years. From a service pro-
vider point of view, one of the goals is to achieve optimal overall resource utilization. 
Our work addresses the problem of optimizing the utilization of core (CPU) re-
sources. Concerns about other resources (such as memory and disks) have not been a 
problem for us, but they can be added into our future work. 

6   Conclusions and Future Work 

Scalable I/O virtualization is very important in a server consolidation environment. 
This paper proposes IOVMs as a software solution to this problem. An IOVM is a 
guest OS dedicated to and optimized for the virtualization of a certain device. IOVMs 
are good for scalability and flexible for high performance. 

The first contribution of this paper is a novel way of using a hybrid configuration 
of IOVMs to achieve scalable and high-performance I/O virtualization. It makes the 
scalability and efficiency tradeoff: the scalability is achieved by spawning more 
IOVMs to utilize more core resources, and the efficiency is achieved by making full 
use of the core resource within each IOVM.  

The second contribution of this paper is a comprehensive set of experiments to 
evaluate the performance of network IOVMs. They show that IOVMs result in higher 
throughput and better efficiency compared to the centralized IO virtualization archi-
tecture, that a combination of static assignment and credit-based scheduling offers 
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better efficiency, and that a hybrid configuration of IOVMs is a choice for scalable 
network virtualization.  

Future work: The physical constraint of the multi-core platform nowadays limits the 
scope of our experiments. For example, if we could have a platform with 32 cores, we 
can gather more data points to do a more comprehensive analysis. Second, we have 
studied network virtualization only as a starting point; applying IOVM architecture to 
other kinds of devices (e.g., storage devices) may further test the validity of IOVM 
approach. Finally, we plan to use other kinds of work load besides iperf to further 
evaluate the network IOVMs. 
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Abstract. In a data-indexed DHT overlay network, published data annotations 
form distributed databases. Queries are distributed to these databases in a non-
uniform way. Constructing content distribution networks for popular databases 
is effective for addressing the skew problem. However, various crucial 
replication decisions such as which data object should be replicated, how many 
replicas should be created and what replica placement policy should be used, 
may affect the performance of replication based content distribution and load 
balancing mechanisms in the presence of non-uniform data and access 
distribution. Particularly, the impact of the propagation speed of replicas on the 
performance of such type of overlay networks is not well studied. In this paper, 
a proactive method is given to tackle this problem. The method can adaptively 
adjust the number of replicas to create based on the changing demand. It works 
in a fully distributed manner. Our experiments show that the approach is able to 
adapt quickly to flash query crowds and improve the query service quality of 
the systems. 

1   Introduction 

Peer-to-Peer (P2P) technologies are effective for flexible information sharing among 
a variety of applications. This is mainly because autonomous data sources can flexibly 
annotate their data (called data indexing in this paper) and the data can be located 
through decentralized search. A structured P2P overlay network achieves this through 
mapping data, data index and computers (content nodes) that store the data into the 
same ID space [1]. The ID of a data item is normally calculated from the attributes [2] 
of the data object or the hash key of the data itself. However, this mapping can cause 
data skew problem as data objects are unevenly distributed among content nodes. It 
can also cause access skew problem where the workload of nodes that serve queries to 
these data objects are unevenly distributed due to different data popularity. For a file-
sharing P2P system, the access skew problem is not as severe as that observed in Web 
traffic due to the “fetch-at-most-once” behavior of P2P file-sharing users [3], 
however, for P2P overlays mainly used for data indexing, the problem is hard to 
ignore. In a data indexed overlay, data annotations are grouped and stored in nodes 
selected by underlying DHT mapping algorithms. These stored data annotations (or 
indexes) form a number of distributed databases. We consider a group of annotations 
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mapped into the same ID as a data object. Data objects in these nodes are frequently 
changed; therefore “fetch-at-most-once” behavior is not a common phenomenon in 
this scenario. Due to the database search cost, the non-uniform access distribution is 
likely to overwhelm the nodes that are responsible for popular data IDs. Solving the 
skew problem is crucial to the scalability of systems built on P2P technologies.  

Constructing content distribution networks (CDN) through replicating popularly 
accessed data objects is a common technique to address the access skew problem. 
However, fundamental decisions must be made on issues such as which objects 
should be replicated, how many replicas should be created whenever the new replicas 
creation conditions apply, what replica placement mechanism should be used, and 
how fast these replica should be created and distributed.  

In this paper, we give a self-organized content distribution system as well as a 
proactive content distribution algorithm in order to address the access skew problem. 
Determining the number of replicas is important for a content distribution system to 
efficiently use resources and reduce the cost for maintaining consistency among 
replicas.  However it is a non-trivial issue to decide the number of replicas in a 
dynamic environment. Existing replication strategies for structured P2P networks 
often leave this problem un-tackled. They either create one new replica at a time when 
the load exceeds the capacity of the a content node [4,5], or create a fixed number of 
replicas at a time for caching and fault-tolerant purpose[6], or create replicas along 
query coming path in order to distribute content as fast as possible and serve flash 
crowds [7]. As shown in [4], too many replicas can make a system perform poorly 
due to high overhead. On the other hand, creating replicas slowly will result in poor 
query serving quality and long query queuing delays. In this paper, we propose a 
proactive CDN expansion mechanism to make replica creation adapt to the incoming 
query demands. Meanwhile, we give mechanisms to optimize the CDN performance 
by reducing the queuing delay and improving the content node utilizations.  

The rest of the paper is organized as follows: Section 2 is related work; Section 3 is 
our CDN construction mechanism and system model; in Section 4 we describe our 
proactive content distribution mechanism; Section 5 presents experiment results, and 
Section 6 concludes the paper. 

2   Related Work 

Replication methods have long been used in distributed systems to exploit the data 
locality and shorten the data retrieval time. Content distribution networks such as 
Akamai[8] demonstrate the use of replication methods in the Internet environment. 
However, Internet content distribution networks often require global load information 
and manual deployment.  

Recently, there are many replication strategies in the context of both unstructured 
[9, 10] and structured overlay networks [4,6,7]. They can be classified into three 
different types based on the number of replicas created whenever new replica creation 
conditions apply. 

The aggressive strategy does not control the replica number. Some unstructured 
overlays [7] replicate data on all peers along the query forwarding route between the 
peer requesting the data and the peer having the data. This method, called path 
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replication is not efficient and may result in a large amount of replicas with low 
utilization. The overhead may also drag down the performance of the whole system. 
On the other hand, the cost of maintaining consistency among replicas is high and this 
strategy is not suitable for a data index overlay where the replicated data objects are 
dynamic database tables. Another replication method called owner replication [10,11] 
replicates a data items to the peer that has successfully received the service through a 
query. The effect of this method is limited by the bandwidth and system performance 
of the receiving node. 

Another strategy creates replicas based on a fixed replication ratio at a time. For 
example, paper [12] proposed two replication-based methods derived from path 
replication and replicate data on selected nodes on query path. Path adaptive 
replication determines the probability of the replication in each peer based on a 
predetermined replication ratio and its resource status. Path random replication is a 
combination of path replication method coupled with a replication ratio. Based on the 
probability of the pre-determined replication ratio, each intermediate peer randomly 
determines whether or not a replica is to be created and placed there. Apparently, a 
fixed replication ratio can not adapt to the change in incoming queries.  

Most replication strategies create one replica at a time when new replica creation 
conditions apply [4, 5]. A new replica is created only when exiting replicas can not 
catch up with the increase in incoming queries. However, creating a new replica takes 
time depends on the network condition and replica size. This strategy may cause large 
amount of queries loss due to that the increasing speed of the query serving capacity 
can not catch up with that of the query incoming rate.  

The algorithm given in this paper differs from these algorithms mainly in that it 
can determine the number of replicas for proactive content distribution to adapt to the 
incoming query rate. Determining the number of replicas is normally discussed in the 
context of reducing search cost [1] and system recoverability.  However, it is 
important for addressing access skew problem. Recently, the work in [13] proposes to 
use historical data to predicate whether a data key is hot or not and make multiple 
replicas for hot data, however, it lacks proper metric to determine how many replicas 
are sufficient. 

3   System Description 

In a structured overlay, an ID is associated with a data object or a group of data 
objects who share the same data index. A data object here can be a data file or a data 
entry annotating a data file. Replicas of data objects that have the same ID form the 
content distribution network of the data ID.  

As shown in Fig. 1, each data ID may have its own content distribution network. 
Each content node in the overlay network runs a process for handling queries to the 
data objects it stores. The query processing is FCFS based. We assume a lossless 
queue with a capacity defined as the number of queries the node can process in a 
certain time frame. When the capacity is reached, the node is overloaded and the 
queries coming subsequently may suffer long delay. They may be forwarded to a 
node that might be able to solve the query. In its simplest form, the content 
distribution network of a data ID is fully connected and load information is exchanged 
 



602 B.A. Alqaralleh et al. 

 

Fig. 1. Content distribution model 

periodically along these links so that the forwarding destination can be easily 
obtained. When the data hosted by a node is popular, it is likely that the queue size is 
close to or over the capacity most of the time. When all the nodes in a content 
distribution network are overloaded, the network will be expanded by creating a new 
replica. The new replica node is selected from available nodes in the underlying 
network. Each node in the system can autonomously create replicas of its local data 
objects onto nodes selected by replica placement mechanism. 

The system contains the following components for achieving the above: 

• Query routes and access history collection: this component captures the 
          temporal locality of incoming queries, and to measure the request arrival rate 
          for every data ID over some measurement time interval. 

• Content distribution network construction: this component uses a proactive 
         content distribution algorithm to create new replicas.  

• Load balancing: this mechanism dispatches queries in the content distribution 
         network in order to make efficient use of the content nodes. 

A. Query Routes and Access History Collection 
The analyses of traces collected from Gnutella (http://www.gnutella.com) revealed 
that access locality exist in P2P systems. A popular file that has been accessed 
recently is also likely to be requested in the near future. We give a mechanism to 
collect useful information for exploiting query locality, in which each node manages 
its own data access history. This mechanism maintains the access history for every 
data ID hosted by a node as follows: Firstly, it obtains the search paths from recent 
queries in order to determine the pattern of paths recent queries come from. Each 
node maintains a QueryStat table to record the last-hop nodes queries travel through 
before they arrive in the destination node, as well as the count of queries coming from 
these last-hop nodes in the latest time frame.  A sample QueryStat table is shown in 
Table 1. This table records top-3 frequently query routing nodes. Only top-K nodes 
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are kept in each list to limit the size of QueryStat table. In this table, K0 has been 
queried 65 times recently, while 25 of them are routed via node N1, 20 of them are 
routed via N2, 10 are routed via node N4 and the rest 10 are routed via other nodes. 
Secondly, this mechanism measures request arrival rate for every data ID hosted by a 
node over some measurement time interval, in order to estimate the number of 
replicas needed for an ID.  In the simplest form, a KeyStat table records the number of 
requests node n has received for data ID k in the latest time frame.  

Table 1. QueryStat table of an overloaded Node 

ID (req#) Node-Id ( #Requests) 

K0(65) N1(25) N2(20) N4(10) 
K1(30) N2(18) N3(7) N6(5) 
K2 (5 ) N3(5) - - 
K3( 3) N2(2) N5(1 ) - 

B.  CDN Construction 
Our replica placement mechanism places replicas on nodes where queries frequently 
come from. QueryStat table is used to select nodes to host replicas. Node n which 
does not have a copy of the data ID k to replicate and passes most queries to ID k will 
be selected to replicate data objects of k. Replicas are therefore created along the 
query incoming paths. Our algorithm most likely places replicas on adjacent nodes 
which are one hop a way from the overloaded node. However, if there was no 
candidate nodes available in the QueryStat table to host new replicas; new content 
node will be selected randomly from the ID space of the overlay.   

Fig. 2 shows the protocol used by an overloaded content node to recruit new node 
to join the CDN. An overloaded node can send CDN requests to multiple candidate 
content nodes simultaneously. However, the data distribution is done sequentially to 
each candidate nodes that accept the CDN request as different node may replicate 
different data IDs. We do not assume multicast support in the underlying networks.  

C. Load Balancing in the CDN 
Nodes storing the same data ID form the CDN of the ID. We denote a set of nodes 
that hold the data objects with ID k as cdnk. As mentioned above, a content node’s 
capacity of processing queries is described by the number of queries the node can 
process within a certain time frame. A content node is considered as overloaded if the 
number of queries in its queue reaches the capacity value. Before initiating CDN 
expansion, the overloaded node will forward the queries it can not process in time to 
lightly loaded nodes in cdnk to ensure a certain query processing quality. A content 
node will update other nodes in the same CDN its load when the load change is above 
a pre-defined threshold. This cost can be high when the size of CDN becomes large. 
We gave a method in [5] to reduce the load information updating cost. cdnk needs 
expansion when there is no lightly loaded node available to share the load.  
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Fig. 2. CDN expansion example 

A CDN node can withdraw from the CDN it belongs to if the CDN contains at 
least two nodes. This happens when the node keeps a low utilization on the stored 
content for a long time.  A hand-off process is performed during the departure of a 
CDN node. 

4   Proactive Content Distribution 

In this section, we describe a proactive mechanism for CDN expansion in order to 
improve the query serving quality, especially for flash query crowds.  

Normally, queries are unevenly distributed among data IDs. Similar phenomena 
are often modelled using Zipf distribution, which indicates that the number of queries 
to the ith most popular data ID, denoted by n, is inversely proportional to i, i.e.,  

α−in ~ , in which α  is the shape parameter.  
In another words, assuming the expected number of queries to the ith popular data 

ID is n , there will be i data IDs that have n  or more queries. According to [14], the 

probability that a data ID has n  or more queries is as below: 

α/1
~}Pr{

−
> nnX  (1) 

in which X is the number of queries to the data ID. 
This is a Pareto distribution. We further have the following conditional probability 

when we observe there are a queries to the data ID: 

α/1

~}|Pr{ ⎟
⎠
⎞

⎜
⎝
⎛=>

b

a
aqueriesbX  (2) 



 A Proactive Method for Content Distribution in a Data Indexed DHT Overlay 605 

in which a is the observed number of queries to the data ID and b is the total number 
of queries to this ID. Equation (2) indicates that the more queries to a data ID we 
observe, the more likely that the total number of queries is greater than b.  

When 0.1=α , we have the following: 

N
NX

1
~}Pr{ >  (3) 

⎟
⎠
⎞

⎜
⎝
⎛=>

b

a
anbX ~}|Pr{  (4) 

Equation (2) and (4) gives a way to predicate the popularity of a data ID based 
on the number of observed queries to the ID. Early research on the number of visits 
to web sites further revealed that the difference in the number of visits to a site in 
two successive time frames is proportional to the total visits to the site [15]. This 
can be applied to our case: the difference in the number of queries to a data ID  
in two successive time frames is proportional to the total number of queries to  
the ID. With this, we can estimate the changing popularity of among data IDs as  
follows:  

We denote the number of queries data ID k receives at time t in current time frame 

as t
kn . Assume ti

kn  is the number of queries k received in previous time frame ending 

at ti.    ti
k

t
kk

ti
nnn −=Δ  can therefore be used to estimate the number of queries to k 

by the end of the current time frame, which is 

When the capacity of a content node reaches, the number of new content nodes 
need to create is calculated using algorithm 1 based on equation (5). In algorithm 1, 
each data ID k hosted in the node is associated with the number of queries to it in 

previous time frames, denoted as tp
kn  and the average number of queries to it in the 

current time frame tc
kn . The two values are obtained through data ID access history 

collection mechanism. The number of replicas to create contains two parts. The first 
part is the number of replica needed by the end of current time frame, which is 

calculated using tp
kn  and tc

kn . The second part is the number of replicas needed for 

reducing the current workload in the node, which is calculated using the current 
queries waiting in the queue.  

Algorithm 1 assumes homogeneous nodes in the overlay. It is not difficult for us to 
extend the algorithm to heterogeneous environment. 
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Algorithm 1: Data ID Selection and Replica Number Calculation 

Input: S={(ki, tp
kn , tc

kn ) | ki is stored in the local node} 

           c – the query processing capacity of the local node 
           q – the current request queue length, normalized by the query processing 
capacity 
          thr – the probability threshold 
Output: (k, r): k is the data ID to replicate, r is the number of replicas to create. 

 
for each ki in S do 

tp
k

tc
kki nnn −=Δ  

⎣ ⎦cnr kiki /Δ= ; crnm kikiki ⋅−Δ=  

cmP kiki /=  

if thrPki >  

     1+= kiki rr  

end if 
}{ kirRR ∪=  

end for 
 

sort R in descending order 

get 0
kir  from R 

ccqrr kiki /)(0 −+=  

return (k, kir ) 

5   Evaluation 

To study the performance of the proactive replica creation mechanism on structured 
overlays, we implement a simulator using FreePastry 1.4.1.  The overlay has the 
following parameters unless stated otherwise. It consists of 3000 nodes with ID 
randomly generated in 128 bit ID space. There are 200 data IDs published in the 
overlay and the total number of published data objects is 5000. Replicating a data ID 
incurs replica node negotiating cost, data dissemination cost and data processing cost. 
The average latency between two overlay nodes is set to 5 milliseconds. The average 
bandwidth between two overlay nodes is 10Mbps. The average data processing time 
including constructing a data table and populating its contents is 500 ms in average. 
Queries in an overlay network follow Poisson distribution. These queries can be sent 
from any node to published data IDs. Query sources are randomly selected. Queries 
select data IDs based on Zipf distribution with 0.1=α . The query processing time 
is randomized between 10 to 100 ms. The time frame for counting queries is set to 
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100ms. The node capacity is set to 30 queries in the queue and workload change 
threshold is set to 30% of the capacity value. The probability threshold in algorithm 1 
is set to 0.8. 

A. Effect of the proactive CDN expansion mechanism 
Our CDN expansion algorithm is adaptive to the changes of query arrival rate. In our 
experiment, queries arrival in three batches. The first batch contains 2000 queries 
with mean generating interval 2ms; the second batch contains 4000 queries with mean 
generating interval 1.4ms and the third batch contains 6000 queries with mean 
interval 0.8ms. These three batches of queries have an increasing demand to the CDN. 
Fig. 3. shows the overall query processing capacity change of the CDN that hosts the 
most popular data ID. The overall query processing capacity and the demands from 
incoming queries are normalized using the average query processing speed in a node. 
Fig. 3 shows that the CDN expansion mechanism is capable of identifying the popular 
data ID. The CDN expansion mechanism is also sensitive to the changes in query 
arrival patterns and it adapts to the demand of incoming queries well. 
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Fig. 3. Proactive CDN expansion vs. actual query arrivals: mean arrival interval- first 2000 
queries: 2ms; next 4000 queries: 1.4ms; last 6000 queries: 0.8ms 
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Fig. 4. Average query slowdown vs. query arrival rate 
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Fig. 5. CDN size vs. query arrivals 

 
B. CDN performance comparison 
To further quantify the effect of the data ID selection and replica number calculation 
mechanism, we compare the CDN performance under the proactive mechanism 
(Proact) to that under conservative CDN expansion mechanism (Non-Proact). A 
conservative mechanism adds one replica at a time when the CDN is overloaded. It is 
commonly used as an adaptive replication method. Fig. 4. compares the average query 
slowdown changes with the query arrival rates under the two mechanisms. The 
slowdown of a query is defined as below: 

timeprocquery

delayqueuingquerytimeprocessingquery
slowdown

__

____ +=   

It is clear that Proact outperforms Non-Proact in terms that queries suffer shorter 
queuing delay. As the increase of query arrival rates, the slowdown gap also 
increases. Proact apparently creates replicas faster than Non-Proact does when the 
query arrival rate is high, as shown in Fig. 5. Note that under Proact, the average 
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Fig. 6. Average node utilization vs. query arrival rate 
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query slowdown increases along with the query arrival rate. This is mainly due to that 
the cost of replica creation makes the CDN expansion speed can not keep up with the 
increasing query arrival rate. Even though Proact tends to create more replicas than 
Non-Proact does, their average CDN node utilizations are comparable as Fig. 6. 
shows, which means the proactive replica creation mechanism can efficiently control 
the CDN expansion speed.   

 
C. Query forwarding hops 
To study the load-balancing cost of our proactive mechanism, we compare the 
average query forwarding hops within a CDN under different replica creation 
mechanisms, namely NonProact-Route, Proact-Route and NonProact-Random. 
NonProact-Route uses conservative CDN expansion mechanism and new content 
node is selected based on QueryStat table discussed in section 3. Proact-Route uses 
proactive CDN expansion mechanism and new content node is selected based on 
QueryStat table. NonProact-Random mechanism uses conservative CDN expansion 
mechanism and new content node is randomly selected from the overlay ID space. 
Table 2 shows the average query forwarding hops in the CDN. It is clear that the 
proactive mechanism does not incur extra load-balancing cost. 

Table 2. Query forwarding hops comparison 

Mean Query Arrival  NonProact-Routes Proact-Routes NonProact-Random 
1600 (microsecond) 0.183141 0.186367 0.2552 
1200 (microsecond) 0.2392 0.194386 0.3304 
800 (microsecond) 0.315944 0.276759 0.396439 
400 (microsecond) 0.465948 0.416457 0.504721 

6   Conclusion 

We have presented a proactive content distribution method for data indexed DHT 
networks, which effectively addressed the access skew problem in such type of 
overlay networks. The method is capable of estimating the number of replicas needed 
for unevenly distributed demands to data IDs. Our simulation evaluation shows that 
the mechanism can significantly reduce the query slowdown when the query arrival 
rate is very high. Meanwhile, it uses resources efficiently by keeping the content node 
utilization reasonably high and load-balancing cost low.  
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Abstract. CAN is a famous structured peer-to-peer network based on d-
dimensional torus topology with constant degree and logarithmical diameter, 
but suffers from poor scalability when N>>2d, N is the number of peers. To 
address this issue, we proposes a novel scalable structured peer-to-peer overlay 
network, CDACAN that embeds the one-dimensional discrete distance halving 
graph into each dimension of CAN. The out-degree and average routing path 
length of CDACAN are O(d) and O(log (N)), respectively, and are better than 
that of CAN. On the other hand, we analyze the optimal value of dimensions 
and the smooth division method of d-dimensional Cartesian coordinate space 
when handling the dynamic operations of peers. The smooth division of 
multidimensional space can improve the routing performance, and also is 
helpful to keep load balance among peers. Those properties and protocols are 
carefully evaluated by formal proofs or simulations. Furthermore, we present a 
layered improving scheme to decrease the out-degree of each peer in the future 
work. The expected topology will keep 8 out-degree and O(log2(N)+d) routing 
path length. 

1   Introduction 

Structured peer-to-peer networks, abbreviated as P2P, have been proposed as a good 
candidate infrastructure for building large scale and robust network applications, in 
which participating peers share resources as equals. They impose a certain structure 
on the overlay network and control the placement of data, and thus exhibit several 
unique properties that unstructured P2P systems lack. 

Several interconnection networks have been used as the desired topologies of P2P 
networks. Among existing P2P networks, CAN [1] is based on the d-dimensional 
torus topology; Chord[2] Pastry[3] and Kademlia [4] are based on the hypercube 
topology; Viceroy[5] is based on the butterfly topology; Koorde [6], Distance Halving 
network [7], D2B [8], ODRI [9] and Broose [10] are based on the de Bruijn topology; 
FissionE[11], MOORE[12] are based on the Kautz topology. 

CAN is a famous structured peer-to-peer network based on d-dimensional torus 
topology with constant degree and logarithmical diameter. It supports multi-
dimensional exact and range queries in a natural way, but suffers from poor 
scalability when N>>2d, N is the number of peers. To address this issue, we introduce 
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CDACAN, an improved structured P2P network based on CAN and the CDA 
(Continuous-Discrete Approach). CDACAN is a constant degree DHT with O(log(N)) 
lookup path length and inherits the properties of Cartesian coordinate space. The main 
contributions of this paper are as follows: 

• We extend one-dimensional discrete distance halving graph to multi-
dimensional space, abbreviated as DGd, to serve as the topology of CDACAN. 
The DGd can keep the good properties of Cartesian coordinate space.  

• We improve the routing algorithms proposed in literature [7] to support DGd . 
Thus, CDACAN achieves a less value of the average routing path length than 
that of the traditional CAN.  

• We design algorithms to calculate the necessary precision of destination code 
to perform the search. We reveal that the smoothness and regularity of the 
spatial division can reduce the hazard in the estimation of precision and 
neighbor forwarding can amend the routing.  

• We design the peer joining and departing protocols based on an associate 
sampling mechanism to improve the smoothness and regularity of all cells of a 
whole Cartesian coordinate space after division.  

• We point out that the out-degree of each peer in CDACAN is still relative 
high, and propose a layered scheme to reduce the value of out-degree. It 
achives a better tradeoff between the routing table size and the routing delay 
just as the Cycloid does. 

The rest of this paper is organized as follows. Section 2 introduces some useful 
conceptions in CDA. Section 3 proposes the topology construction mechanism, the 
routing algorithm, and the joining, departing protocols for CDACAN. Section 4 
evaluates the characteristics of CDACAN by comprehensive simulations. Conclusion 
and future work are discussed in Section 5. 

2   Basic Concepts of Continuous Discrete Approach 

Continuous Distance Halving Graph Gc: The vertex set of Gc is the interval I= [0, 
1). The edge set of Gc is defined by the following functions: L(y)=y/2, R(y)=y/2+1/2, 
B(y)=2y mod 1, where y∈I. L abbreviates ‘left’, R abbreviates ‘right’ and B 
abbreviates ‘backwards’. 

Discrete Distance Halving Graph Gd: X denotes a set of n points in I. A point Xi 

may be the ID of a processor Vi or a hashing result of the value of ID. The points of X 
divide I into n segments. Let us define the segment of Xi to be S(Xi) = [Xi, Xi +1), 
i=1,2,…n−1, and S(Xn)=[ Xn, 1)∪[0, X1). Each processor Vi is associated with the 
segment S(Xi). If a point y is in S(Xi), we say that Vi covers y. A pair of vertices (Vi, 
Vj) is an edge of Gd if there exists an edge (y, z) in the continuous graph, such that 
y∈S(Xi) and z∈S(Xj). The edges (Vi, Vi+1) and (Vn, V1) are added such that Gd 
contains a ring. In figure 1, the upper diagram illustrates the edges of a point in Gc 
and the lower diagram shows the mapped-intervals of an interval that belongs to Gd.  

The greedy routing and distance halving routing algorithms apply to the graph, and 
are abbreviated as GA and DHA, respectively. If the latter adopts the binary string 
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representation of the destination Xd to perform the first step, we call it as direct 
distance halving algorithm, abbreviated as DDHA. We also use continuous discrete 
routing algorithm, abbreviated as CDRA, as a general name for both GA and DDHA. 

3   CDACAN 

In order to improve the scalability of CAN, we embed a d-dimensional discrete 
distance halving graph into CAN, and achieve a novel P2P network.  

3.1   Topology Construction Mechanism 

We extend the conceptions of Gc and Gd to multidimensional space. 

d-Dimensional Continuous Distance Halving Graph DGc: The vertex set of DGc is 
the unit d-dimensional Cartesian coordinate space S={(X0,X1,……Xd−1)|Xi∈ [0,1), 
i=0,1,……d−1}. Given Y=(Y0, Y1,……Yd−1), the edge set of DGc is defined by the 
following functions: DL(Y)={( X0,X1,…Xj,…Xd−1)|Xi=Yi, i=0,1,…j−1, j+1…d−1, 
Xj=Yj/2, j=0,1,……d−1 }; DR(Y)={(X0,X1,…Xj,…Xd−1)|Xi=Yi, i=0,1,…j-1, j+1…d−1, 
Xj=Yj/2+0.5, j=0,1,……d−1 }; DB(Y)={(X0,X1,…Xj,…Xd−1)|Xi=Yi, i=0,1,…j−1, 
j+1…d−1, Xj=2Yj mod 1, j=0,1,……d−1 };  

d-Dimensional Discrete Distance Halving Graph DGd: P denotes a set of N 
processors, divide S into N zones and each zone Zj is charged by Pj in P, j=1,2,3,…N. 
A pair of vertices (Pi, Pk) is an edge of DGd if there exists an edge (y, z) in DGc, such 
that y∈Zi and z∈Zk. The CAN-like edges are included in DGd too. 

Let Z denote the zone set of DGd, Zi is a zone that Zi∈Z and has a serial number of 
i, i=1,2,3…N. Zi.j denotes the interval of the jth dimension of Zi, j=0,1,2,…d−1. 

CLAIM1: let Ni is a node in DGd, whose zone is Zi with volume V. Zi is mapped to 
d L-mapped zones, d R-mapped zones and d B-mapped zones, and their volumes are 
V/2, V/2 and 2V respective.  

The definitions, corollaries and lemmas mentioned below will be used in later. 

Definition 1. The length of a binary decimal a is L(a), where L(a) is the number of 
bits behind the radix point of a. If L(a)=i, a is a i-regular-point. 

Definition 2. Let an interval I=[a, b), where a is a binary decimal and L(a)≤i, b=a+2-i. 
We call it i-regular-interval. Both a and b are the boundaries of I. 

We can infer a corollary and two lemmas on the base of definition 2. The related 
proofs are omitted due to the page limitation. 

Corollary 1. In Gd, the mapped intervals of i-regular-intervals induced by R(y) or L(y) 
are (i+1)-regular-intervals; and that induced by B(y) are (i−1)-regular-intervals.  

Lemma 1. Any i-regular-interval Ia=[a, b) possesses a unique binary prefix Sp whose 
length is i. Every point in [0,1) whose binary form with prefix Sp is included in Ia; and 
the i-prefix of every point p in (a, b) is Sp and p satisfies L(p)>i.  

Lemma 2. There must be only one boundary point c of i-regular-interval I satisfies: 
L(c) = i, the length of other boundary point e satisfies L(g)< i. 
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Definition 3. The smoothness of ith dimension and smoothness of volume are 
denoted as SMi(Z) and SMV(Z), respectively. They are defined to be the existing 
number p that satisfies MAXj,k |Zj.i|/|Zk.i|<p, i = 0,1,2,……d−1, and MAXj,k |Zj|/|Zk|<p 
for any network size N, respectively.  

Definition 4. The regularity of Z means that all the Zi.j are regular-intervals, 
i=1,2,3…N, j=0,1,2,…d−1.  

The smoothness problem has been discussed in [7]. Its effect on routing algorithms, 
however, is still an open problem. We show that CDA can generate a series of regular 
intervals, and its essential objective is to gain the unique prefix of the interval (zone). 
 
Theoretic Analysis of Degree distribution: supposing the spatial division is smooth 
and regular. For d-CDACAN, the degree of a node Ni is about 6d, the edges 
including: about 2d CAN-like edges to the neighbor of Cartesian coordinate space; 
about d, d and 2d edges induced by DR, DL and DB functions in DGd respectively.  

Figure 2 shows a 2-DGd, the overstriking area is an actual zone Zi whose owner is 
Ni; red areas are R-mapped zones and L-mapped zones of Zi; green areas are B-
mapped zones of Zi. The number of degree of Ni is 16, including CAN-like edges. 

 

L(x) R(x) 

B(x) 

2x 
(x+1)/2 

x x/2 

L(x) R(x) (x+1)/2 

2x x x/2 B(x) 

        

Fig. 1. node degree in Gc and Gd      Fig. 2. A possible 2-DGd 

It is hard to get the upper bound (mentioned in Theorem1 in [7]) of the number of 
edges of any node in DGd. And it is clear that the spatial division of high dimensional 
DGd without smooth volumes and regular shapes may lead to a high value of degree.  

3.2   Routing Protocol 

3.2.1   Routing Algorithm 
Let Xd denote a lookup destination, Id = [Ix, Iy) is the interval that contains Xd and Vd is 
the processor that owns Id. Is is the interval of the lookup initiator Vi. Ir is the longest 
regular-interval in Id and L(Ir)=h, and IL is the longest regular-interval in Is and 
L(Is)=v. Our discussion in 3.2.1 and 3.2.2 is general, and does not base on the 
hypothesis of smoothness and regularity. We will reveal three problems that have 
not been pointed out and clarified in [7]. 

• In DGd, how does CDRA calculate IL and Ir?  
• They did not reveal why the CDRA is prone to fail in distributed scenario, and 

how the smoothness and regularity of spatial division reduce the hazard of 
routing, and how neighbor forwarding amends the routing.  

• They did not reveal the key factors that affect the routing path length in 
CDRA.  
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The three problems are interconnected and will be settled later.  
The routing algorithm of CDACAN is routing on every dimension obeyed to the 

improved CDRA respectively. The improved CDRA include three steps: calculating 
appropriate Ir (for both GA and DDHA) and IL (for GA only); routing by CDRA; 
neighbor forwarding (if necessary). We will introduce our contributions, which are 
the first and third steps. 

Because the improved CDRA is performed on every dimension of CDACAN, we 
adopt Gd as the background of improved CDRA for convenience and the adjective of 
“improved” may be omitted in the latter.  

3.2.2   Calculation of Ir (IL) Under the Global Division Information 
We assume that the interval division states are known by all the peers in this section 
and devise an algorithm to calculate Ir (IL) under the hypothesis. We will introduce a 
lemma first. 

Lemma 3. Let x and y denote two binary decimals and 1>y>x•0, there must exist one 
binary decimal m in I = [x, y) whose length L(m) is the smallest, We call m the 
Shortest Normative Point. 

Then we will propose an algorithm to calculate m. The functions of binary string 
operations in the pseudo code are quite straightforward.  
 
Algorithm 1. FindShortestBinaryDecimal(x, y) 
Require: The inputs must satisfy that x＜ y 
1: t •  y − x  
2: z •  t.PreserveLargest1Bit() 
3: L •  z.GetLength() 
4: if y = y.PreserveBits(L) then 
5:     m •  y − 2-L 

6: else  
7:     m •  y.PreserveBits(L)  
8: p •  m − 2-L 
9: if p • x and m.GetLength()>p.GetLength() then 
10:      m • p 
11: return m 

 
Corollary 2. The Shortest Normative Point of a regular interval I=[a, b) is a.  
Theorem 1. Ir can be calculated by the algorithms mentioned as follows.  
 
 

Algorithm 2. DetermineRoutingLengthLowerBound (Id) 
Require: Id=[Ix, Iy) what has been defined in 3.2.1. 
1: t •  Iy − Ix  
2: z •  t.PreserveLargest1Bit() 
3: h •  z.GetLength() 
4: StartPoint •  FindShortestBinaryDecimal(Ix, Iy) 
5: Ir1 = SearchLeft(StartPoint, h, Ix)  
6: Ir2 = SearchRight(StartPoint, h, Iy) 
7: return Ir = max(Ir1,Ir2)  
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Algorithm 3. SearchLeft(StartPoint, h, Ix) 
Require: StartPoint is a point in Id, and h is a positive 
integer. 
1: if (StartPoint − 2−h) < Ix) then 
2:       Ir1= SearchLeft(StartPoint, h + 1, Ix) 
3: else  
4:       Ir1=[StartPoint − 2

−h, StartPoint) 
5: return Ir1 
Algorithm 4. SearchRight(StartPoint, h, Iy) 
Require: StartPoint is a point in I, and h is a positive 
integer. 
1: if (StartPoint + 2−h) • Iy) then 
2:       Ir2= SearchRight (StartPoint, h+1, Iy) 
3: else  
4:       Ir2= [StartPoint, StartPoint + 2

−h)  
5: return Ir2 

 
Proof. let the Shortest Normative Point of Id =[ Ix, Iy)is m and I1 = m−Ix, I2 = Iy−m. We 
can decompose I1 and I2 into the formulas whose form is x12

−1+ x22
−2+…xi2

−i+…, xi = 
0 or 1, i=1,2,……. If L(m)=L there must be:  

I1 = x12
−L+x22

−L−1+…xi+1-L 2−i+…, xi = 0 or 1, i=L, L+1…… (1) 

I2 = y12
−L+y22

−L−1+…yi+1-L2−i+…, yi = 0 or 1, i=L, L+1…… (2) 

The relationship between the decomposition of I1 and Algorithm3 is that Algorithm3 
can find the largest regular-interval Ir1 at the left of m, corresponding to the first 
number appeared in (1).  

And SearchRight can find a regular-interval Ir2 at the right of m too.                       □ 

It is obvious that DDHA will adopt the unique prefix of Ir to perform the routing 
when the interval division state is known by all peers. GA can get Ir and IL by the 
same method too. The detailed explanation of DDHA and GA can be found in [7]. 

Corollary 3. if Id and Is are regular-intervals, then Ir =Id, IL=Is, respectively. 

3.2.3   Neighbor Forwarding and the Effects of Smoothness and Regularity 
The Algorithm in 3.2.2 bases on a hypothesis that the interval division is known by all 
peers. The hypothesis can not be satisfied because of the distributed property of P2P 
network. If Vi wants to query a resource whose ID is Xd. Firstly Vi have to estimate Id 
what contains Xd to perform Algorithm2, the estimation including the length and the 
beginning point of Id, and the estimation of Id is denoted by Id’; Secondly Vi adopt 
algorithm2 to calculate Ir’ and IL by Id’ and Is respectively; Thirdly Vi perform DDHA 
by Ir’ or GA by Ir’ and IL respectively; Fourthly, the searching massage is sent to a 
processor denotes by Vd’; At last, Vd’ is not always Vd because of the uncertainty of 
the estimation of Id, and the method for amending is neighbor forwarding.  

Let suppose Lave is the average interval length in the network. The effect of the 
smoothness is making the calculation of Lave accurately, thus L(Id’) too; and the effect 
of regularity is making the position of the entire intervals regular. In CDACAN, the 
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regularity is achieved by the CAN-like divisional scheme, and the smoothness is 
achieved by the sampling operation in the joining and departing stages. 

However, smoothness problem can not be addressed by a determinate method. So 
Vd’ may be not Vd and we design a neighbor forwarding scheme for Vd’, i.e. 
forwarding a message to Cartesian-coordinate-neighboring nodes, to amend the 
routing failure of CDRA what is resulted from a low-estimated Ir’.  

3.2.4   Routing Path Length of Continuous Discrete Routing Algorithm 
We can infer three corollaries when consider the problem under a distributed 
scenario.  

Corollary 4. The key factor that affects the routing path length of GA is v.  

Proof. In GA, Vi can calculate logical beginning point Ps as follows: gets the prefix of 
Ps by the unique prefix of IL, and then gets the suffix of Ps by the unique prefix of Ir’. 
Because Ps∈IS, the routing path length of original GA which starts at Ps is v. And Ir’ 
affect the size of the routed message.                                                                            □ 

Corollary 5. The key factor that affects the routing path length of DDHA is h’=L(Ir’).  

Corollary 6. If the spatial division is smooth and regular, then | h’-v |<log2(p). 

Proof. According to Corollary3, if the division is regular, there must be Ir’ =Id’ and IL 
= Is, and |Id’|=Lave=2−h’, |Is|=2−v. According to the definition of smooth we know that 
existing a number p>1 what satisfies 1/p<|Id’|/|Is|<p. So |h’-v| <log2(p).                     □ 

If the spatial division is smooth and regular, Corollary6 implies that the routing path 
lengths of DDHA and GA are close. Else, it is difficult for Vi to determine appropriate 
Id’ to perform CDRA because Vi doesn’t know Id in distributed circumstance. GA can 
adopt a little larger Id’ to increase the probability of successful lookup and avoid 
neighbor forwarding because it does not waste too much bandwidth according to 
Corollary4; DDHA can not adopt too large Id’ because it increases the entire routing 
path length unnecessarily according to Corollary5. So the risk what comes from the 
uncertainty of the calculation of Id’ can do more harm to DDHA than GA.  

Theoretic Analysis of Routing path length distribution: In smooth and regular 
division, the average routing path length and the diameter of DDHA and GA are both 
about Lave, and there may be some lengths larger than Lave because of neighbor 
forwarding caused by the impossibility of even spatial division. The hop number of 
neighbor forwarding is determined by smoothness. 

3.3   Node Joins 

As for most P2P networks, we assume there are some existing nodes as entry points 
of CDACAN, which can receive and process the node joining message. The joining 
procedure includes three stages: selects a zone to divide, redistributes resources, and 
updates routing tables. We will introduce the first step because it is unacquainted 

The process is inspired by the join algorithm of Gd in [7]: 

1. Estimate log2N. The method to estimate log2N is simple and is omitted here. 
2. Sample tlog2N random points in d-dimensional unit space S, t is a constant and can 
    be known by Theorem11 [7], we also can select an appropriate t by simulation. 
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3. Check all zones that contain those points. Let Nl denote the node that contains the 
     largest zone Zl. Then divides Zl into two parts in a similar way used by CAN.  

Borrowing the Theorem11 from Gd in [7], we can deduce the theorem as follow 
under the background of DGd.  

Theorem 2. For any initial state, the largest zone would be of volume at most 1/2n 
after inserting n points. 

The proof of theorem2 is omitted because it can be transplanted from [7] easily. This 
theorem provides the basis to keep smooth in DGd by the original sample scheme. We 
have improved the sample scheme by using the local search rule. It can reduce the 
number of messages used to carry out the sampling process and keep smooth.  

Samples with Local Search: The sampled nodes check all the neighbors and select 
the neighbor whose zone is the largest. It can improve the efficiency and reduce the 
number of sampled points remarkably at the same time. 

3.4   Node Departs 

Because of the dynamic nature of P2P network, CDACAN need to consider not only 
node joining operation but also node departure operation. Updating the routing table 
and the reassigning zones are omitted because they are familiar. The departing 
protocol includes four steps as follows: 

1. If ND, whose zone is ZD, wants to depart immediately, it selects the smallest 
     neighbor node NS to take over ZD. So NS manages two zones temporarily.  
2. NS samples number of tlog2N points in d-dimensional unit space S and send tlog2N 
    messages to their owners, where the value of t is assigned in a same method used 
    by the peer joining algorithm.  
3. Every sampled node Ps searches “partition tree” to find a “leaf nodes” NL by a 
     similar algorithm used by the topology maintenance mechanism in CAN. Then Ps 

     sends NL back to NS.  
4. NS selects the smallest leaf node NLe, and then NLe hand its zone ZLe to its “geminate 
    node” to merge to a valid zone and take over ZD.  

The first step ensures that the departure operation can be finished successfully. The 
last two steps can keep the regularity of the division for the same reason in CAN.  

Our major contribution is the step two. The sample-based selection can improve 
the smoothness and does not bring too much sampling messages. By comparing with 
CDACAN, CAN adopt a simple scheme to find NS and it can not deal with mass 
adversarial departure; the method in CDA needs to keep additional structure (bucket 
or Cyclic Scheme).  

4   Evaluation 

4.1   Query Path Length  

In this section, we will verify the theoretical analysis results by comprehensive 
simulations. The query path length is measured in terms of overlay network hops. We 
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Fig. 3. Routing path length of CDACAN 
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Fig. 4. Query path length distribution of CDA- 
CAN with 128k nodes 

assume a simple model for the offered query load: queries are generated randomly 
and uniformly at each node, the desired query results are uniformly distributed in the 
key-space. 

We plot the routing path length of 2-CDACAN in figure 3, and adopt 2-CAN and 
6-CAN as the benchmark for our experiments since 2-CDACAN is based on 2-CAN 
and has the same degree with 6-CAN. We have simulated the worst-case and average-
case path lengths as a function of the number of nodes N (x-axis, in the log scale). 
Figure 3 demonstrates that the routing path length of 2-CDACAN is close to the 
y=log2N function. The “step-like-increase” on both CDACAN routing path curves is 
due to the increasing of the estimated system size when N becomes larger. As 
expected, curves for the worse-case and average-case of 2-CAN and 6-CAN are 
coincide with that of functions n1/2, (1/2)n1/2, 3n1/6 and (3/2)n1/6 respective. We also 
discover that 2-CDACAN is better than 2-CAN and inferior to 6-CAN. The 
simulation results also expose that the degree of each peer in CDACAN is relative 
high, and should decrease as less as possible. Figure 4 shows the distribution of path 
lengths in CDACAN with 128k nodes. We can observe that most paths with the 
length of 1+log2(N). It is because our simulations adopt higher precision of Ir than the 
normal one for one bit to avoid neighbor search.  

4.2   Sample in the Join Operation 

The smoothness and degree problems of CDACAN have impact on the sample 
algorithm. We will analyze it by simulations. 

We choose average degree to reveal the effects of local search as shown in figure 5. 
The upper line and lower line represent the average degree of peers in CDACAN that 
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is generated by the original sampling and improved sampling with local search, 
respectively. We discover that the local search can improve the smoothness (Figure 9 
and Figure 10) and reduce the degree (Figure 5) obviously.  

Figure 6 illustrates that the average number of sample messages in a join operation 
increases logarithmically with respect to the size N. The number is the product of the 
routing path length and amount of samples. This experiment adopts t=0.25, which is a 
relative large value. The green line assumes the worse case of routing path and the 
blue line adopts the average. They are both close to y=0.25x2 because the routing path 
length is close to log2(N) as shown in figure 3. The average number of overlay 
messages what are generated by the sample operation is less than 80 in CDACAN 
with 128k nodes. It illuminates that sample-based scheme in CDACAN is practical. 

4.3   Volume and Smoothness 

Volume distribution is an important network trait in CDACAN-like protocols what 
based on spatial division and spatial mapping. Figure 7 and Figure 8 demonstrate the 
effect of regular division. Figure 7 shows that irregular division leads to trivial 
distribution of volume and the ratio of the biggest zone and the smallest zone is not 
less than 20; Figure 8 shows that the regular scheme generates smooth division and 
the ratio of the biggest volume and the smallest volume is 4.  

Figure 9 and Figure 10 demonstrate that the volume distribution of CDACAN 
becomes smooth when t increases. And they illustrate the volume distribution what is 
generated by the sample with local search and without local search respectively. 
Comparing figure 9 with figure 10, we discover that local search can improve the 
smoothness remarkably. And they uncover the causation of figure 5 too. 
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4.4   Distribution of Degree  

The distribution of degree in CDACAN is an important trait that represents the 
routing table overhead. The experiment which corresponds to Figure 11 is called E1, 
and the experiments which correspond to the green, blue and red bars in figure 12 are 
called E2, E3 and E4 respectively. 
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Fig. 12. Comparison of degree distribution 

Figure 11 and the green and blue bars in figure 12 illustrate the degree distribution 
of experiments what have 1024 nodes. E1 adopts t=0.0625 without local search, and 
its volume distribution is shown with the first bar cluster in figure 9. E2 adopt 
t=0.0625 with local search; E3 adopt t=2 with local search. E2 and E3 correspond to 
the first and sixth bar cluster in figure 10 respectively. We can discover that the 
distribution of degree is determined by the distribution of volume. And the degree 
distribution is discrete because the volume distribution is discrete too.  

Figure 5 shows that the average degree decreases when t increases. It is because the 
volume distribution becomes smooth as shown in figure 9 and figure 10. And the 
average degree of 2-CDACAN is about 12 what accords with the theoretical analysis. 
E4 adopt t=0.0625 with local search and 128k nodes. The setting of E4 and E2 is the 
same except for the network size. And we discover that their degree distributions are 
nearly the same. By reverse reasoning, we discover that their volume distributions are 
similar and CDACAN keep smoothness well under large network size.  

5   Conclusions and Future Work 

In this paper we have presented CDACAN, a scalable structured P2P network based 
on Continuous Discrete Approach and CAN. We firstly introduce the related 
conceptions in CDA. Then we introduce the design of our proposal detailedly: 
presenting the topology construction and the routing algorithm; In the routing 
algorithm, we propose algorithm to calculate the necessary precision of the 
destination, devise neighbor forwarding scheme to deal with the uncertainty of the 
routing in distributed circumstance, analyze the key factors that affect the routing path 
length of CDRA; introducing the join and departure protocols of CDACAN. At last 
we verify our protocols by simulation.  

The main problem of CDACAN is its high degree. In CDACAN, the average 
routing path length and degree are about log2(N) and 6d respectively. We discover 
that the high degree can not reduce the path length. Our anticipant solution is layered 
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improvement, named LCDACAN, whose scheme is dividing d-CDACAN into d 
layers and the nodes in i-layer keep the edges on the ith dimension, i=0,1,…d−1. 
The topology has O(log2(N)+d) routing path length and about 8 degrees on every 
node. LCDACAN keeps Cartesian coordinate space property and its tradeoff between 
routing path length and size of routing table is close to Cycloid [13]. 
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Abstract. Application-layer multicast (ALM) can solve most of the problems of 
IP-based multicast. Topology-aware approach of ALM is more attractive 
because it exploits underlying network topology data to construct multicast 
overlay networks. In this paper, a novel mechanism of overlay construction 
called Multi-domain Topology-Aware Grouping (MTAG) is introduced. 
MTAG manages nodes in the same domain by a special node named domain 
manager. It can save the time used to discover topology information and 
execute the path matching algorithm if there are some multicast members in the 
same domain. The mechanism can lower the depth of the multicast tree too. 
Simulation results show that nodes can acquire multicast service more quickly 
when the group size is large or the percentage of subnet nodes is high. 

1   Introduction 

IP Multicasting [1] implemented at the network layer can provide an efficient delivery 
service for multiparty communications. It is the most efficient way to perform group 
data distribution, as it eliminates traffic redundancy and improves bandwidth 
utilization on the wide-area network. However, although IP Multicasting has been 
available for many years, today’s Internet service providers are still reluctant to 
provide a wide-area multicast routing service due to some reasons such as forwarding 
state scalability, full router dependence and so on [2, 15]. In order to achieve global 
multicast, application-layer multicast (ALM) has recently been proposed, where the 
group members form an overlay network and data packets are relayed from one 
member to another via unicast. ALM shifts multicast support from core routers to end 
systems. 

Application-layer multicast can solve most of the problems of IP-based multicast. 
It can easily be deployed because it does not require any modification to the current 
Internet infrastructure. However, application-layer overlay multicast technology is not 
                                                           
* Supported by the Important Research Plan of National Natural Science Foundation of China 

(No. 90104005). 
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as efficient as IP multicasting. It will incur some delay and bandwidth penalties and 
less stability of multicast tree. Till now, many ALM protocols [3-9] have been 
proposed to utilize overlay technique to provide scalable and high quality multicast 
service to applications.  Among these protocols, topology-aware approach is more 
attractive because it exploits underlying network topology data to construct multicast 
overlay networks. The constructed tree has low relative delay penalty and a limited 
number of identical copies of a packet on the same link. TAG (Topology-Aware 
Grouping) [10, 11] is a typical ALM protocol of this approach. Experiments show that 
TAG is efficient in reducing delays and duplicating packets with reasonable time and 
space complexities. 

But TAG considers the Internet as a non-domain network. Each node in the 
multicast tree executes the same algorithms to join or leave the tree. In fact, the 
Internet is a multi-domain network. Here domain can be considered as an autonomous 
system or a subnet. Millions of self-similar autonomous systems or subnets form the 
Internet. TAG will construct a high-depth multicast tree when the multi-domain 
feature of the Internet is ignored. For example, if there are 10 multicast members in 
the same domain, the last join node who wants to acquire the multicast data has to 
wait for the other 9 nodes’ forwarding. It will cost a lot and the node will spend more 
time waiting for the multicast service. Therefore a new mechanism of the overlay 
construction based on TAG, called Multi-domain Topology-Aware Grouping 
(MTAG), is introduced in this paper. The mechanism takes the multi-domain feature 
into account to provide more quickly service for multicast members.  

The paper is structured as follows. Section 2 provides an overview of related work 
and section 3 introduces the proposed MTAG mechanism. Performance of the 
mechanism is verified by simulation in section 4. Finally, we conclude the paper with 
a summary of conclusion and future work. 

2   Related Work 

Many application-layer multicast solutions have been put forward with their 
respective strengths and weaknesses [12]. Several work propose overlay construction 
schemes that take the topology of the physical network into account. In [13], a 
distributed binning mechanism is proposed where overlay nodes partition themselves 
into bins such that nodes that fall within a given bin are relatively close to one another 
in terms of network latency. In TAG [10], the information about overlap in routes to 
the sender among group members is used to guide the construction of overlay tree. 
TAG selects the node that shares the longest common spath prefixes, subject to 
bandwidth, degree, and possibly delay constraints as parent for a new node. The spath 
of a node refers to a sequence of routers comprising the shortest path from source 
node to this node according to the underlying routing protocol. The resulting tree of 
TAG has low relative delay penalty, and introduces a limited number of identical 
packets on the same link. 

TAG considers that all nodes in the multicast tree have no difference. However, the 
Internet is connected with many domains. Most multicast applications have a 
characteristic that there are more than one multicast members in the same domain 
because the spread of a new multicast application is often related to geographic 
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location. Users who live in the same building or work at the same company have 
more chances to enjoy the same multicast service. In TAG, supposing there are 10 
nodes in the same domain, we can find that the next node out of this domain will have 
the depth more than 10 even if it is very close to the source node. The multicast tree 
can not match the real topology very well. For this purpose, our MTAG mechanism 
modifies the overlay construction of TAG and provides a domain manager to manage 
the nodes in the same domain. The mechanism can lower the average depth of the 
whole multicast tree and provide more quickly service for multicast members. 

3   Multi-domain Topology-Aware Grouping 

3.1   TAG Review 

Let us review the overlay construction process of TAG before our mechanism is 
introduced. To simplify the operation, we adopt complete the path matching algorithm 
to construct the multicast tree.  

Fig. 1 shows a multicast tree produced by member join algorithm of TAG. We use 
a more complex example than [10] so that you can find the disadvantages of TAG. 

 
           (a)                                (b) 

Fig. 1. Multicast overlay constructed by TAG 

Source S is the root of the multicast tree, R1 through R4 are routers, and H1 
through H11 are hosts in Fig. 1. Thick solid lines denote the current data delivery tree. 
Each node of the multicast tree maintains a family table (FT) defining parent-child 
relationship for this node (showing only the children in Fig. 1).  



626 J. Cui et al. 

Fig. 1(a) shows the real topology and FT of each non-leaf node. The new node who 
wants to join the multicast tree will send a JOIN message to S first. When S receives 
the message, it computes the spath to the new node by network path-finding tools 
such as traceroute. After S gets the spath of the new node, it starts the path matching 
algorithm execution. The path matching algorithm will be executed by next nodes 
until the best parent is found. The details of the algorithm can be found in [10]. In Fig. 
1(b), we ignore the topology and other information so that we can get a clear look on 
the multicast tree. There are just 3 routers from the source node to the node H11, 
while the depth of the node H11 has already been 9. The data forwarding latency will 
increase with the depth’s increase. Another shortcoming of TAG is that it must 
compute the same spath for many times if there are some nodes (such as H9, H10 and 
H11) in the same domain. The topology discovery procedure will cost a lot and lead 
to poor performance. 

3.2   Mechanism of MTAG 

To overcome the weaknesses of TAG mentioned above, we propose another 
mechanism MTAG to construct and maintain the multicast overlay. We introduce a 
new role named domain manager to manage nodes in the same domain. The source 
node will maintain another table called domain table (DT) to save the information of 
domain managers and the DT is empty at the very beginning. To implement the new 
mechanism, we add the node’s path information into its FT (the old FT just saves the 
information of its parent and its children). 

Once a new node sends a JOIN message to the source node, the source node will 
get the domain information of the node first. How can we know which domain the 
node belongs to? We can identify the node’s domain by the network number of its IP 
address which can be obtained from the JOIN message if a subnet is regarded as a 
domain. Otherwise, if there are some other rules to distinguish domains, we need to 
add the domain information into the JOIN message. Here, for simplicity, we think a 
domain is a subnet. 

Then the source node checks the DT to make sure whether the domain manager of 
the new node exists. If the domain manager is found, the source node will directly 
send a CHILD message with the node’s information to the domain manager. The 
domain manager takes the new node as its child and sends a PARENT message to the 
node. The domain manager provides the multicast service for the node at the same 
time. What the new node should do is to add the parent information into its FT table 
when it receives the PARENT message. In another way, if the node’s domain 
manager does not exist, the source node will add the node’s information into the DT 
and send a MANAGER message to the node. Then the source node starts the topology 
discovery procedure and the path matching algorithm similar to TAG to find the best 
parent of the node. The node who receives a MANAGER message will identify itself 
as the domain manager.  

A normal member who wants to leave the multicast tree will execute the same 
algorithm as TAG. The node just needs to send a LEAVE message with its FT to the 
parent. The parent will remove the node from its FT and add FT entries for the 
children of the leaving node. If the domain manager wants to leave the tree, it should 
send a LEAVE message to the source node in addition to the parent. The LEAVE 
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message includes its FT (if its children are all in other domains) or the new domain 
manager candidate chosen from its children (if it has any children in the domain). If 
the parent receives the LEAVE message with the FT, it will execute the same 
algorithm with TAG, otherwise it will replace the node information with the candidate 
in its FT. The source node will update or delete the node information from the DT 
based on the information of the LEAVE message. The last step is the old domain 
manager sends an UPDATE message to inform its children who is the new domain 
manager. The new domain manager takes the other nodes as its children and provides 
the multicast service right now when it receives the UPDATE message. Other 
children just need to update their parents of the FT. The member leaving process of 
the domain manager seems more complex than TAG. However, one domain just has 
one domain manager, so the probability is small. 

The mechanism of MTAG is illustrated in Fig. 2.  

 
(a)                          (b) 

Fig. 2. Multicast overlay constructed by MTAG 

We can get a number of advantages from MTAG: 

1. The topology discovery and path matching algorithm are not necessary if 
the domain manager exist: Just when the first node in the domain joins the multicast 
tree, the two steps (cost a lot) need to be executed. This mechanism will shorten the 
waiting time of the new node if it is not the first member in the domain. 

2. MTAG can lower the average depth of the multicast tree: From Fig. 2(b), we 
can find the depth of the multicast tree is 6 instead of 9 (Fig. 1(b)) under the same 
topology. The reason is that nodes in the same domain all take the domain manager as 
their parent. The domain manager can afford so many children because the bandwidth 
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is often high enough in a LAN. The lower the depth of the tree is, the sooner the node 
acquires the multicast data. 

3. MTAG can balance the traffic of the domain: In TAG, the node chosen to be 
the parent of the next node (out of the domain) must be the last join node. The node 
H6 in Fig. 1 is such a node. However, in MTAG, the domain manager has more than 
one child, so that it can choose randomly its children to be the parent of the next node. 
We can find the node H5 and H6 in Fig. 2 act as the different nodes’ parents 
respectively. We should not let one node be the parent because the connection is inter-
domain. 

4. The domain manager does not need to save the spath of its children: Nodes 
in the same domain have the same spath so that the domain manager just needs to 
record its own spath instead of each child’s spath. The domain manager can use less 
memory to store the FT. 

Compared with TAG, MTAG has the only obvious drawback: The source node 
need to maintain the DT. In MTAG the source node just needs to forward the 
multicast data to one child which should be very close to it. Another task of the source 
node is to process JOIN/LEAVE messages. The source node just needs to update its 
DT in most cases because the domain manager has shared some management tasks for 
the source node. So the maintenance of the DT will not significantly affect the 
performance of MTAG.  

3.3   Member Join/Leave Algorithm 

Three algorithms are needed to implement the MTAG mechanism. Member_ 
Joining(S) executed on the new node is used for joining the multicast tree. 
Member_Leaving (S) is executed when the node wants to leave the tree. Members of 
the multicast tree execute the third algorithm Member_executing() as a daemon.  

 Algorithm 1: Member_Joining (S) 
 send(S, JOIN_msg); 
 msg = receive_msg() //receive_msg() will be blocked  
 till a message is received or timeout 
 If (isPARENT_msg(msg))  
     add_FT_parent(msg.address); 
 Else If (isMANAGER_msg(msg)) 
      isManager = true; 
 Endif  
 
 Algorithm 2: Member_Leaving (S) 
 if (isManager) 
   newManager = getDomainChild(FT); 
   If (newManager = = NULL) 
       LEAVE_msg = new_LEAVE_Msg(FT); 
   Else 
       LEAVE_msg = new_LEAVE_Msg(newManager);       
   Endif 
   send(S, LEAVE_msg); 
 Endif 
 send(FT.parent,LEAVE_msg); 
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Algorithm 3: Member_executing( )
Do while true 
   msg = receive_msg();
   If (isJOIN_msg(msg)) //just the source node can 
receive the JOIN message 
      manager = checkInDT(msg.domain);
      If (manager = = NULL) //there are not any            
nodes in the domain 
          updateDT(msg.domain,msg.sourceAddr);
          send(msg.sourceAddr, MANAGER_msg);
          spath = topo_discovery(msg.sourceAddr);
          PathMatch(myself, spath); //execute path     
matching algorithm of TAG 
      Else 
          send(manager, CHILD_msg);
      Endif  
  Else
      If (isCHILD_msg(msg))
          add_FT_child(msg. sourceAddr);
          send(msg.sourceAddr, PARENT_msg);
          send(msg.sourceAddr, multicast_data);
      Else 
          If (isLEAVE_msg(msg))
             If (msg.newManager= =NULL) 
                If (isSourceNode(myself)
                  deleteFromDT(msg.domain);
               Else //other nodes 
                  update_FT_child(msg.FT.children);
               Endif 
            Else //has new domain manager 
                If (isSourceNode(myself)
                  updateFromDT(msg.domain,msg.newManager);
               Else //other nodes 
                  update_FT_child(msg.sourceAddr,
msg.newManager);
               Endif 
            Endif 
        Else 
            If (isUPDATE_msg(msg))
               If (msg.newManager= =myself)
                   add_FT_child(msg.FT.children);
                   send(msg.FT.children,multicast_data);
               Else 
                  update_FT_parent(msg.newManager);
               Endif 
            Endif 
        Endif 
    Endif 
   Endif 
Enddo
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4   Evaluation 

In this section, we present the simulation results to evaluate the proposed MTAG 
mechanism and compare it to the original TAG protocol. 

4.1   Simulation Environment 

We generate a Transit-Stub network topology with 500 nodes using GT-ITM [14]. On 
top of the physical network, the multicast group members are attached to the stub 
nodes. Nodes belong to the same stub are thought to be in the same subnet. We can 
control the percentage of nodes in the same subnet. The multicast group size ranges 
from 50 to 500 members. The transit-to-transit, transit-to-stub, and stub-to-stub link 
bandwidth are assigned between 10 Mbps and 100 Mbps. The links from edge routers 
to end systems have the bandwidth between 1 Mbps and 10 Mbps. 

4.2   Performance Metrics 

A simulation is carried out to contrast the performance of our proposed MTAG and 
TAG. Because the main idea of the overlay construction has not been changed by 
MTAG, the mean RDP (Relative Delay Penalty) and Link Stress are same as TAG. 
So we will not evaluate these two performance metrics which can be found in [10]. 
The performance metrics used for our experiments are Member Join Latency (MJL) 
and Data Acquisition Latency (DAL).  

Member Join Latency denotes how long it takes for the join operation. If TJOIN 
denotes the time when the new node sends the first JOIN message and Tdata denotes 
the time when it receives the first packet of multicast data from the parent, the value 
of the MJL can be measured by Tdata- TJOIN. We report the mean of the latency of all n 
members: 

Mean Member Join Latency= )(
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Data Acquisition Latency of a node is an expression of how much time it takes for 
a packet of multicast data to get from the source node to this node. To get the DAL of 
each node, we add the additional mechanism into all nodes. It is not necessary for 
ALM. The source node sends a PROBE message (very small) to its children in a 
certain interval. The node who receives the message will send a HELLO message to 
its parent first and forward the PROBE message to its children at the same time. So 
the PROBE message can be received by all nodes in the multicast tree. Because the 
path of the round trip is same, the source node can calculate approximately the DAL 
by RTT/2. The source node will probe each node for m times to get the average value. 
We also use the mean of the DAL to evaluate the performance: 
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4.3   Results and Analysis 

We will evaluate the two metrics in two different conditions. We attach the multicast 
group members to the stub nodes randomly and adjust the multicast group size from 
50 to 500 in the first experiment. The relationship between the performance metrics 
and the group size is shown in Fig. 3.  

 
(a)                                  (b) 

Fig. 3. Performance metrics versus group size 

We find the mean MJL of TAG become higher when the group size increases from 
the experimental data showed in Fig. 3 (a). However, MTAG can get lower MJL 
when the group size reaches a certain number. The reason is that we have more nodes 
in one subnet when the group size is large. MTAG will save more join time if there 
are more nodes in a subnet.  

Fig. 3 (b) shows that the mean DAL will increase with the group size in both 
mechanisms. We also find the mean DAL of MTAG is much less than that of TAG. 
MTAG can build a multicast tree with lower depth if there are some nodes in the 
same domain. The low depth multicast tree will shorten the latency of data 
forwarding. 

In the second experiment, we give a more obvious percentage of the nodes in the 
same subnet and fix the group size of 300. For example, 20% nodes in the same 
subnet means there are 20% nodes in such subnet where there are two or more 
member nodes. These 20% nodes needn’t be in one subnet. Considering the size of 
stub nodes and member nodes, the percentage ranges from 20% to 100%. The result is 
shown in Fig. 4.  

Fig. 4 shows that the percentage of the nodes in the same subnet has little effect on 
TAG’s performance while the mean MJL and DAL of MTAG decrease sharply when 
the percentage increases.  

It can be concluded from the simulation results that MTAG can decrease the mean 
MJL and DAL than  TAG when the group size is large or the percentage of the subnet 
nodes is high.  
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(a)                                  (b) 

Fig. 4. Performance metrics versus percentage of nodes in the same subnet 

5   Conclusion and Future Work 

In this paper we have proposed a novel overlay construction mechanism MTAG 
based on the topology-aware application-layer multicast. We introduce the domain 
manager to manage nodes in the same domain. The mechanism can shorten the join 
time of a new node and lower the depth of the multicast tree. The results show that the 
new nodes can acquire the multicast service more quickly when the group size is large 
or percentage of the subnet nodes is high.  

For simplicity, we do not take the bandwidth into account when we use the path 
matching algorithm of TAG. The topology of simulation environment is not complex 
and sweeping enough. Future work will be done on testing and optimizing MTAG in 
a more complex environment. 
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Abstract. Service discovery is a crucial feature for the usability of mo-
bile ad-hoc networks (MANETs). In this paper, Minimum Dominating
Forward Node Set based Service Discovery Protocol (MDFNSSDP) is
proposed. MDFNSSDP has the following characteristics: 1)It minimizes
the number of coverage demanding nodes in the current node’s 2-hop
neighbor set. 2) It minimizes the size of dominating forward node set
used to cover all coverage demanding nodes. Forward nodes are selected
based on local topology information and history information piggybacked
in service request packets. Only these forward nodes are responsible for
forwarding service request packets. 3) The coverage of service request
packets is guaranteed. 4) Multiple service requests can be fulfilled in just
one service discovery session. Simulations show that MDFNSSDP is an
effective, efficient, and prompt service discovery protocol for MANETs.1

1 Introduction

Mobile Ad-Hoc Networks (MANETs)[1] are temporary infrastructure-less multi-
hop wireless networks that consist of many autonomous wireless mobile nodes.
Flexibility and minimum user intervention are essential for such future commu-
nication networks[2]. Service discovery, which allows devices to advertise their
own services to the rest of the network and to automatically locate network
services with requested attributes, is a major component of MANETs.

In the context of service discovery, service is any hardware or software features
that can be utilized or benefited by any node; Service description of a service
is the information that describes the service’s characteristics, such as types and
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attributes, access methods, etc; A server is a node that provides some services;
A client is a node that requests services provided by other nodes. When a node
needs services from others, it generates a service request packet. When receiv-
ing request packets, each node that provides matched services responds with
a service reply packet. Nodes without matched services forward the packet fur-
ther. All these packet transmissions, including request packets and reply packets,
form a service discovery session. Coverage preservability of a service discovery
protocol is the property that the coverage of service discovery requests when the
protocol is used is the same to that when flood policy is used.

The objective of service discovery protocol is to reduce service request packets
redundancy while retaining service discoverability. Usually this is approached by
searching for more efficient policy of service request packet forwarding.

Existing service discovery protocols targeted at MANETs are not very appli-
cable for their variety of problems. Flood-based protocols (Konark[3], Proximity
SDP[4]) face the risk of broadcast storm problem[5]. Some other flood-like proto-
cols (FFPSDP[6], RICFFP[7]) can not guarantee the coverage of service request
packets, which leads to lower service discovery ratio. Two group-based protocols
(GSD[8], Allia[9]) cause serious redundancy of unicast request packets. 2-layer
protocols[10][11] construct upper logic layer by selecting out some nodes with
variety of criterions. Upper logic layer requires costly maintenance. DSDP[12]
is superior to other 2-layer protocols for its lower topology maintenance over-
head. In multi layer protocols (ServiceRing[13], MultiLayerSDP[14]), their hi-
erarchy architectures are hard to maintain, which has been verified through
simulations[15]. Additionally, no existing protocols consider the requirement of
fulfilling multiple service discovery requests in one service discovery session. For
a more detailed survey please ref to ref[16].

Noticing above problems and the importance of coverage preservability prop-
erty of service discovery protocols, Minimum Dominating Forward Node Set
based Service Discovery Protocol (MDFNSSDP) is proposed in this paper. The
new scheme minimizes the number of coverage demanding nodes in the current
node’s 2-hop neighbor set, and finds a minimum dominating forward node set
to cover all these coverage demanding nodes. In this way, service request packet
overhead is greatly reduced. MDFNSSDP preserves the coverage of service dis-
covery sessions, and it can fulfill multiple service discovery requests in just one
service discovery session. Besides, it offers some user-definable parameters, which
can be used to adjust its operation.

Dominating set scheme has been applied to many aspects in MANET, includ-
ing routing, broadcasting, and applications, but no similar work is found used in
service discovery protocol. Besides, most works are either omitted the necessity
to minimize the set to be covered or lack of coverage preservability proof. Some
work using dominating set can be found in ref[17].

The rest of the paper is organized as follows. In Section 2, data structures of
MDFNSSDP and some definitions are given. A problem called dominating for-
ward node set (DFNS) problem is proposed and its NP-completeness is proved.
An heuristic to solve the DFNS problem is proposed, and its approximation ratio
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is analyzed. In Section 4, operations of MDFNSSDP are described and demon-
strated. In Section 5, some properties of MDFNSSDP, such as the existence of
dominating forward node set and coverage preservability, are proved. In Section
6, the performance of MDFNSSDP is analyzed through extensive simulations.
Finally, in Section 7, a conclusion is made.

2 Preliminaries of MDFNSSDP

2.1 Data Structures

In MDFNSSDP, each node broadcasts hello packets periodically. The structure
of hello packets is shown in Fig. 1(a). The packet-type field indicates the type of
the packet. The sender-id field indicates the sender of the packet. The service-list
field stores the list of local services’ descriptions. The life-time field indicates the
time that the packet can be cached by others. The neighbor-list field stores the
list of the current node’s 1-hop neighbors.

Hello packets received will be cached in NLSIC for a period. The structure of
NLSIC item is shown in Fig. 1(b).

(a) Hello packet (b) NLSIC entry

(c) Service request packet (d) RRT entry

(e) Service reply packet

Fig. 1. Data structures in MDFNSSDP protocol

The structure of service request packets is shown in Fig. 1(c). The packet-id
filed is a number that increases monotonically with each service request packet
generated by a node. This field identifies different service request packets from
the same node. The source-id filed indicates the client that generates the service
request packet. The visited-list filed stores the list of nodes that the packet has
passed. Depends on the value of protocol parameter, the visited-list field may
also store the list of 1-hop or 2-hop neighbors. The sender-id filed indicates
the direct sender of the packet. The receiver-list filed stores the list of so called
forward nodes that are responsible for forwarding the request packet further. The
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remain-hop filed indicates the number of hops that the packet can still travel. The
request-list field describes the list of the descriptions of the requested services as
well as whether any matched services has been found for each requested service.

Each node maintains a RRT which is used in two tasks: 1) check for du-
plicated request packets, and 2) forward service reply packets reversely to the
corresponding client node. Fig. 1(d) shows the structure of an RRT entry. The
predecessor-id field indicates the node from which the service request packet is
received. It is just the next hop node that a corresponding reply packet should
be forwarded to. The packet-id and source-id field are the same to that of the
service request packet

The structure of service reply packets is shown in Fig. 1(e). The packet-type
field indicates the type of the packet. The source-id field stores the destination of
the reply packet, which is just the node that generates the corresponding request
packet. The packet-id field stores the packet-id of the corresponding request
packet. The receiver-id field indicates the next-hop node of the service reply
packet. The replier-id field indicates the node that generates the reply packet.
The matched-service-list field stores the description of the matched services.

2.2 Notations and Definitions

The following notations are used in the rest of the paper.

u: the current node.
s: the client that generates the service request packet.
v: the direct sender of the current service request packet.

Nx(u): the set of nodes that are at most x-hop away from node u,
i.e., node u’s x-hop neighbor set, including u itself.

Hx(u): the set of nodes that are just x-hop away from node u.
V (v) the set of nodes in the visited-list field of the request packet sent by v.

F (v, u): F (v, u) = H1(u) −N1(v).
R(u): The set of nodes in the receiver-list field of request packet sent by u.

We make the following definitions.

Def. 1 (Forward Node): Each node in R(u) is a forward node of node u.

Def. 2 (Candidate Forward Node): Each node in F (v, u) is a candidate
forward node of node u. Obviously, R(u) ⊆ F (v, u) since that forward nodes are
all selected from F (v, u).
Def. 3 (Coverage of a service discovery session): All nodes that could
receive or have received service request packets of a service discovery session are
called as in the coverage of the service discovery session. It can also be said that
these nodes are covered by the service discovery session.

Def. 4 (Extendedly Covered): For a node w, if ∃x ∈ R(u) meets w ∈ H1(x),
then we say that node w is extendedly covered by node u.

Def. 5 (Coverage Demanding Node): To obtain coverage preservability,
when forwarding service request packets, all node in H2(u) should be guaranteed
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to be covered by the current service discovery session. Some nodes in H2(u)
have already been covered or to be covered through other ways. Hence, only a
subset of H2(u) should be guaranteed to be extendedly covered by the current
node. These nodes are called as coverage demanding nodes. The set of coverage
demanding nodes is denoted as HCDN (v, u). Obviously, HCDN(v, u) ⊆ H2(u).
In MDFNSSDP, HCDN(v, u) = H2(u)−N2(V (v)).

Def. 6 (Dominating Forward Node Set): Given a set of nodes R(u), if
for ∀w ∈ HCDN (v, u), ∃x ∈ R(u) that meets w ∈ H1(x), or in other words ,
HCDN (v, u) ⊆ H1(R(u)), then R(u) is a dominating forward node set, denoted
as FDFNS(v, u).

3 Find a Minimum Dominating Forward Node Set

When receiving a service request packet, each forward node will have to forward
the packet further, unless all requested services are found or the packet’s hop-
limit is reached. Hence, in order to reduce request packet overhead, the size of
DFNS should be minimized. The task of finding a DFNS with minimum size is
called as DFNS problem.

Using H to represent the set of coverage-needed hidden servers HCDN (v, u), C
to represent the family of sets {H1(w)|w ∈ F (v, u)}, and F to represent F (v, u),
the DFNS problem can be defined formally as follows:

DFNS problem: Given H, C, and F, find a dominating forward node set
FDFNS(v, u) ⊆ F with minimum size.

Since that
⋃

w∈F (v,u) H1(w) ⊇ H2u −N2V (v) = HCDN (v, u)(refer to Lemma
3 in the following text), and there is a 1-to-1 correspondence between C and F,
the decision version DFNS Problem can be defined formally as follows:

DFNS problem (decision version): Given H={h1, · · · , hn}, C={C1, · · ·Cm},⋃
Ci∈C Ci ⊇ H , and a positive integer k, decides whether there is subset B ⊆ C

with size k such that
⋃

Ci∈B Ci ⊇ H .

Lemma 1. The decision version of the DFNS problem is NP-complete.

Proof. The proof is omitted for the limit of space. "#

Since that DFNS problem is NP-complete, the following greedy heuristics is
proposed in MDFNSSDP to select a dominating forward node set FDFNS(v, u)
from H, C, and F.

Heuristic: greedy Minimum DFNS heuristic.

1. Let FDFNS(v, u) = Φ(empty set), HRC(v, u) = Φ(HRC(v, u) is a temporal
set used to store node set already covered by FDFNS(v, u)).

2. Find node w ∈ F (v, u) with maximum |H1(w)
⋂

HCDN (v, u) −HRC(v, u)|.
In case of a new tie, select w with smallest ID.

3. FDFNS(v, u) = FDFNS(v, u) + w, F (v, u) = F (v, u) − w.
4. HRC(v, u) = HRC(v, u)

⋃
H1(w). If HRC(v, u) ⊇ HCDN (v, u), exit.

Otherwise, go to step 2.
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Lemma 2. The approximation ratio of the greedy minimum DFNS heuristic is
ln(maxz∈F (v,u)|H1(z)

⋂
HCDN (v, u)|) .

Proof. The proof is omitted for the limit of space. "#

4 The Operations of MDFNSSDP Protocol

MDFNSSDP protocol has three basic operations: Hello packet exchanging, ser-
vice request packet forwarding, and service reply packet routing.

4.1 Hello Packet Exchanging

In MDFNSSDP, each node in a MANET should broadcast hello packets peri-
odically. Node can cache the information in the hello packets into their NLSIC.
This information will be kept valid for a user-defined period. Hello packets can
only travel 1 hop, i.e., nodes should not forward a reply packet further. New
hello packets are constructed basing the information in NLSIC.

The content of the service-list field of a hello packet is determined by protocol
parameter STY PE as follows.

– If STY PE=NONE, this field contains nothing.
– If STY PE=SELF, this field contains the descriptions of all services provided

by the node.
– If STY PE=HOP1, this field contains not only the descriptions of the services

provided by the node, but also those of the services provided by the current
node’s neighbors.

– If STY PE=HOP2, the field contains the descriptions of the services of three
sources: 1)the current node, 2)1-hop neighbors of the current node, and 3)
2-hop neighbors of the current node.

4.2 Service Request Packet Forwarding

When needing services, a node firstly checks to see if there are any matched ser-
vices for each requested service, either provided by the node itself or found from
its NLSIC. If yes, the service discovery request succeeds. If no, the node con-
structs a service request packet and sent it out. The request-list field of a request
packet can contain multiple service requests. Hence, in MDFNSSDP, multiple
service discovery requests can be fulfilled in one service discovery session. The
maximum number of service discovery requests in request-list field is determined
by parameter CSize.

Request Packet Forward Decision. When receiving a service request packet
from other nodes, or the current node needs services, the node should determine
whether to forward the packet or not. If the following 4 conditions are all met, the
packet should be forwarded. The 4th condition is important to the property of
fulfilling multiple service discovery requests in just one service discovery session,
called as multi task mode.
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– This is a new service request packet for the node. Whether a service request
packet is new or not for the receiver can be determined basing on the current
node’s RRT.

– The remain-hop field of the service request packet is bigger than 0.
– The current node is in the list of forward nodes in the receiver-list field of

the service request packet.
– There are some unmatched service requests yet.

Request Packet Forwarding Procedure. Following 5 steps are used to for-
ward a service request packet.

1. Determine the set of coverage demanding nodes,
HCDN(v, u) = H2(u)−N2(V (v))

2. Find a minimum dominating forward node set.
Using the previous greedy-based DFNS heuristic to find a dominating
set FDFNS(v, u) from HCDN (v, u), F (v, u) and H1(w)|w ∈ H1(u).

3. Enclose nodes in FDFNS(v, u) into the the packet’s receiver-list field.
4. Update the contents of other fields of the request packet (section 3.2.3).
5. Send the service request packet out in broadcast mode.

Request Packet Content Update. Before forwarding a service request packet,
some fields of the service request packet should be updated as follows. The content
of the visited-list field depends on the parameter VTY PE , whereas the size of the
items in visited-list field is determined by VSIZE .

– If VTY PE =NONE, visited-listfield contains nothing. IfVTY PE=SELF, visited-
list field contains the identity of the current node.If VTY PE=HOP1, visited-list
field contains N1(u) = u + H1(u).If VTY PE=HOP2, visited-list field contains
N2(u) = u + H1(u) + H2(u).

– If the number of items in the visited-list field is bigger than VSIZE¿0, the
earliest item is removed from the visited-list field to make room for the latest
item. If VSIZE=-1, the number of items is not limited.

– In request-list field, all matched service requests are designated as ”matched”.
– The remain-hop field is decreased by 1.

4.3 Service Reply Packet Routing

When receiving a service request packet, each node that finds matched services
should construct a service reply packet and send it out, no matter what the
source of the matched services are, the node itself or its NLSIC.

When receiving a service reply packet, a node firstly checks if this node is
just the destination of the packet. If yes, the node caches the service information
in reply packet, and this service discovery session finishes. If no, the node then
checks if there are any matched services not seen in previous reply packets. If yes,
the service reply packet will be forwarded further. Otherwise it will be discarded.
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To forward a service reply packet, the node searches for the RRT item that
corresponds to the service reply packet. Then the service reply packet is for-
warded to the node indicated by the predecessor-id field of the founded item. In
this way, a service reply packet will be relayed to the source of the corresponding
service request packet along the reverse path.

5 Property Analysis of MDFNSSDP

5.1 Existence of Dominating Forward Node Set

In MDFNSSDP, HCDN (v, u) is determined by removing N2(V (v)) from H2(u),
and then a set FDFNS(v, u) is selected from F (v, u) to cover HCDN(v, u).

This section focuses on two aspects: 1) the possibility of finding a qualified
FDFNS(v, u), 2) the property of coverage preservability of MDFNSSDP.

Lemma 3.A qualified FDNFS(v, u) can be found in F (v, u) to cover HCDN (v, u).

Proof. The proof is omitted for limited space. "#

5.2 Coverage Preservability of MDFNSSDP

In MDFNSSDP, the set of coverage demanding nodes, HCDN (v, u), is deter-
mined as H2(u)−N2(V (v)). This configuration can still guarantee the coverage
of service discovery sessions. This is to say, the coverage of service discovery re-
quests when MDFNSSDP is used is the same to that when flood policy is used.
About the correctness of this property, there are the following lemmas. All these
lemmas are based on the following assumptions:

Assumption 1: The underlining MAC protocol is ideal. That is to say, each
packet sent by a node will be received by its neighbors correctly and timely, and
there are no collisions.

Assumption 2: The value of the remain-hop field of a request packet is large
enough to cover the network, i.e., the restriction of remain-hop is not considered.

Assumption 3: The effect of cancellation of service request packet forwarding
by a node where all requested services have been matched is not considered.

Lemma 4. In MDFNSSDP, if a node has received a service request packet of a
service discovery session, then all neighbors of the node must be able to receive
a service request packet of the service discovery session.

Proof. The proof is omitted for limited space. "#

Lemma 5. In MDFNSSDP, if a MANET is connected, then all nodes in the
MANET must be able to receive a service request packet of a service discovery
session.
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Proof. In a connected MANET, for each node pair, there are paths of 1 or more
hops. Suppose the client of a service discovery session is node s, then for each
node w in the MANET, there must be a path. Suppose s → x1 → x2 → · · · → xn

→ w is a path from node s to w, now we prove that node w must be able to
receive a service request packet of the service discovery session.

According to Assumption 1, x1 ∈ H1(s) must be able to receive the ser-
vice request packet sent by node s. Then using Lemma 4 repeatedly along the
path s → x1 → x2 → · · · → xn → w, nodes x1, x2, · · · , xn, w must also be able
to receive request packets of the service discovery session. Hence, the lemma
follows. "#

6 Simulation Analysis

6.1 Performance Metrics

Four performance metrics are considered in our simulations.

– Request-Packet-Number: It measures the number of service request pack-
ets sent in one simulation. It reflects the efficiency the policy of forwarding
service request packets.

– Succeeded-SDP-Number: It is the number of service discovery sessions in
which the client has received at least one successful reply packet. It reflects
the effectiveness (service discoverability) of service discovery protocols.

– First-Response-Time: It is the interval between the arrival of the first
reply packet and the generation of the corresponding request packet. This
metric is averaged over all succeeded service discovery sessions. It measures
the promptness of service discovery protocols. It also reflects the average
distance between clients and the corresponding first repliers.

– Ratio of Succeeded-SDP-Number to Total-SDP-packet-number
(Suc2Total): This metric is the ratio of Succeeded-SDP-number to the sum
of service request packets and service reply packets. It reflects the efficiency
of service discovery protocols. The number of periodical packets, such as hello
packets in MDFNSSDP, is sensitive to protocol parameters, and almost all
service discovery protocols generates such packets. Hence, to make a more
discriminative inspection on protocol performance, periodical packets are
not calculated in this metric.

6.2 Simulation Models

Simulation studies are performed using Glomosim[19]. The distributed coordi-
nation function (DCF) of IEEE 802.11 is used as the underlying MAC protocol.
Random Waypoint Model (RWM) is used as the mobility model.

In RWM mobility model, nodes move towards their destinations with a ran-
domly selected speed V ∈ [Vmin, Vmax]. When reaching its destination, a node
keeps static for a random period TP ∈ [Tmin, Tmax]. When the period expires,
the node randomly selects a new destination and a new speed, then moves to
the new destination with the new speed. The process repeats permanently. In
our simulations, Tmin = Tmax = 0, Vmin = Vmax = V .
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6.3 Select Comparative Solutions

To make a comparative study, we implement MDFNSSDP and other three typ-
ical service discovery protocols for MANETs: BASIC, GSD[8], SSDP[2].

BASIC represents the most straightforward service discovery protocol where
each node should forward each service request packet it received, unless the
packet reaches its hop limit. BASIC method is widely accepted as a benchmark
in evaluating service discovery protocols.

In GSD, services are classified into groups. Each server generates service adver-
tisement packets periodically. Through advertisement packets, each node knows
the services provided by its adjacent nodes as well as the group information of
some services that these adjacent nodes have seen in received service advertise-
ment packets. When forwarding a service request packet, a node can intelligently
forward the packet towards some selected nodes in unicast mode. These selected
nodes have seen some services of the same group as the requested service.

In DSDP, some nodes are selected out according to node degree and link
stability to construct an upper layer logic backbone. DSDP works in three stages:
hello packet collection, backbone node selection, backbone maintenance. They
are all based on periodical hello packets. After the construction of backbone,
all service discovery packets will spread along the backbone, and thus service
request packets will be reduced.

6.4 Simulation Results

Seven simulaiton sets were performed with radio range set to 100m, 125m, 150m,
175m, 200m, 225m, 250m, respectively. Each simulation set contains 4 subsets,
which adopts the four protocols, especially. Each subset includes 100 similar sim-
ulations with different random seeds. Simulation scenarios are created with 100
nodes initially distributed according to the steady state distribution of random
waypoint mobility model. At the beginning of each simulation, 100 nodes are ran-
domly distributed in the scenario area, and predetermined number of nodes are
randomly selected as servers. These selected servers provide randomly selected
services. During each simulation, 100 service discovery sessions are started at

Table 1. Basic parameters in simulation study

Parameters Value Parameters Value

Scenario 1000m×1000m Number of service groups 2
Number of nodes 100 Number of services in each group 5
Simulation time 1000s Hop of broadcast packets(GSD) 1
bandwidth 1Mbps Hello(broadcast) packet interval 20s
Session number 100 Valid time of cache item 30s
SType(MDFNSSDP) SELF Node speed(m/s) 0m/s
VType(MDFNSSDP) SELF Hop of request packets 3
VSize(MDFNSSDP) -1 Number of servers 100
CSize 1
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(a) Request-packet-number (b) Succeeded-SDP-number

(c) First-response-time (d) Suc2Total

Fig. 2. Protocol performance under different radio range

randomly selected time by randomly selected nodes.Some basic simulation pa-
rameters are listed in Table 1, and simulation results are shown in Fig. 5 with
error bars report 95% confidence.

Fig.2 shows that under different radio range, MDFNSSDP has the least re-
quest packet overhead (Fig.2(a)), the highest service discoverability (Fig. 5(b)),
the quickest response (Fig.2(c)), and the highest efficiency (Fig.2(d)).

7 Conclusions

In this paper, Minimum Dominating Forward Node Set based Service Discovery
Protocol (MDFNSSDP) for MANETs is proposed. MDFNSSDP protocol has
the following properties:

– MDFNSSDP can fulfill multiple service discovery requests in just one service
discovery session. The request-list field can store multiple service requests,
and protocol operations are tailored elaborately for multiple-request tasks.
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– MDFNSSDP preserves the coverage of service discovery sessions.
– MDFNSSDP minimizes the size of coverage demanding node set HCDN(v, u).
– MDFNSSDP minimizes the number of selected forward nodes by finding

a minimum dominating forward node set to cover all coverage demanding
nodes using a greedy-based DFNS heuristic.

Simulation results show that MDFNSSDP is an efficient, effective, and prompt
service discovery protocol for MANETs.
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Abstract. We propose a model for describing the parallel performance
of multigrid software on distributed memory architectures. The goal of
the model is to allow reliable predictions to be made as to the execution
time of a given code on a large number of processors, of a given parallel
system, by only benchmarking the code on small numbers of processors.
This has potential applications for the scheduling of jobs in a Grid com-
puting environment where reliable predictions as to execution times on
different systems will be valuable. The model is tested for two different
multigrid codes running on two different parallel architectures and the
results obtained are discussed.

1 Introduction

Multigrid is one of the most power numerical techniques to have been developed
over the last 30 years [1,2,13]. As such, state-of-the-art parallel numerical soft-
ware is now increasingly incorporating multigrid implementation in a variety of
application domains [6,9,11]. In this work we seek to model the performance of
two typical parallel multigrid codes on distributed memory architectures. The
goal is to be able to make accurate predictions of the performance of such codes
on large numbers of processors, without actually executing them on all of these
processors. This is of significant potential importance in an environment, such
as that provided by Grid computing, where a user may have access to a range
of shared resources, each with different costs and different levels of availability,
[4,7,10].

A vast literature on performance models exists, varying from analytical mod-
els designed for a single application through to general frameworks that can be
applied to many applications on a large range of HPC systems. This latter ap-
proach is typically based upon a convolution of an application trace with some
benchmarks of the HPC system used. Both approaches have been demonstrated
to be able to provide accurate and robust predictions, although each has its po-
tential drawbacks too. In the former, for example, significant expertise is needed
in deriving the analytic model, which is extremely code specific, whereas in the
latter approach, a large amount of computer time is typically required for tracing
the application.

Considering these limitations, the choice between these two approaches will
depend primarily on the goal of the predictions. For example, when it is most

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 647–658, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



648 G. Romanazzi and P.K. Jimack

important to predict the run-time of large-scale applications on a given system,
as opposed to just comparing their relative performance, it is preferable to build
and apply a detailed analytic model for the available set of HPC systems, as
in [8] for example. On the other hand, when it is more important to compare
the performance of some real applications on different machines, the latter ap-
proach is preferable: in which case different benchmarks metrics can be used and
convoluted with the application trace file, as in [3] or [5].

Our approach lies between these two extremes. We use relatively crude an-
alytic models that are applicable to a general class of algorithms (multigrid)
and through simulations of the application on a limited number of CPUs we at-
tempt to evaluate the parameters of these models. In comparison with the first
approach the sophistication of the analytic model is much less (but also much
less dependent on the specific code or implementation). In comparison with the
second approach, there is no need for tracing the application nor running large
numbers of HPC benchmarks on the HPC facility: our benchmarking is simply
based upon execution of the code on small numbers of processors of the HPC
system.

The layout of the remainder of the paper is as follows. In the next section
we provide a very brief introduction to parallel multigrid algorithms for the
solution of elliptic or parabolic partial differential equations (PDEs) in two space
dimensions. This is followed by an analysis of the performance of two such codes
on an abstract distributed memory architecture. The analysis is then used to
build a predictive model for this class of codes, that is designed to allow estimates
of run times to be obtained for large numbers of processors, based upon observed
performance on very small numbers of processors. The paper concludes with a
description of some numerical tests to assess the accuracy and robustness of
these predictions and a discussion of the outcomes obtained. Further extensions
of the work are also suggested.

2 Multigrid and Parallel Implementation

The general principal upon which multigrid is based is that when using many
iterative solvers for the systems of algebraic equations that result from the dis-
cretization of PDEs, the component of the error that is damped most quickly is
the high frequency part [2,13]. This observation leads to the development of an
algorithm which takes a very small number of iterations on the finite difference
or finite element grid upon which the solution is sought, and then restricts the
residual and equations to a coarse grid, to solve for an estimate of the error on
this grid. This error is then interpolated back onto the original grid before a
small number of further iterations are taken and the process repeated. When
the error equation is itself solved in the same manner, using a still coarser grid,
and these corrections are repeated recursively down to a very coarse base grid,
the resulting process is known as multigrid.

Any parallel implementation of such an algorithm requires a number of com-
ponents to be implemented in parallel:
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– application of the iterative solver at each grid level
– restriction of the residual to a coarse level
– exact solution at the coarsest level
– interpolation of the error to a fine level.
– a convergence test

There is also a variant of the algorithm (primarily designed with nonlinear prob-
lems in mind), known as FAS (full approximation scheme) [13], which requires
the solution as well as the residual to be restricted to the coarser grid at each
level.

In this work we consider the parallel implementation of two multigrid codes:
one is standard and the other uses the FAS approach. In both cases they partition
a two-dimensional finite difference grid across a set of parallel processors by
assigning blocks of rows to different processors. Note that if the coarsest mesh
is partitioned in this manner, then if all finer meshes are uniform refinements of
this they are automatically partitioned too: see Fig. 1 for an illustration.

p=0

p=3

p=1

p=2

Fig. 1. Partitioning of a coarse and a fine mesh across four processors by assigning a
block of rows to each processor

It is clear from inspection of the meshes in Fig. 1 that each stage of the parallel
multigrid process requires communication between neighbouring processes (iter-
ation, restriction, coarse grid solution, interpolation, converge test). The precise
way in which these are implemented will vary from code to code, however the
basic structure of the algorithm will remain the same. In this work we consider
two different implementations, referred to as m1 and m2.

2.1 The Algorithm m1

This algorithm solves the steady-state equation

−∇2u = f in Ω,
Ω = [0, 1]× [0, 1],
u|∂Ω = 0.
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The discretization is based upon a centred finite difference scheme on each grid.
The iterative solver employed is the well-known Red-Black Gauss-Seidel (RBGS)
method [9], which is ideally suited to parallel implementation. The partitioning
of the grids is based upon Fig. 1 with both processors p and p+1 owning the row
of unknowns on the top of block p. Each processor also stores an extra, dummy,
row of unknowns above and below its own top and bottom row respectively (see
Figure 2): this is used to duplicate the contents of the corresponding row on each
neighbour. After each red and black sweep of RBGS there is an inter-processor
communication in which these dummy rows are updated. This is implemented
with a series of non-blocking sends and receives in MPI. Similar inter-processor
communication is required at the restriction step but the interpolation step does
not require any message passing. A global reduction operation is required to test
for convergence.

2.2 The Algorithm m2

This algorithm, described in more detail in [9], uses an unconditionally-stable
implicit time-stepping scheme to solve the transient problem

∂u

∂t
= ∇2u + f in (0, T]× Ω,

Ω = [0, 1]× [0, 1],
u|∂Ω = 0,
u|t=0 = u0.

As for m1, the discretization of the Laplacian is based upon the standard five
point finite difference stencil. Hence, at each time step it is necessary to solve an
algebraic system of equations for which multigrid is used. Again RBGS is selected
as the iterative scheme and so communications are required between neighbour
processors after each red and black sweep. Different from m1, here only processor
p owns the row of unknowns at the top of block p, see Fig. 2. This means that
the total memory requirement is slightly less than with algorithm m1 but that,
unlike m1, communications are also required at the interpolation phase, as well
as the restriction and convergence test phases. Also different from m1, the inter-
processor sends and receives are based upon a mixture of MPI blocking and
non-blocking functions. Finally, as mentioned above, m2 is implemented using
the FAS algorithm [13] and so the current solution must also be interpolated
from the fine to the coarser grid at each level.

3 The Predictive Model

The goal of most parallel numerical implementations is to be able to solve larger
problems than would be otherwise possible. For the numerical solution of PDEs
this means solving problems on finer grids, so as to be able to achieve higher
accuracy. Ideally, when increasing the size of a problem by a factor of np and
solving it using np processors (instead of a single processor), the solution time
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p−1

p

p+1

n

0
1
2

n

1
0

n+2 n+1
n+1

m1 partition m2 partition

Fig. 2. Domain partitions for algorithms m1 and m2. The dummy rows of processor p
have indexes 0, n + 2 and 0, n + 1 for m1 and m2, respectively

should be unchanged. This would represent a perfect efficiency and is rarely
achieved due to the parallel overheads such as inter-processor communications
and any computations that are repeated on more than one processor. In this
research our aim is to be able to predict these overheads in the situation where
the size of the problem (the number of discrete unknowns, N2, on the finest
mesh) scales in proportion to the number of processors. Consequently, the basic
assumption that we make is that the parallel solution time (on np processors)
may be represented as

Tparallel = Tcomp + Tcomm. (1)

In (1), Tcomp represents the computational time for a problem of size N2/np
(= N(1)2, say) on a single processor, and Tcomm represents all of the parallel
overheads (primarily due to inter-processor communications).

The calculation of Tcomp is straightforward since this simply requires execution
of a problem of size N(1)2 on a single processor. One of the major attractions of
the multigrid approach is that this time should be proportional to the size of the
problem on the single processor. As demonstrated in [12] this is indeed the case
for both of the implementations, m1 and m2, considered in this paper. The key
consequence of this property is that in situations where we scale the problem
size with the number of processors, np, then Tcomp remains independent of np.

The more challenging task that we have, therefore, is to model Tcomm in a
manner that will allow predictions to be made for large values of np. Note that
any additional work that is undertaken when computing in parallel is associated
with the dummy rows that are stored on each processor, as is the communication
overhead. When solving on a fine mesh of size N2 the value of Tcomm may be
estimated, to leading order, as

Tcomm ∝ Tstart + kN. (2)

Here Tstart relates to the start-up cost for the communications whilst kN repre-
sents the number of tasks of size N at each multigrid cycle (which will depend
upon the number of communications and the number of additional iterative
solves on duplicated rows). Furthermore, it is important to note that k itself
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may not necessarily be independent of N . In fact, slightly more than np times
the work is undertaken by the parallel multigrid algorithm on an N2 fine mesh
than by the sequential multigrid solver on an N2/np fine mesh. This is because in
the former case either there are more mesh levels, or else the coarsest grid must
be finer. In all of the examples discussed in this paper we consider each prob-
lem using the same coarse level N2

0 (with N0 a power of 2) and the same work
per processor at the finest level (N2 on np processors, where N =

√
npN(1)).

Therefore, the number of grid levels used, nlevels, depends on the number of
processors np, that is

nlevels = log2(N/N0) + 1. (3)

We consider two different models for Tcomm, based upon (2). In the first of these
we do assume that k is approximately constant to obtain

Tcomm = a + bN. (4)

In the second model we add a quadratic term γN(1)2 that allows a nonlinear
growth of the overhead time

Tcomm = α + βN + γN(1)2. (5)

The quadratic term introduced in (5) is designed to allow a degree of nonlinear-
ity to the overhead model, reflecting the fact that k in (2) may not necessarily
be a constant. As will be demonstrated below, the importance (or otherwise)
of this nonlinear effect depends upon the specific characteristics of the proces-
sor and communication hardware that are present on each particular parallel
architecture. In particular, the effects of caching and of a multicore architecture
appear to require such a nonlinear model.

In order to obtain values for (a, b) and (α, β, γ) in (4) and (5) respectively, the
parallel performance of a given code must be assessed on each target architec-
ture. Note from Fig. 1 that the communication pattern is identical regardless of
np: requiring only neighbour to neighbour communications. Hence our next as-
sumption is that (a, b) or (α, β, γ) may be determined using just a small number
of processors. In this work we choose np = 4 in order to approximate (a, b) or
(α, β, γ) by fitting (4) or (5) respectively to a plot of (Tparallel − Tcomp) against
N . Note that, from (1), Tcomm = Tparallel −Tcomp and Tcomp is known from the
data collected on a single processor.

A summary of the overall predictive methodology is provided by the following
steps. In the following notation np is the target number of processors and N2

is the largest problem that can be solved on these processors without swapping
effects causing performance to be diminished. Similarly, N(1)2 = N2/np is the
largest such problem that can fit onto a single processor.

1. For  = 1 to m

Runthecodeonasingleprocessorwithafinegridofdimension(21−�N(1))2.
In each case collect Tcomp based upon average timings over at least 5 runs.

2. For  = 1 to m
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Run the code on 4 [or 8] processors, with a fine grid of dimension
(22−�N(1))2 [or (22−�N(1) × 23−�N(1))].

In each case collect Tparallel based upon average timings over at least 5 runs.
3. Fit a straight line of the form (4) through the data collected in steps 1 and

2 to estimate a and b, or fit a quadratic curve through the data collected to
estimate α, β and γ in (5).

4. Use either model (4) or model (5) to estimate the value of Tcomm for larger
choices of np and combine this with Tcomp (determined in step 1) to estimate
Tparallel as in (1).

4 Numerical Results

The approach derived in the previous section is now used to predict the perfor-
mance of the two multigrid codes, m1 and m2, on the two parallel architectures
WRG2 and WRG3. These computers form part of the University of Leeds’ con-
tribution to the White Rose Grid [4]

– WRG2 (White Rose Grid Node 2) is a cluster of 128 dual processor nodes,
each based around 2.2 or 2.4GHz Intel Xeon processors with 2GBytes of
memory and 512 KB of L2 cache. Myrinet switching is used to connect the
nodes and Sun Grid Engine Enterprise Edition provides resource manage-
ment.

– WRG3 (White Rose Grid Node 3) is a cluster of 87 Sun microsystem dual
processor AMD nodes, each formed by two dual core 2.0GHz processors.
Each of the 87 × 4 = 348 batched processors has L2 cache memory of size
512KB and 2GBytes of physical memory. Again, both Myrinet switching
and Sun Grid Engine are used for communication and resource management
respectively.

Table 1 shows values of (a, b) and (α, β, γ) obtained by following steps 1 to
4 described above, using N(1) = 2048 and m = 4. Each of the codes is run on
each of the selected parallel architectures. Clearly the precise values obtained
for (a, b) and (α, β, γ) depend upon a number of factors.

– Because users of WRG2 and WRG3 do not get exclusive access to the ma-
chines, or the Myrinet switches, there is always some variation in the solution
times obtained in steps 1 and 2.

– On WRG2 there are (75) 2.4GHz and (53) 2.2GHz processor nodes, hence
the parameters will depend on which processors are used to collect execution
times in steps 1 and 2.

– On WRG3 the situation is made more complex by the fact that each node
consists of two processors and 4 cores. Users may therefore have access to a
core on a node where other users are running jobs or else they may have an
entire node to themselves. This creates significant variations in the timings
for both sequential and small parallel runs.
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As outlined in steps 1 and 2 above, a simple way to reduce the effects of these
variations is simply to take average timings over five runs (say). Such a crude ap-
proach, whilst accounting for the the relatively minor effects of sharing resources
such as access to the communications technology, are not generally sufficient on
their own however. For example, for a heterogeneous architecture such as WRG2,
which has processors of two different speeds, it should also be recognised that
a parallel job using a large number of processors will typically make at least
some use of the slower 2.2GHz nodes. It is therefore essential to ensure that
in step 1 a slower processor is used to compute the sequential timings, and in
step 2 at least one slower processor should be used in the parallel runs. If only
the faster processors are used in steps 1 and 2 above then the resulting model
will inevitably under-predict solution times on large numbers of processors when
any of these processors are 2.2GHz rather than 2.4GHz. This use of the slower
processors has been imposed for the two WRG2 columns of Table 1.

Table 1. Parameters (a, b) and (α, β, γ) of the Tcomm models (4) and (5) respectively,
obtained for np = 4 and for N(4) = 512, . . . , 4096 with coarse grid of size 32

m2-WRG2 m2-WRG3 m1-WRG2 m1-WRG3

1 node
a =
b =

0.1540
6.616e − 05

−0.1658
5.139e − 04

−7.957e − 02
1.261e − 04

−0.2250
2.943e − 04

2 nodes
a =
b =

−8.518e − 03
4.083e − 04

−0.2316
3.191e − 04

1 node
α =
β =
γ =

−0.3825
7.863e − 04
−6.075e − 07

−0.2079
5.704e − 04
−4.765e − 08

−9.245e − 02
1.434e − 04
−1.458e − 08

6.012e − 02
−8.833e − 05
3.228e − 07

2 nodes
α =
β =
γ =

−0.4211
9.621e − 04
−4.671e − 07

−1.698e − 02
3.106e − 05
2.430e − 07

Furthermore, in order to better control the effects of multiple cores on WRG3,
we have chosen to undertake all of the sequential runs using four copies of the
same code: all running on the same node. Again, this decision is made bearing
in mind the situation that will exist for a large parallel run in which all of the
available cores will be used. In addition to this, for WRG3, two sets of predictive
timings are produced. The first of these is obtained by running the 4 process
parallel job on a single (four core) node, whilst the second is obtained by running
an 8 process parallel job across two (four core) nodes. The latter is designed to
allow both intra-communication (communication between processes on the same
node) and inter-communication (communication between processors on different
nodes) overheads to be captured by our model (the former will only capture
intra-communication costs). These two situations are denoted by “1 node” and
“2 nodes” respectively in Table 1.

There are a number of interesting observations to make about the parameters
shown in Table 1. As indicated in step 3 above, these are obtained by fitting
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curves (either linear or quadratic) through the averaged data collected in steps
1 and 2 (using (4) or (5) respectively, with Tcomm = Tparallel − Tcomp). For the
linear model it is important to state that the fit to the data is not particularly
good which provides a clear indication that the model may be deficient. For the
quadratic cases the fits to the data are, perhaps not surprisingly, a lot better.
For WRG3, the effect of undertaking the small parallel runs (step 2) using cores
on two nodes rather than one is not particularly significant for the linear model
but is much more noticeable for the quadratic model. This might suggest that
other inaccuracies are dominant in the former case.
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Fig. 3. Linear model T = Tcomp + a + bN for Time predicted, and Time measured
(both in seconds) on np = 64 processors, N(64) = 2048, . . . , 16384

Given the values shown in Table 1, it is now possible to make predictions for
the performance of the multigrid codes on greater numbers of processors. In this
paper, we consider executing the codes on np = 64 processors (the maximum
queue size available to us), with the grids scaled in size in proportion to np.
Figure 3 shows results using the linear model, (4), whilst Figure 4 shows similar
results based upon the quadratic model (5). In each case all four combinations of
algorithms (m1,m2) and computer systems (WRG2,WRG3) are presented. Note
that for the runs on WRG3, following Table 1, two predictions are presented
(Tpredict1 and Tpredict2): these are based upon the best-fit parameters (α, β
and γ) obtained when 1 node (4 cores) or 2 nodes (8 cores) are used in step 2
respectively.
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Fig. 4. Quadratic model T = Tcomp + α + βN + γN(1)2 for Time predicted, and Time
measured (both in seconds) on np = 64 processors, N(64) = 2048, . . . , 16384

It is clear from Fig. 3 that the linear model provides disappointing predictions
in almost all cases. It is noticeable that this model under-predicts the solution
times for algorithm m2 (which includes blocking as well as non-blocking com-
munication) whilst it tends to over-predict the solution times for algorithm m1.
It is hard to discern any obvious pattern from these results other than the fact
that the qualitative behaviour seems to have been captured in each case, even
though the quantitative predictions are unreliable. This suggests that nonlinear
effects are important in the parallelization, either due to communication patterns
(e.g. switch performance and/or the effects of non-blocking communication) or
nonlinear cache effects (with multi-core processors for example).

From Fig. 4 it is apparent that using the quadratic model to capture the pre-
dicted nonlinear effects can be highly effective. This model provides significantly
better predictions for both multigrid implementations and on both parallel archi-
tectures (provided that Tpredict2 is used on WRG3). In the case of the results
obtained on WRG2 it is important to emphasize again that steps 1 and 2 of
the algorithm were undertaken using at least one slower processor in each run.
Without this restriction the predictions were of a much poorer quality: providing
significant under-estimations of the parallel run times on 64 processors (see [12]
for further details). In the case of WRG3 recall that Tpredict2 is based upon
the use of 8 cores in step 2 of the methodology described in the previous section
(as opposed to 4 cores for Tpredict1). This clearly demonstrates that, since the
large parallel jobs typically use all of the available cores on each node, both
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intra- and inter-communication costs must be captured by the predictive model.
Perhaps not surprisingly, when this model fails to capture all of the communi-
cation patterns present in the full parallel code the resulting predictions (Tpre-
dicted1) become unreliable.

5 Conclusion and Future Work

In this paper we have proposed a simple methodology for predicting the per-
formance of parallel multigrid codes based upon their characteristics when ex-
ecuted on small numbers of processors. The initial results presented are very
encouraging, demonstrating that remarkably accurate and reliable predictions
are possible provided that sufficient care is taken with the construction of the
model and the evaluation of its parameters. In particular, it has been possible to
demonstrate that the effects of both heterogeneous and multicore architectures
can be captured, and that the models proposed can be applied to two quite
different multigrid codes.

It is clear from the results presented in the previous section that, despite the
communication costs being O(N) and the O(N) complexity of the multigrid
approach (as illustrated in [12]), the simple linear model for the growth in the
parallel overhead is not sufficient to capture the practical details of scalability to
large numbers of processors. There are numerous possible causes of this (e.g. non-
linear communication patterns, caching effects, etc.) however it is demonstrated
that the addition of a quadratic term to the model, to capture the nonlinear
effects to leading order, improves its predictive properties substantially. Unsur-
prisingly, care must be taken to deal with non-homogeneous architectures or
multicore architectures in an appropriate manner. If these effects are ignored
then even the quadratic model fails to yield realistic predictions.

It has been observed in this work that the quality of the best fit that is made
in order to determine the values of the parameters in Table 1 appears to provide
a useful indication as to the reliability of the resulting model. For example, the
linear fits in the top half of the table are relatively poor, as are the predictions
in Fig. 3. In future work it would be interesting to investigate this phenomenon
further in order to attempt to produce a reliability metric for the predictions
that are made. Recall that one of the primary motivations for this work is to
provide information on expected run-times on different numbers of processors
on different architectures in order to allow optimal (or improved) scheduling
of jobs in a Grid-type environment where a variety of potential resources may
be available. Clearly, providing additional information, such as error bounds for
these expected run times, will further assist this process. An additional factor
that should also be included in this modelling process is the ability to consider
different domain decomposition strategies (e.g. partitioning the data into blocks
rather than strips, [6]) and predict their relative performance for a given problem
on a given architecture.

Finally, we observe that, in addition to deciding which single computational
resource to use in order to complete a given computational task, there will be
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occasions when multiple Grid resources are available and might be used together.
Consequently, in future work we also intend to extend our models to provide
predictions that will allow decisions to be made on how best to split the work
across more than one resource and to determine the likely efficiency (and cost-
effectiveness) of so doing.
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Abstract. This paper introduces Netgauge, an extensible open-source
framework for implementing network benchmarks. The structure of Net-
gauge abstracts and explicitly separates communication patterns from
communication modules. As a result of this separation of concerns, new
benchmark types and new network protocols can be added independently
to Netgauge. We describe the rich set of pre-defined communication pat-
terns and communication modules that are available in the current dis-
tribution. Benchmark results demonstrate the applicability of the cur-
rent Netgauge distribution to to different networks. An assortment of
use-cases is used to investigate the implementation quality of selected
protocols and protocol layers.

1 Introduction

Network performance measurement and monitoring plays an important role in
High Performance Computing (HPC). For many different network protocols and
interconnects, numerous tools are available to perform functionality and correct-
ness tests and also benchmark two fundamental network parameters (i.e., latency
and bandwidth) . While these features are generally useful for system admin-
istrators and end users, for high-end performance tuning, the HPC community
usually demands more detailed insight into the network.

To satisfy the demands of application and middleware developers, it is often
necessary to investigate specific aspects of the network or to analyze different
communication patterns. The simplest measurement method is a “ping-pong”
benchmark where the sender sends a message to a server and the server sim-
ply reflects this message back. The time from the send to the receive on the
sender is called Round Trip Time (RTT) and plays an important role in HPC.
Another benchmark pattern, called ping-ping, can be used to analyze pipelining
effects in the network (cf. Pallas Microbenchmarks [1]). However, more compli-
cated communication patterns are necessary to simulate different communication
situations, such as one-to-many or many-to-one patterns to analyze congestion
situations.

The most advanced network benchmarks are parametrizing network models,
such as LogP [2], LogGP [3] or pLogP [4]. These require special measurement

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 659–671, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



660 T. Hoefler et al.

methods such as described in [4,5,6,7]. Those models can be used to predict the
running time of parallel algorithms. The LogP model family can also be used
to predict the potential to overlap communication and computation for different
network protocols (cf. Bell et al. [7]).

1.1 Related Work

Existing portable tools, such as netperf or iperf, can readily measure network
latency and bandwidth. However, it is often necessary to measure other network
parameters (e.g., CPU overhead to assess the potential for computation and com-
munication overlap or performance in threaded environments). Such parameters
can be measured, but the tools to do so are generally specific either to the pa-
rameter or hardware being measured. HUNT[8], White’s implementation[9] and
COMB[10] are able to assess the overlap potential of different network proto-
cols. Other tools like Netpipe [11,12] simply benchmark latency and bandwidth
for many different interconnection benchmarks. Another interesting tool named
coNCePTuaL [13,14] can be used to express arbitrary communication patterns,
but the support for different low-level networks is limited and the addition of
new networks is rather complicated. The MIBA [15] tool reports a number of
different detailed timings, but is specific to the InfiniBand network.

Our work combines the advantages of previous work and enables users to
easily implement their own communication patterns and use low-level communi-
cation modules to benchmark different network stacks in a comparable way. The
interface of the communication modules is kept as simple as possible to ensure
an easy addition of new networks or protocols.

1.2 Challenges and Contributions

After presenting a motivation and an overview about related projects, we will
discuss the challenges we faced in the design and implementation phase and then
highlight the main contributions of our project to the scientific community.

Challenges
The biggest challenge we faced was to design a single interface between the
communication layer and the benchmark layer that supports many different
communication networks. A main distinction has to be made between one-sided
protocols where the sender writes directly into the passive receiver’s memory
and two-sided communication where the receiver fully takes part in the commu-
nication. Other issues come up when networks with special requirements, (i.e.,
the communication-memory must be registered before any communication can
take place) need to be supported. We describe our methodology to deal with the
unification of those different interfaces and networks into a single simple-to-use
interface that supports easy addition of new benchmark patters. Therefore, we
avoid all semantics that are not required for our benchmarking purposes (such
as message tagging), even though they may be helpful or even required for real
parallel applications. Furthermore, in order to reflect real-world applications as
accurately as possible, the benchmark implementor must be able to “simulate”
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application behavior in his implementation by using the abstract communication
interface provided. Portability is achieved by limiting the number of external de-
pendencies. Thus, Netgauge is written in plain C and needs only MPI (a portable
MPI implementation is available with Open MPI [16]).

Contributions
Our main contribution to the scientific community is the design and imple-
mentation of an abstract interface to separate the communication part from the
benchmark part in a network benchmark. We show that our framework is able to
support many different kinds of network benchmarks (including those that sim-
ulate applications). The interface is kept as simple as possible to allow an easy
addition of benchmarks (for researchers interested in performance of applica-
tions or communication algorithms) or communication modules (for researchers
interested in the performance of a particular network or hardware, e.g., different
parameters).

Merging those two groups makes Netgauge a useful tool for research. For
example, if a new network has to be tested, the researcher needs only imple-
ment a communication module and will then immediately have all benchmarks
available, including network parameter assessment of well-know network models,
flow control tests and, of course, also the simple latency and bandwidth tests.
Another scenario supports more theoretical research in network modeling. If a
new network model is designed, the researcher simply implements the parame-
ter assessment routine as a benchmark and thus measures the parameters for all
networks supported by Netgauge.

The current version of Netgauge ships support for many communication net-
works and benchmark algorithms that can be used as templates for the addition
of new modules. Netgauge also offers an abstract timer interface which is able
to support system-dependent high-performance timers (e.g., RDTSC [17]) to
enable very accurate time measurements.

2 The Performance Measurement Framework

Netgauge uses a component architecture [18] similar to LAM/MPI or Open
MPI which consists of different “frameworks”. A framework defines a particular
interface to the user or other frameworks and a “module” is a specific instance
of a framework.

Fig. 1 shows the overall structure of Netgauge. Different types of benchmarks
are implemented in the “pattern” framework. The low-level communication layer
is represented by the “communication” framework. The pattern implementor is
free to use the functionality offered by the communication framework to im-
plement any benchmark pattern. The communication framework abstracts the
different network types. Netgauge currently supports a simplified two-sided in-
terface similar to MPI. This interface assures an easy implementation of new
communication modules.
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Fig. 1. Netgauge Framework Structure

2.1 The Pattern Framework

The pattern framework is the the core of every benchmark with Netgauge. A
pattern interface is very simple and consists of a name for the pattern, a short
description, the requirement flags and a benchmark function pointer. The user
selects a specific pattern via the command line and Netgauge checks that the
communication module supports all requirements indicated by the pattern’s flags
(e.g., if the pattern requires non-blocking communication). If so, Netgauge calls
the specified module’s benchmark function and passes a reference to the user-
selected communication module.

2.2 The Communication Framework

The communication framework is used by the user-selected pattern module to
benchmark the communication operations. The framework interface contains a
name, a short description, flags and different communication functions. A module
can also indicate a maximum message-size (e.g., for UDP) and how many bytes
it adds as additional header (e.g., for RAW Ethernet). Different module flags
indicate if the module offers reliable transport, channel semantics and/or requires
memory registration. Optional init(), shutdown() and getopt() functions can
be offered to initialize, shut the module down or read additional module-specific
command line options. All optional function-pointers may be set to NULL which
means that the module does not offer this functionality.

Every module must at least offer blocking send and receive calls. The
sendto() function accepts destination, a buffer and a message-size as parame-
ters. There is no tag and so the ordering of messages is significant for the message
matching. The recvfrom() function gets a source, a buffer and a size as param-
eters and blocks until some data is received. The recvfrom() function returns
the number of received bytes. Macros to send or receive a complete message
(send all() and recv all()) are also available.

An optional non-blocking interface can be used to benchmark asynchronous
communication or analyze overlap capabilities of the communication protocols.
This interface is the same as the blocking interface except it contains an addi-
tional request handle. Some of the patterns that require non-blocking communi-
cation (e.g., 1:n) will not work with communication modules that do not offer
this functionality.
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Memory Registration Issues
Some types of networks need registered memory areas for communication. Typ-
ically the interface to those networks exposes functions to register memory. The
communication functions have to ensure data transmission only from registered
memory to registered memory. Thus the communication module has a member
function to allocate memory for data transmission. Patterns have to use this
function instead of malloc(). The communication module has to perform all the
tasks to setup memory for communication. In many cases this includes the use
of some hash table to store additional information (i.e. LKEY and RKEY for
InfiniBand).

2.3 Control Flow

Netgauge’s main routine is the only part that interacts directly with the user.
All modules for all frameworks are registered at the beginning of the program.
The selected module is initialized and its parameters are passed in the module’s
getopt() function (this enable communication module implementors who add
network-specific command line arguments). General internal variables like e.g.,
maximum message size and test repetitions are set and the user-selected pattern
module is called. The pattern module performs all benchmarks and may either
print the results directly or use helper functions provided by the statistics and
output module to process and output data. All modules may use MPI calls
(e.g., to exchange address information or parameters in order to establish initial
connections). However, the implementor should try to avoid excessive MPI usage
so that the modules can also be used in environments without MPI (which is
supported by a basic set of modules).

2.4 Other Available Communication Patterns

Simple Microbenchmark Patterns
This section describes simple patterns that are available in Netgauge.

Network

1 40 3

2 65 7

Sender

Receiver

Fig. 2. The one–to–one communication pattern of Netgauge

Pattern 1:1. The main purpose of the one–to–one communication pattern,
shown in Fig. 2, is to test a bisectional bandwidth1 of a given network. This pat-
tern communicates data between an even number of Netgauge processes. The
setup stage splits all processes randomly into a group of servers and a group of
clients of equal sizes. One member of each group gets associated with exactly
1 The bisection is determined randomly, i.e., client/server pairs are chosen randomly.
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one partner of the other group. After these steps the benchmark performs a
barrier synchronization and synchronously starts sending data between all pairs
of server and client processes. Thus, one may assume that all pairs communi-
cate approximately at the same time. The special case of two communicating
processes represents the well–known ping–pong test.

Pattern 1:n and n:1. The communication patterns one–to–many and many–
to–one, shown in Fig. 3 perform an asymmetric network benchmark. In contrast
to the most conventional approaches many processes send data to a single pro-
cess or a single process sends data to many processes. This pattern is most
suitable to determine the behavior of the network’s flow control or congestion
control. Netgauge randomly selects one of the processes to be the server and the
remaining processes (n) work as clients. Before the actual test starts, a barrier
synchronization is done. All client processes start sending data to the server
process which receives the entire data volume of the clients and sends a reply
as soon as it received all data. The current implementation uses non-blocking
communication to ensure a realistic benchmark. The clients measure the time
of this operation. In each subsequent round, more data is sent, up to the user
specified limit. Thus, this time measurement allows the user to rate the efficiency
of flow control and congestion control.

Network

1 40 3

2

Sender

Receiver

Fig. 3. The many–to–one communication pattern of Netgauge

Network Model Parametrization Patterns
Model parametrization patterns are much more complex than microbenchmark
patterns. They use elaborate methods to assess parameters of different network
models. They are not described in detail due to space restrictions but refer-
ences to the original publications which describe the methodology in detail are
provided.

Pattern LogGP. The LogGP pattern implements the LogGP parameter as-
sessment method described in [19] for blocking communication. This method
uses a mixture of 1:1 and 1:n benchmarks with inter-message delay to determine
the parameters g, G and o as exactly as possible. The parameter L can not be
measured exactly (cf. [19]).

Pattern pLogP. The pLogP pattern implements the measurement of os and
or in terms of Kielmann’s pLogP model. Details about the measurement method
can be found in [4].
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2.5 Available Communication Modules

Two-sided Communication Modules
Two-sided communication modules implement two-sided communication proto-
cols where both, the sender and the receiver are involved in the communication.
The protocol is relatively simple and maps easily to Netgauge’s internal commu-
nication interface. The receiver has to post a receive and the sender a matching
send. It is important to mention that the simplified module interface does not
offer message tagging, i.e., the message ordering determines the matching at the
receiver.

Module MPI. Netgauge is able to use the well–known Message Passing In-
terface to perform the actual data transmission. Since MPI is frequently used
in parallel programs this feature is useful for many users. The MPI module
of Netgauge makes use of the conventional send and receive calls, known as
point–to–point communication in the MPI specification. Blocking semantics are
supported by calls to MPI Send() and MPI Recv(). The functions MPI Isend()
and MPI Irecv() are used to implement the non–blocking interface. Because of
its simplicity and complete implementation the MPI module serves as baseline
for implementing other network modules. The semantics of the corresponding
module functions of Netgauge are very close to those of MPI.

Socket-Based Modules. Several modules supporting standard Unix System V
socket-based communications are available. The “TCP” module creates network
sockets prepared for the streaming protocol [20]. The “UDP” module implements
communication with UDP [21] sockets. It is able to send data up to the maximum
datagram size (64 kiB). The “IP” module of Netgauge sends and receives data
using raw IP sockets [22]. The raw Ethernet (“ETH”) module opens a raw socket
and sends crafted Ethernet packets to the wire. The opening of raw sockets
requires administrator access. Standard Posix sendto() and recvfrom() calls
are used to transmit data..

Support for two special socket-based low-overhead cluster protocols is also
available. The Ethernet Datagram Protocol (“EDP”) and the Ethernet Stream-
ing Protocol (“ESP”) are described in [23,24] in detail. They aim at the
reduction of communication overhead in high-performance computing cluster
environments.

This support for many different protocol layers inside the operation system
enables the user to determine the quality of the higher-level protocol implemen-
tations (e.g., TCP, UDP) by comparing with raw device performance.

Module Myrinet/GM. The Myrinet/GM (“GM”) module implements an in-
terface to the Glenn’s Messages API of Myrinet [25]. It supports RDMA and
send/receive over GM. Different memory registration strategies, such as regis-
tering the buffer during the send, copying the data into a pre-registered buffer
and sending out of a registered buffer without copying are supported.

Module InfiniBand. The communication module for the native InfiniBand
[26] interface (“IB”) invokes the API from the OpenFabrics project to transmit
data over InfiniBand network adapters. Currently the module supports the four
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transport types of InfiniBand: Reliable Connection, Unreliable Connection, Re-
liable Datagram and Unreliable Datagram. The unreliable transport types do
not protect against packet loss since additional protocol overhead would affect
the performance measurements. Blocking send posts a work queue element ac-
cording to the InfiniBand specification and polls for completion of this request
and returns. The blocking receive function works in a similar way.

One-sided Communication Modules
In one–sided communication the sender directly writes to the memory of the
passive receiver. To test for new data, the receiver may poll for a flag, although
this action does not belong to the task of pure data transmission. Usually one–
sided communication requires synchronization between sender and receiver. The
sender has to get the information about the memory area of the receiver. More-
over, some flag may be required to notify the receiver about the completion of
the data transfer. The protocol of Netgauge maintains sequence numbers for
both the sender and the receiver. The sender increments the sequence count of a
public counter variable at the receiver after data transmission. Accordingly, the
receiver checks the public sequence count against a local sequence count to test
for completion of the data transmission. The protocol is illustrated in Fig. 4.

# Packets from Sender

recvfrom()

sendto()

Sequence no.
(local)

Sequence no.
(local)

Write Data Increment Sequence

return

Write Sequence

Wait for Data Poll until
exp. sequence > local sequence

Sequence no.
(local)

Sequence no.
(exposed)

Sequence no.
(local)

return

Condition true

complete
Receive

Sequence
Increment

Sender

0

0

1

0

0 1

Sequence no.
(exposed) 1

1

# Packets to Receiver # Packets to Receiver

# Packets from Sender

# Packets from Sender

# Packets from Sender

Receiver

# Packets from Sender

Sequence no.
(exposed)

Sequence no.
(local)

# Packets from Sender

Fig. 4. The protocol for one–sided communication modules

Module ARMCI. The “ARMCI” module uses the ARMCI API [27] to com-
municate. The blocking send interface utilizes ARMCI Put() to copy data to the
remote side and the receive polls the completion flag.

Module MPI-2 One Sided. MPI 2.0 features the one–sided communication
functions to access remote memory without participation of the target process
[28,29]. The corresponding Netgauge module performs data transmission using
these MPI functions. Any send operation corresponds to an access epoch ac-
cording to the MPI 2.0 specification. In the same way any receive operation is
associated with one exposure epoch.

Module SCI. The Scalable Coherent Interface (“SCI”) [30] is a network type
providing shared memory access over a cluster of workstations. Data is trans-
mitted by writing and reading to and from remote memory segments mapped
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into the address space of a process. The SCI module of Netgauge sends data to
a receiver by writing to the remote memory.

3 Benchmark Examples and Results

To demonstrate the effectiveness of Netgauge, we present a small selection of
benchmark graphs that we recorded with different transport protocols and
patterns.

Two test clusters were used to run the benchmarks. On system A, a dual Intel
Woodcrest 2 GHz cluster with 1 InfiniBand HCA Mellanox MT25204 InfiniHost
III and 2 Gigabit Ethernet ports driven by Intel 82563, we run all tests regarding
Ethernet, InfiniBand and ARMCI. System B, a dual AMD Athlon MP 1.4 GHz
with 1 Myrinet 2000 network card and 1 Gigabit Ethernet port SysKonnect
SK-98, was used to benchmark Myrinet.

3.1 Benchmarks of the 1:1 Communication Pattern

The one–to–one communication pattern, described in Section 2.4 provides pair-
wise communication between an arbitrary number of processes.

Fig. 5 shows the latency and bandwidth measurements of an InfiniBand net-
work. The results are given for MPI over InfiniBand and TCP using IPoIB.
This benchmark allows to assess the performance and implementation quality
of the different protocol layers. The slope of IPoIB transmission falls behind the
performance of MPI over InfiniBand using Open MPI 1.1.3.
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Fig. 5. Comparison of the Latency (left) and Bandwidth (right) of a one–to–one com-
munication via MPI IB and IPoIB

3.2 Benchmarks of the 1:n Communication Pattern

The 1:n communication pattern, described in Section 2.4, was used to compare
the flow-control implementation of the specialized ESP [24] protocol with the
traditional TCP/IP implementation. The results are shown in Fig. 6.This shows
that the ESP implementation achieves a reasonably higher bandwidth and lower
latency than TCP/IP for this particular communication pattern.
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3.3 Benchmarks of the LogGP Communication Pattern

The LogGP communication pattern implements the LogGP parameter measure-
ment method presented in [19]. The left diagram in the following figures shows
the message size dependent overhead of the communication protocol and the
right part shows the network transmission graph T . This graph can be used to
derive the two parameters g (value at size=1 byte) and G (slope of the graph)
and is discussed in detail in [19]. It results from different PRTT measurements,
and is calculated as T (s) = (PRTT (n, 0, s)− PRTT (1, 0, s))/(n− 1) where we
chose n = 16 and s represents the message size.

Fig. 7 compares the InfiniBand IP over IB implementation with Open MPI
1.1/OFED. We see that the overhead is as high as the network transmission
time. This is due to our use of blocking communication to benchmark this re-
sults. Two different protocol regions for the MPI implementation and the pat-
tern can be seen (g = 1.82, G = 0.0012 for s < 12kiB and g = 19.75, G =
0.0016 for s > 12kiB). The IPoIB implementation results in g = 7.79,
G = 0.0061.
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4 Conclusions and Future Work

We introduced the Netgauge network performance analysis tool with support
for many different network communication protocols. The modular structure
and clear interface definition allows for an easy addition of new network mod-
ules to support additional protocols and benchmarks. Netgauge offers an ex-
tensible set of different simple and complex network communication patterns.
The large number of protocol implementations enables a comparison between
different transport protocols and different transport layers. Different benchmark
examples and other tests demonstrated the broad usability of the Netgauge tool.

We are planning to add new communication modules for different networks
and to design more complex communication patterns.
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Abstract. Many new Partitioned Global Address Space (PGAS)
programming languages have recently emerged and are becoming ubiqui-
tously available on nearly all modern parallel architectures. PGAS pro-
gramming languages provide ease-of-use through a global shared address
space while emphasizing performance by providing locality awareness
and a partition of the address space. Examples of PGAS languages in-
clude the Unified Parallel C (UPC), Co-array Fortran, and Titanium
languages. Therefore, the interest in complexity design and analysis of
PGAS algorithms is growing and a complexity model to capture implicit
communication and fine-grain programming style is required. In this pa-
per, a complexity model is developed to characterize the performance of
algorithms based on the PGAS programming model. The experimental
results shed further light on the impact of data distributions on locality
and performance and confirm the accuracy of the complexity model as
a useful tool for the design and analysis of PGAS-based algorithms.

1 Introduction

PGAS implicit communication and fine-grain programming style make appli-
cation performance modelling a challenging task [2], [5]. As stated in [2] and
[5], most of the efforts have gone into PGAS languages design, implementation
and optimization, but little work has been done for the design and analysis of
PGAS-based algorithms. Therefore, a complexity model for PGAS algorithms is
an interesting area for further research and design, and this field, to the best of
our knowledge, had not yet been adequately defined and addressed in the litera-
ture. The challenge is to design, analyze, and evaluate PGAS parallel algorithms
before compiling and running them on the target platform.

Recall that in sequential programming, assuming that sufficient memory is
available, execution time of a given algorithm is proportional to the work per-
formed (i.e., number of operations). This relationship between time and work
makes the performance analysis and comparison very simple. However, in parallel
performance models proposed in literature, other platform-dependent parame-
ters, such as communication overhead, are used in developing parallel programs
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[8]. By changing these parameters, developers can predict the performance of
the programs on different parallel machines. However, these parameters are not
program-dependent and considering them in the design phase can complicate
the analysis process. In other words, having platform-dependent parameters in
the model makes it quite difficult to obtain a concise analysis of algorithms. To
meet this requirement, complexity models are useful for programmers to design,
analyze, and optimize their algorithms in order to get better performance. They
also provide a general guideline for programmers to choose the better algorithm
for a given application.

This paper addresses a complexity model for the analysis of the intrinsic ef-
ficiency of the PGAS algorithms with disregard to machine-dependent factors.
The aim of this model is to help PGAS parallel programmers understand the be-
havior of their algorithms and programs, making informed choices among them,
and discovering undesirable behaviors leading to poor performance.

The rest of the paper is organized as follows. In section 2, we present related
work. Section 3 presents an overview of PGAS programming model by focusing
on one language implementing it, UPC. In section 4, the complexity model for
PGAS-based algorithms is presented. Experimental results are given in section
5. Conclusion and future work are presented in section 6.

2 Related Work

There has been a great deal of interest in the development of performance models,
also called abstract parallel machine models, for parallel computations [12]. The
most popular is the Parallel Random Access Machine (PRAM) model, which is
used for both shared memory and network-based systems [10]. In shared mem-
ory systems, processors execute in concurrently and communicate by reading
and writing locations in shared memory spaces. In network-based systems, pro-
cessors coordinate and communicate by sending messages to their neighbors in
the underlying network (e.g., array, hypercube, etc) [6], [10]. While the PRAM
model does not consider the communication cost [10], it is considered by many
studies to be high level and unable to accurately model parallel machines. New
alternatives such as Bulk Synchronous Parallel (BSP) [9], LogP and its variants
[4],[8], and Queuing Shared Memory (QSM) [10] have been proposed to capture
the communication parameters. These models can be grouped into two classes:
shared memory-based models and message passing-based models. LogP and its
variants, and BSP are message passing-based models that directly abstract dis-
tributed memory and account for bandwidth limitations. Queuing Shared Mem-
ory (QSM) is a shared memory-based model [10], [11]. Despite its simplicity it
uses only machine-dependent parameters, and in addition the shared memory is
global and not partitioned, i.e. it provides no locality awareness.

Recently, approaches to predict the performance of UPC programs and com-
piler have been proposed in [2] and [5]. In [5], authors include machine-dependent
parameters in their model to predict UPC program performance. The model
proposed in [2], offers a more convenient abstraction for algorithms design and
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development. More precisely, the main objective of this modelling approach is to
help PGAS designers to select the most suitable algorithm regardless of the im-
plementation or the target machine. The model presented in this paper extends
the modelling approach proposed in [2] by deriving analytical expressions to mea-
sure the complexity of PGAS algorithms. As stated in [2], considering explicitly
platform parameters, such as the latency, the bandwidth, and the overhead, dur-
ing the design process could lead to platform-dependent algorithms. Our primary
concern in this paper is a complexity model for the design and analysis of PGAS
algorithms.

3 PGAS Programming Model: An Overview

PGAS programming model uses fine-grain programming style that makes ap-
plication performance modelling and analysis a challenging task. Recall that
unlike coarse-grain programming model where large amounts of computational
work are done between communication events, fine-grain programming style rela-
tively small amounts of computational work can be done between communication
events. Therefore, if the granularity is too fine it is possible that the overhead
required for communications takes longer than the computation. PGAS pro-
gramming model provides two major characteristics namely data partition and
the locality that should be used to reduce the communication overhead and get
better performance. UPC is one of partitioned global address space programming
language based on C and extended with global pointers and data distribution
declarations for shared data [1].

A PGAS-based algorithm depends on the number of threads and how they
are accessing the space [1], [2]. A number of threads can work independently in a
Simple Program Multiple Data (SPMD) model. Threads communicate through
the shared memory and can access shared data while a private object may be
accessed only by its own thread. The PGAS memory model, used in UPC for
example, supports three different kinds of pointers: private pointers pointing
to the shared address space, pointers living in shared space that also point to
shared data, and private pointers pointing to data in the thread’s own private
space. The speed of local shared memory accesses will be slower than that of
private accesses due to the extra overhead of shared-to-local address translation
[5]. Also, remote accesses in turn are significantly slower because of the network
overhead and address translation process.

According to these PGAS programming features, the fine-grained program-
ming model is simple and easy to use. Programmers need to only specify the
data to be distributed across threads and reference them through special global
pointers. However, a PGAS program/algorithm can be considered efficient (com-
pared to another algorithm) if it achieves the following objectives [2]. The first
objective is to minimize the inter threads communication overhead incurred by
remote memory accesses to shared space. The second objective is to maximize
the efficient use of parallel threads and data placement or layout together with
data locality (i.e., the tradeoff between the number of allocated threads and
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the communication overhead). The third objective is to minimize the overhead
caused by the synchronization points.

Recently, all efforts are focused on compiler optimization, i.e. without the con-
trol of the programmer, in order to increase the performance of the PGAS parallel
programming language such as UPC. In [3] and [7], many optimization sugges-
tions have been proposed for incorporation into UPC compilers, such as message
aggregation, privatizing local shared accesses, and overlapping computation and
communication to hide the latencies associated with remote shared accesses.

4 A Complexity Model for PGAS Algorithms

A PGAS algorithm consists of a number of threads that use a SPMD model to
solve a given problem. Each thread has its own subset of shared data and can
coordinate and communicate with the rest of threads by writing and reading
remote shared objects or data to perform its computation. In addition, each
thread performs local computations and memory requests to its private space.
The algorithm complexity can be expressed using algorithm-dependent param-
eters to measure the number of basic operations and the number of read/write
requests. More precisely, the algorithm complexity can be expressed using Tcomp

and Tcomm, where Tcomp denotes the computational complexity, and Tcomm the
number of read and write requests. The computational complexity depends on
the problem size, denoted by N , and the number of threads, T . For example, in
the case where all threads execute the same workload (i.e., the workload is uni-
form), the number of computation operations for all threads is similar. However,
in irregular applications, certain threads could perform more or less computa-
tional operations. To includes the idle time induced by waiting, e.g. for other
threads, we consider that Tcomp is the maximum of T i

comp for 1 ≤ i ≤ T , where T
is the number of threads. It is worth notice that each thread should be executed
by one processor; the number of threads T is equal to the number of processors
P . In order to calculate T i

comp, we consider that a PGAS algorithm can be com-
posed of a sequence of phases eventually separated by synchronization points. At
a given phase, a thread can compute only or compute and communicate. There-
fore, alike sequential programming, the computational complexity of a thread
i in all elementary phases j, j ∈ φ, is T i

comp = maxj=1:φ(T i
comp(j)), where φ

is the number of all elementary phases. The computational complexity Tcomp

of the algorithm is the highest computational complexity of all threads and is
determined as follows: Tcomp = maxi=1:T (T i

comp). The complexity is dominated
by the thread that has the maximum amount of work. Unlike the computational
complexity, the communication complexity of a thread i is the sum (over all
phases) of T i

comm(j) as follows: Tcomm =
∑φ

j=1 T i
comm(j). The communication

complexity of the algorithm is the highest communication complexity overall
threads and is determined as follows: Tcomm = maxi=1:T (T i

comm). Tcomm is an
upper bound on the number of memory requests made by a single thread.

The communication complexity T i
comm(j) at each phase j and for each thread

i, depends on the number of requests to private and shared memory spaces,
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called the pointer complexity [2]. The pointer complexity is defined to be the
total number of pointer-based manipulations (or references) used to access data.
There are three sorts of pointers in a PGAS algorithm represented by N i

p(j),
the number of references to the private memory space, N i

�(j) the number of
references to the local shared memory space, and N i

r(j) the number of references
to remote shared memory spaces. Since accesses to remote shared memory spaces
are more expensive than accesses to private and local shared memory spaces [1],
[2], [5], N i

p(j) and N i
�(j) can be neglected due to their insignificance relative to

the cost of remote references accesses to remote shared spaces N i
r(j). Therefore,

the communication complexity depends mainly on the number of references to
remote shared spaces, and hence we have: T i

comm(j) = O(N i
r(j)). This number

of remote references (i.e., read and write requests) can be easily and directly
computed from the number and layout of data structures declared and used in the
algorithm. More precisely, it depends on the following parameters: the number
of shared Data elements D declared and used in the algorithm, the number of
Local shared data elements L to a thread (L ≤ D), the number of threads T ,
and the size N of the shared Data structures . In what follows, we consider the
worst case when any computational operation could equally involve global or
local shared requests to shared memory spaces. Each thread also needs to write
or read from other threads’ partitions. Using these parameters, the number of
remote references represents the communication complexity (i.e., number of read
and write requests), at each phase j, as follows:

T i
comm(j) = O(N i

r(j)) = O(
(Di

j − Li
j)(T − 1)
T

T i
comp(j)) (1)

T i
comp(j) captures the number of computational operations, at the phase j, and

depends only on the average number of elements in shared data structures N
and the number of threads T . Di

j is the number of all shared pointers to remote
spaces (i.e., local spaces of other threads) used in the algorithm, for the thread
i in the phase j. Li

j captures the number of shared references (i.e., pointers) to
a local space of the thread i in the phase j.

Let us consider that αi
j =

Di
j−Li

j

D−L . Equation 1, which determines the com-
munication complexity of thread i at each phase j, can be rewritten as follows:

T i
comm(j) = O(

αi
j(D − L)(T − 1)

T
Tcomp(j)) (2)

To estimate the communication complexity of the algorithm, let us now con-
sider, that a certain thread i has the highest computational complexity Tcomp =
T i

comp(k) overall threads and overall phases k. According to equation 2, the com-
munication complexity of the algorithm is:

T i
comm = max

i=1:T
(

φ∑
j=1

T i
comm(j)) = O(

α(D − L)(T − 1)
T

Tcomp) (3)

where α = maxi=1:T (
∑φ

j=1 αi
j). It should be noted here that the computation

complexity depends all time on the size of the problem N and the number of
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threads T , Tcomp = f(N, T ). In addition, the communication complexity depends
on the number of shared data elements D declared and used in the algorithm, the
number of local shared data elements L to a thread, the size of the shared data
structures N , the number of threads T (T is equal to the number of processors P ),
and the parameter α, f(D, L, N, T, α), where α is a function of T . For example,
let us consider the following N×N matrix multiplication algorithm, C = A×B:

Matrix multiplication algorithm

Input: a N × N matrix A and a N × N matrix B
Output: the N × N matrix C = A × B
Data Distribution: A , B, and C are distributed in round-robin using four cases
//Loop through rows of A with affinity (e.g., i)
For i ← 1 and affinity = i to N parallel Do
For j ← 1 to N Do // Loop through columns of B
C(i, j) ← 0
For k ← 1 to N Do // perform the product of a row of A and a column of B
C(i, j) ← C(i, j) + A(i, k) × B(k, j)

End for k
End for j
End for i

This algorithm takes two matrix A and B as an input and produces a matrix C
as an output. These matrices are N × N two-dimensional arrays with N rows
and N columns. The data distribution allows us to define how these matrices
will be partitioned between threads. Four cases of data distribution are consid-
ered in this example and will be described in section 5. The first loop allows
the distribution of independent work across the threads, each computing a num-
ber of iterations represented by the field affinity. This field determines which
thread executes a given iteration. In this example, the affinity i indicates that
the iteration i will be performed by thread (i mod T ). Using this field, iterations
will be distributed across threads in round-robin manner and each thread will
process only the elements that have affinity to it avoiding costly remote requests
to shared spaces. This parallel loop can be translated into the parallel construct
of the considered PGAS language, UPC for example [1].

In this algorithm, the computational complexity Tcomp requires O(N3

T ) mul-
tiplication and addition operations, and the communication complexity Tcomm

requires O(α(D−L)(T−1)
T 2 N3) requests to remote shared spaces, where D=3, and

L ∈ {0, 1, 2, 3}. The value of L depends on the case of data distribution consid-
ered (see section 5). According to this analysis, the communication complexity
of a given PGAS algorithm achieves a lower bound when L = D, which means
that threads compute on their own data without performing any communica-
tion to access remote ones. In other words, a communication complexity of a
PGAS algorithm achieves its lower bound when L = 0; all data are accessed
with remote shared pointers.

The speedup of a PGAS algorithm, denoted by SPGAS , is defined as the ratio
between the time taken by the most efficient sequential algorithm, denoted by
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Tseq, to perform a task using one thread and the time, denoted by Tpar, to
perform the same task using T threads (i.e., T = P ). This speedup can be
estimated as follows:

SPGAS =
Tseq

Tpar
= O(

Tseq

1 + α(D − L) (T−1)
T Tcomp

) (4)

Since the most optimal sequential algorithm yields to Tcomp ≤ Tseq

T , the speedup,
given in the equation 4, can be rewritten as follows:

SPGAS = O(
T

1 + a(T − 1)
) (5)

where a = α(D−L)
T is a key parameter that emphasizes the influence of the lo-

cality degree of the algorithm in function of the number of threads, i.e., number
of processors. According to this equation, the PGAS speedup is optimal, i.e.,
linear, when SPGAS is close to T (i.e., SPGAS = O(T )). This linear speedup can
be obtained when D = L; i.e., there are no remote requests to shared spaces.
Therefore the designer should simultaneously maximize the locality degree L,
and minimize the usage of remote shared pointers represented by α. When T
approaches infinity, a(T − 1) is bounded by a(D − L), where α is not constant,
but depends on the number of threads. Hence, even if we increase the number
of threads, in parallel the number of processors, to run the algorithm, the per-
formance is limited by the impact of the number of requests to remote shared
memory spaces a. Therefore, the designer of PGAS algorithms should attempt
to reduce this parameter to the smallest possible value. It should be noted also
that since the model considers the asymptotic complexity of the computation
and the communication, the overlapping mechanism that allows the computa-
tion to proceed without waiting for the entire data transfer to be completed is
also captured by the model.

5 Experimental Results

In this section, to validate the performance model presented in this paper, we
have implemented a UPC program to perform matrix multiplication algorithm
with different data distribution schemes. The matrix multiplication is selected
because it is simple to show the effectiveness of the model. In addition, matrix
multiplication represents one of the most important linear algebra operations in
many scientific applications..

The experiments were done using the GCC UPC toolset running on Ori-
gin 2000. The SGI Origin 2000 platform consists of 16 processors and 16GB of
SDRAM interconnected with a high speed cache coherent Non Uniform Mem-
ory Access (ccNUMA) link in hypercube architecture. The GCC UPC toolset
provides a compilation and execution environment for programs written in UPC
language.
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Fig. 1. The theoretical speedup vs. L

In this experimentation, three data structures A, B, and C (D = 3) are
considered. We consider the case where all matrices are of size (N = 128) and
the number α is equal to 3. Four different data distribution cases (L = 0, L = 1,
L = 2, and L = 3) are also considered in these experiments. In the first case,
L = 0, matrices A, B, C are partitioned among T threads (i.e., processors) by
assigning, in round robin, each thread N

T columns of A, B, and C respectively.
More precisely, elements of these matrices will be distributed acroses the threads
element-by-element in round-robin fashion. For example, the first element of the
matrix A is created in the shared space that has affinity to thread 0, the second
element in the shared space that has affinity to thread 1, and so on. In the
second case, L = 1, the compiler partitions computation among T threads by
assigning each thread N

T rows of A and N
T columns of B and C. More precisely,

the elements of matrices A and B are distributed element-by-element in round-
robin fashion, i.e., each thread gets one column in round robin fashion. At the
end, each thread up with N

T columns of B and C, where (N mod T = 0).
The elements of the matrix A will be distributed across the threads N -elements
by N -elements in round-robin fashion. In the case where L = 2, the compiler
partitions computation among T threads by assigning each threads N

T rows of A,
and C, and N

T columns of B. This case is similar to the second case except that
the elements of the matrix C will be distributed across the threads N -elements
by N -elements in round-robin fashion. The last case, L = 3, is similar to the
third case with the exception that each thread has the entire B.

Recall that from the model, the designer should maximize the locality degree
L, and minimize α, i.e. minimize the usage of remote shared pointers. Figure 1
presents the theoretical speedup, calculated from the model (eq. 5), in function of
the locality degree, L = 0, L = 1, L = 2, and L = 3 (α = 3). This figure shows
that as we increase L, the speedup increases and tends to become linear when D =
L, i.e., good data locality. More precisely, the algorithm (matrix multiplication)
without remote communication (L = 3) performs better than the algorithm with
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Fig. 3. The experimental speedup vs. L

a minor remote communication (L = 2) that performs better than the algorithm
with an intermediate remote communication (L = 1). This last case performs
better than the algorithm with a larger remote communication (L = 0).

According to the model, the designer should also attempt to reduce the pa-
rameter α to the smallest possible value. To illustrate this point, let us consider
the matrix multiplication algorithm with three data structures (D = 3), and L
is equal to 0. Figure 2 presents the theoretical speedup in function of the number
α. This figure shows that as we decrease the the usage of remote shared pointers
(i.e., from α = 3 to α = 2), the speedup increases.

The objective of the experimentation is to prove this statement, which is
given from the complexity model. Each thread is executed in one processor. The
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results depicted in figure 3 illustrate that as we increase L, the speedup increase
to become linear when L = D. We can see also in figure 4 that decreasing
the usage of remote shared pointers (i.e., from α = 3 to α = 2), the speedup
increases. It should be noted that the objective of these experiments is not to
compare the performance of this program according to the literature but to show
the following behavior: as we increase L and decrease α there is an increase in
the speedup.

These primary experimental results corroborate the result obtained from the
complexity model described above and show that to improve the algorithms’
performance, by decreasing the communication cost, the programmer must in-
crease as much as possible the value of the locality parameter L and minimize
the usage of remote shared pointers represented by α.

6 Conclusion and Future Work

In this paper, we present a performance model based on the complexity analysis
that allows programmers to design and analyze their algorithms independent of
the target platform architecture. Given an algorithm, we have shown that we
can extract the program-dependent parameters to calculate the computation and
the communication complexity. According to this model, to obtain algorithms
that perform well, the remote communication overhead has to be minimized. The
choice of a good data distribution is of course the first step to reduce the number
of requests to remote shared spaces. Consequently, the programmer is able to en-
sure good data locality and obtain better performance using this methodology as
a tool to design better algorithms. The utility of this model was demonstrated
through experimentation using matrix multiplication program under different
data distribution schemes. According to the complexity model and the experi-
mental results, the most important parameters are the number D and the size N
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of data structures, the locality degree L, the number α used in the algorithm, and
the number of threads. Therefore, the algorithm designer should simultaneously
minimize D and α, and maximize L to get better performance.

Future work addresses additional experiments with larger applications and
other platforms. The objective is to provide a tool for the comparison of alternate
algorithms to the same application without necessarily resorting to an actual
implementation. In addition, we will extend this complexity model to predict the
computational and the communication times by including machine-dependent
parameters such as the latency and the overhead.
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Abstract. Vector, emerging (homogenous and heterogeneous) multi-core and a 
number of accelerator processing devices potentially offer an order of magni-
tude speedup for scientific applications that are capable of exploiting their 
SIMD execution units over microprocessor execution times. Nevertheless, iden-
tifying, mapping and achieving high performance for a diverse set of scientific 
algorithms is a challenging task, let alone the performance predictions and pro-
jections on these devices. The conventional performance modeling strategies 
are unable to capture the performance characteristics of complex processing 
systems and, therefore, fail to predict achievable runtime performance. More-
over, most efforts involved in developing a performance modeling strategy and 
subsequently a framework for unique and emerging processing devices is pro-
hibitively expensive. In this study, we explore a minimum set of attributes that 
are necessary to capture the performance characteristics of scientific calcula-
tions on the Cray X1E multi-streaming, vector processor. We include a set of 
specialized performance attributes of the X1E system including the degrees of 
multi-streaming and vectorization within our symbolic modeling framework 
called Modeling Assertions (MA). Using our scheme, the performance predic-
tion error rates for a scientific calculation are reduced from over 200% to less 
than 25%. 

1   Introduction 

Computing devices like vector processors [3], homogeneous and heterogeneous 
multi-core processors [1, 2], Field Programmable Gate Arrays (FPGAs) [16], multi-
threaded architecture processors [18] offer the potential of dramatic speedups over 
traditional microprocessor run times for scientific applications. Performance accelera-
tion on these devices is achieved by exploiting the data, instruction and thread level 
parallelism of a program. However, an application needs to be mapped to the appro-
priate computing devices in order to exploit the unique performance enhancing  
features of a target system. Performance modeling studies have been employed to 
investigate and to understand this mapping and the achievable performance of an 
application on a target system. Efforts involved in developing a performance model-
ing strategy for unconventional and emerging systems are prohibitively expensive. 
Nevertheless, the high cost of high-performance computing (HPC) systems and the 
strategic importance of HPC applications make it imperative to predict the perform-
ance of these applications on these machines before their deployment. 
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In this study, we present our performance modeling approach for one such uncon-
ventional HPC architecture: the Cray X1E [3]. A Cray X1E processing unit is com-
posed of vector processors and a complex memory subsystem. Using a technique 
called multi-streaming, groups of four X1E vector processors can cooperate to exe-
cute outer loop iterations; each group of four processors is called a Multi-Streaming 
Processor (MSP). We evaluated our approach within the Modeling Assertions (MA) 
framework [9] that allows a user to express and subsequently develop symbolic per-
formance models of workload requirements in terms of an application’s input parame-
ters. We define and quantitatively validate a minimal set of performance attributes 
that are essential in expressing performance models symbolically and predicting run-
time performance on the X1E system. As a result, we sacrifice neither the generality 
of the symbolic models that are developed for a microprocessor based system nor the 
accuracy of runtime performance predictions. We evaluated our technique using a set 
of programs from the NAS parallel benchmarks [4]. Using our approach, the runtime 
error rates are reduced from over 200% to just below 25% for the programs we con-
sidered.  

The layout of the paper is as follows: Section 2 briefly outlines the related work in 
the area of performance modeling and prediction for scientific HPC applications. 
Background of the Cray X1E vector system and our modeling scheme is presented in 
Section 3. Implementation details are provided in Section 4. Section 5 presents ex-
periments and results. Conclusions and future work are discussed in Section 6. 

2   Related Work 

Several techniques have been proposed and investigated for predicting the perform-
ance of applications on conventional architectures [11, 12, 14, 20]. Here we briefly 
survey the most recent performance modeling efforts. Snavely et. al. [14] predict 
applications’ runtime on conventional processing architectures using an application’s 
memory bandwidth requirements, and processing speed and bandwidth capabilities of 
the target architecture. The technique relies on obtaining application memory access 
patterns by collecting instruction traces for memory reference instructions, usually on 
a traditional microprocessor-based platform. Microprocessor-based modeling tech-
niques have limited applicability for performance modeling of unconventional HPC 
systems due to the unique features of these architectures and the overheads involved 
in collecting and analyzing huge amount of trace data. Vendors of unconventional 
architectures may not provide any memory tracing toolkit for ISA level tracing; no 
such support is available on the X1E. Yang et. al. [20] describe a technique based on 
partial execution of an application on existing systems and then extrapolation of the 
results for unconventional architectures. Typically the extrapolation does not take into 
consideration the unique architectural features that enhance performance on these 
unconventional architectures, thereby inducing very high runtime error rates. A simi-
lar but exhaustive performance modeling approach is presented by Kerbyson et. al. 
[12], which involves manually developing an expert human knowledge base of the 
applications as well as the target systems. Our scheme combines a code developer’s 
symbolic representation of an application and runtime hardware counter information 
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and systematically feeds back execution-time information to improve model accuracy 
within the MA framework. 

3   Background 

3.1   Cray X1/X1E 

The Cray X1E is distributed shared memory system with globally addressable mem-
ory. The primary functional building block of a X1E is a compute module. A compute 
module contains four multichip modules (MCMs), local memory, and System Port 
Channel I/O ports. Each MCM contains two multi-streaming processors (MSPs). 
Each MSP is comprised of 4 single-streaming processors (SSPs) as shown in Fig. 1. 
Each SSP contains two deeply-pipelined vector units running at 1.13 GHz and a sin-
gle scalar unit running at 0.565 GHz. All SSPs within a MSP share a 2MB E-cache 
and each SSP has a 16KB Data cache and a 16KB instruction cache.  

 

 

Fig. 1. Inside Cray X1 Multi-streaming processor 

The Cray X1E compilers can exploit the data level parallelisms by vectorizing in-
ner loops so they execute in the vector units of an SSP. The compiler can also paral-
lelize outer loops such that the loop’s iterations can be executed concurrently on each 
of the four SSPs within an MSP. Together, these two features have a theoretical peak 
performance of 18 GFLOPS/MSP. From the memory subsystem point of view, the 
memory hierarchy is different for scalar and vector memory references. Vector mem-
ory references are cached in the E-cache but not in the D-cache. The vector register 
space acts as a level-1 cache for vector memory references. On the other hand, the 
scalar memory references are cached in the E-cache as well as the D-cache. The E-
cache acts a level-2 cache for scalar memory references. 

3.2   The Modeling Assertions (MA) Framework 

Because of the limited applicability of conventional modeling techniques for dealing with 
unconventional architectures, we have devised a modeling scheme that incorporates 
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“application aware” as well as “architecture aware” attributes in model representation. 
We implement our approach using our Modeling Assertions (MA) framework. MA 
allows a user to develop hierarchical, symbolic models of applications using code 
annotation; the MA models can project performance requirements and allow us to 
conduct sensitivity analysis of workload requirements for future and larger problem 
instance of an application [10]. The MA models can be incrementally refined based 
on the empirical data that are obtained from application runs on a target system.  

The MA framework has two main components: an API and a post-processing tool-
set.  Fig. 2 shows the components of the MA framework. The MA API is used to 
annotate the source code. As the application executes, the runtime system captures 
important information in trace files, primarily to compare runtime values for anno-
tated symbolic expressions to actual runtime data in order to validate symbolic mod-
els. These trace files are then post-processed to analyze, and construct models with 
the desired accuracy and resolution. The post-processing toolset is a collection of 
tools or Java classes for model validation, control-flow model creation and symbolic 
model generation. The modeling API is available on Linux clusters with MPICH, 
IBM pSeries systems and Cray X1E vector systems [3]. The symbolic model shown 
in the Fig. 2 is generated for the MPI send volume. The symbolic models can be 
evaluated with MATLAB and Octave tools. 

The MA API provides a set of functions to annotate a given FORTRAN or C code 
with MPI message-passing communication library. For example, ma_loop_start, a 
MA API function, can be used to mark the start of a loop. Upon execution, the code 
instrumented with MA API functions generates trace files. For parallel applications, 
one trace file is generated for each MPI task. The trace files contain traces for ma_xxx 
calls and MPI communication events. Most MA calls require a pair of ma_xxx_start 

 
 

 
Fig. 2. Design components of the MA framework 
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and a ma_xxx_end calls. The ma_xxx_end traces are primarily used to validate mod-
eling assertions against the runtime values. The assertions for hardware counter val-
ues, ma_flop_start/stop, invoke the PAPI hardware counter API [5]. The ma_mpi_xxx 
assertions on the other hand are validated by implementing MPI wrapper functions 
(PMPI) and by comparing ma_mpi_xxx traces to PMPI_xxx traces. Additional func-
tions are provided in the MA API to control the tracing volume, for example, the size 
of the trace files, by enabling and disabling the tracing at compile time and also at 
runtime.  

At runtime, the MA runtime system (MARS) tracks and captures the actual instan-
tiated values as they execute in the application. MARS creates an internal control 
flow representation of the calls to the MA library as they are executed. It also captures 
both the symbolic values and the actual values of the expressions. The validation of 
an MA performance model is a two-stage process. When a model is initially being 
created, validation plays an important role in guiding the resolution of the model at 
various phases in the application. Later, the same model and validation technique can 
be used to validate against historical data and across the parameter space. Moreover, 
since models can be constructed and validated at multiple resolution levels, a user can 
keep track of error rate propagation from low level calculations to higher, functional 
levels. This process allows a user to refine the model resolution level and to identify 
possible causes of large error rates in model projections. 

4   Implementation 

We extended our MA framework not only to quantify X1E architectural optimizations 
but also to include a new set of performance metrics or attributes. Since metrics like 
memory bandwidth requirements cannot be formulated for a complex architecture 
without empirical information, we capture this information using standard memory 
benchmarks [7, 17]. To validate and to estimate runtime for our application from the 
data collected by the MA runtime system, we devise a set of mathematical expres-
sions to formulate the degree with which these new metrics influence the runtime. 
The modifications to the MA framework for the X1E system include: a loopmark 
listing analyzer, X1E processor performance attributes, X1E memory bandwidth at-
tributes analysis, and an infrastructure for runtime performance model validation and 
prediction. 

4.1   Loopmark Listings Analyzer 

The Cray X1E Fortran and C/C++ compilers generate text reports called loopmark 
listings that contain information about optimizations performed when compiling a 
program, such as whether a given loop was vectorized and multi-streamed. Loopmark 
listing generated for the most time-consuming loop from the NAS Conjugate Gradient 
(CG) serial benchmark: 

 
583.  1 M----------<          do j=1, lastrow-firstrow+1 
584.  1 M                        sum = 0.d0 
585.  1 M V-------<             do k=rowstr (j), rowstr (j+1)-1 
586.  1 M V                        sum = sum + a (k)*p (colidx(k)) 
587.  1 M V------->             enddo 
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588.  1 M                        q(j) = sum 
589.  1 M---------->          enddo 

 
To support our modeling approach, we have created a loopmark analyzer that can 

generate an analysis file. The tuples (shown below) indicate whether a loop has been 
multi-streamed (mflag=1) and/or vectorized (vflag=1). We introduce an abstract defi-
nition that includes both flags, which we call the “MV” score of a loop. 

 
id: 17 func: conj_grad beginl: 583 endl: 589 mflag: 1 vflag: 0 
id: 18 func: conj_grad beginl: 585 endl: 587 mflag: 1 vflag: 1 

4.2   X1E Performance Attributes 

Based on the information gathered from our loopmark listing analyzer, we introduce 
“architecture aware” metrics within the MA framework for predicting application run 
times on the X1E. Our first metric is the average vector length (AVL). Each Cray 
X1E SSP has two vector units; both contain vector registers that can hold 64 double-
precision floating point elements, so the AVL is at most 64. 

The peak memory bandwidth can be obtained if all 64 registers are utilized. In 
other words, if AVL for a loop is less than 64, it will be unable to utilize the peak 
memory bandwidth. Our performance models incorporate this penalty if AVL is less 
than AVLmax. The AVL of a loop can be computed using the loop bounds of a fully 
vectorized loop. The loop bounds of critical loops can be symbolically expressed as 
functions of input parameters of an application. Therefore, we can express AVL in the 
form of MA annotations. For example, the AVL of the CG loop shown above is: 

∑
−

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

−+=
firstrowlastrow

j jrowstrjrowstrdivceil

jrowstrjrowstr
AVL

1 )64)),()1((((

)()1(  

In addition to AVL, there are certain performance attributes like memory band-
width requirements that depend on an application’s intrinsic properties. For instance, 
memory access patterns of critical loops determine spatial and temporal locality of a 
loop block and its demand for memory bandwidth. The achievable bandwidth de-
pends on architectural complexities such as sizes and bandwidths of caches and the 
main memory. On the X1E, these architectural complexities in turn depend on com-
piler generated optimizations as specified by a loop’s MV score. The peak memory 
bandwidth for multi-streamed vector memory references on Cray X1E is ~34 GB/s 
and for multi-streamed scalar memory references is ~4.5 GB/s.  

Due to the lack of sufficient memory tracing tools for the Cray X1E system and a 
unique memory subsystem hierarchy for scalar and vector memory operations, we 
quantify an application’s memory bandwidth through empirical methods. We use 
profile information of an application obtained from various performance tools like 
TAU [8], KOJAK [14] and CrayPAT (Performance Analysis Toolkit) [5] to make 
calculated assumptions about a loop’s memory bandwidth. 

On a Cray X1E, the maximum bandwidth per SSP is 8.5 GB/s. This bandwidth is 
obtained by running a unit-strided memory benchmark called “Stream” which ex-
ploits the spatial locality to obtain maximum available bandwidth [7]. The minimum 
bandwidth per SSP is 2.5 GB/s, which is obtained by running a random access  
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memory benchmark called “Random Access” which spans through the memory by 
accessing random locations.  The average or mixed bandwidth, a combination of 
stream and random memory access patterns, we considered as 5.5 GB/s. 

5   Model Validation Results 

After collecting the empirical performance data and characterizing performance at-
tributes of the X1E processor, we formulate performance validation and runtime per-
formance prediction techniques. MA performance attributes are validated with X1E 
hardware counter values. The X1E provides native counters to measure AVL, Loads 
and Stores (both vector and scalar), and floating point operations (vector and scalar). 
We use the PAPI library to capture these counter values. 

We explain the validation process using the NAS SP, a simulated Computational 
Fluid Dynamics (CFD) application. The workload configurations can be changed by 
using different problem classes. The MA model for SP is represented in terms of an 
input parameter (problem_size), number of iterations, the number of MPI tasks that 
determines some derived parameters like the square-root of number of processors in 
the SP benchmark to simplify model representations. The SP benchmarks follow a 
Single Program Multiple Data (SPMD) programming paradigm. Hence, the workload 
and memory mapping and distribution per processor not only depend on the key input 
parameters but also on the number of MPI tasks. 

5.1   Model Parameters 

From the input parameters, problem_size, niter and nprocs, we compute two criti-
cal derived parameters: ncells and size for individual MPI tasks. A code listing 
example for SP with extended MA annotation is shown below: 

 
23.         call maf_vec_loop_start(1,“tzetar”,“size^2*(size-1)*26”, 
(size**2)*(size-1)*26,” (size^2)*(size-1)*16”, (size**2)*(size-
1)*16,”(size-1)/(size/64+1)”, (size-1)/(size/64+1),3)  
24.  M-------<        do    k = start(3,c), cell_size(3,c)-end(3,c)-1 
25.  M 2-----<           do    j = start(2,c), cell_size(2,c)-end(2,c)-1 
26.  M 2 Vs--<              do    i = start(1,c), cell_size(1,c)-
end(1,c)-1 
27.  M 2 Vs 
28.  M 2 Vs                    xvel = us(i,j,k,c) 
29.  M 2 Vs                    yvel = vs(i,j,k,c) 
 

In this example, tzetar is the loop identifier, which is followed by symbolic ex-
pressions for vector load-store operations. Note that the two identical expressions is 
not an error but represent symbolic expression written in the trace file and another one 
is evaluated by the runtime system. The next two expressions represent vector float-
ing-point operations. We then include AVL calculations and finally the MV score. 
Note that these workload parameters are represented in terms of a handful input pa-
rameters of the SP calculations. 
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5.2   Hardware Counter Measurements 

The MA runtime system generates trace files that contain output for 
ma_vec_loop_start and ma_vec_loop_stop annotations when the instrumented  
application executes on the target X1E platform. This output file contents are: 

 
MA:2:ma_vec_loop_start:tzetar:(size^2)*(size-1)*26:1179360: 

(size^2)*(size-1)*16: 725760:(size-1)/(size/64+1):35.000000:3  
MA:2:ma_vec_loop_stop:tzetar:1:244916:151434:1123632:708816: 

8:177196:33.351922:0:2421:445 
 
The runtime system empirically measure and report the hardware counter values in 

the following order in the ma_vec_loop_stop output: MA trace identifier, context 
depth of the call, MA API identifier, loop name, loop id, number of cycles, stalled 
cycles, vector flops, vector load-store operations, vector load stride, vector load allo-
cated, vector length, scalar floating-point operations, scalar load-store operations, and 
data cache miss. Note that the values generated in ma_vec_loop_stop confirm results 
of our symbolic models. For instance, the number of FP operations, predicted from 
the model for Class W problem configurations with a single MPI tasks is expected to 
be 725,760 operations. The actual measurement shows that it is 708,816 operations. 
Similarly, the AVL computed using symbolic models (35) for the loop count and MV 
score confirms the measured value (33.35).  Fig. 3 shows the error rates for hardware 
counter values for four different input configurations of the SP calculations with one 
and 4 MPI tasks. Note that the error rates are less than 10% for most cases. The error 
rates are higher for smaller workload configuration, class W, since these calculations 
are unable to saturate the CrayX1E MSP units. The percentage error rates for pre-
dicted and measured values are computed as: 
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Fig. 3. Error rate calculations for MA model predictions as compared to runtime data 

5.4   Runtime Calculations 

We compute the execution times according to mathematical formulae that consider 
two components of execution time of a loop: first, the time taken to do the floating 
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point computation; and second, the time taken to access the memory subsystem. On 
the Cray X1E system, the two runtime components (shown in Fig 4.) have two repre-
sentations: one for vector and another for scalar execution: Tv and Ts. The memory 
access times are Tvm and Tsm, and the compute times are Tvc and Tsc respectively. 
These formulae are based on the MV score of a loop. If a loop is vectorized, the run-
time is predicted using the formula for Tv. If the loop is also multi-streamed, the clock 
speed is 18GHz; otherwise it is 4.5GHz. If a loop is not vectorized, the runtime is 
predicted using the formula for Ts. If the loop is also multi-streamed the clock speed is 
2.26 GHz; otherwise it is 0.565 GHz. In the Fig. 8, VFLOPS refers to the vector float-
ing point operations, VLOADS refer to the vector load operations, VSTORES refers to 
the vector store operations, SFLOPS refers to the scalar floating point operations, 
SLOADS refers to the scalar load and SSTORES refers to the scalar store operations.  
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Fig. 4. Tv is the time for vector processing and Ts is the time for scalar processing 

Using the quantitative information generated by the MA symbolic models, the ex-
pressions to calculate timings, and empirical assumptions about the bandwidth of a 
particular code region, we can predict runtime of that code region on the target sys-
tem. Fig. 5 shows the error rates for predicted runtimes using the MA models with 
Cray X1E attributes and three memory bandwidth values: minimum (2.5 GB/s), aver-
age/mixed (5.5 GB/s) and maximum (8.5 GB/s) per SSP. We show an error bar of 
20% in measured runtimes since the execution times for a given calculation, tzetar 
for this example, vary from one time step iteration to other and during multiple runs. 
We observe that the error rates are substantially higher with the minimum bandwidth 
values across multiple runs. We therefore conclude that the memory access pattern for 
this calculation is not random. The lowest error rates are obtained with highest band-
width ranges, except for the smallest input configurations that are not capable of satu-
rating the X1E execution and memory bandwidth resources. 

After validating the performance model and running performance prediction ex-
periments, we investigate the impact of Cray X1E performance enhancing attributes 
that are introduced in the MA framework. For instance, we take into account the MV 
score and AVL of a given loop in our performance prediction framework and runtime 
prediction. We ran experiment by removing the multi-stream optimization for the 
compiler application by using “-O stream0” compiler flag. Since the model does not 
contain MV information, the runtime prediction is performed without knowledge of 
target resource utilization. Fig. 6 shows error rates for this experiment. As shown in 
the figure, we over-predict runtime because our model and subsequently the runtime 
prediction method are unaware that only one of the 4 SSP units within a Cray X1E 
MSP is utilized for this calculation. Hence, we conclude that there are several advan-
tages of introducing a minimal set of performance enhancing features in the modeling 
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Fig. 5. Error rates for runtime prediction with different memory bandwidth values 
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Fig. 6. Impact on performance prediction for not utilizing system specific attributes 

scheme. These include an improved runtime prediction capability as well as identifi-
cation of potential compile and runtime problems. In this particular example, there are 
no data and control dependencies in a given code, therefore, a code developer can 
assert that this loop is expected to be vectorized and multi-streamed by the X1E com-
piler. Using the MA scheme, we can identify this problem even before we the runtime 
experiments are performed. Since the MA annotations contain user-specified informa-
tion, the code developer can locate the problem quickly and inspect the loopmark 
listing for potential compiler issues. 

6   Conclusions and Future Directions 

We have developed a new performance modeling approach that augments Modeling 
Assertions (MA) with information about the performance-enhancing features of un-
conventional architectures. We demonstrated that our performance modeling ap-
proach enables us to reduce the performance prediction error rates significantly by 
incorporating a minimal set of “architecture aware” attributes in the MA framework. 
Furthermore, we identified that an insight into the understanding of the Cray X1E 
memory hierarchy is critical to performance modeling strategies for this platform.  An 
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inappropriate selection of the achievable memory bandwidth values resulted in error 
rates as high as 250%, but using our modeling approach we observed error rates of 
less than 25% for a representative scientific algorithm. Based on our success in aug-
menting MA annotations for X1E architectural features, we plan to extend the MA 
framework for performance modeling of emerging systems with multi-core processors 
and accelerator devices by identifying and incorporating the target architecture-
specific performance attributes into our modeling framework. 
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Abstract. Although event tracing of parallel applications offers highly detailed 
performance information, tracing on current leading edge systems may lead to 
unacceptable perturbation of the target program and unmanageably large trace 
files. High end systems of the near future promise even greater scalability chal-
lenges. Development of more scalable approaches requires a detailed under-
standing of the interactions between current approaches and high end runtime 
environments. In this paper we present the results of studies that examine sev-
eral sources of overhead related to tracing: instrumentation, differing trace 
buffer sizes, periodic buffer flushes to disk, system changes, and increasing 
numbers of processors in the target application. As expected, the overhead of 
instrumentation correlates strongly with the number of events; however, our re-
sults indicate that the contribution of writing the trace buffer increases with in-
creasing numbers of processors. We include evidence that the total overhead of 
tracing is sensitive to the underlying file system. 

1   Introduction  

Event tracing is a widely used approach to performance tuning that offers a highly de-
tailed view of parallel application behavior. It is used to diagnose an important range 
of performance problems, including inefficient communication patterns, capacity bot-
tlenecks on communication links, and imbalanced message sends and receives. How-
ever, the extreme scale of existing and near-future high-end systems, which include 
tens or hundreds of thousands of processors, introduces several difficult challenges 
that must be solved for event-based tracing to continue to be useful. First, pushing 
tracing technology to higher and higher scales drives up the overall perturbation to the 
application, yielding less accurate results. Second, tracing across the processors of a 
large-scale run results in unmanageably large trace files, in many cases breaking the 
measurement tools completely. Third, many trace analysis and visualization tools fail 
when trying to process trace files from more than a few hundred processors, or from a 
run duration greater than a few minutes.   

Application developers currently work around these tracing limitations by ad hoc 
techniques for data reduction, or by restricting measurement to profiling instead of 
tracing. Common methods for reducing the amount of data collected in a trace in-
clude: starting and stopping tracing around a particular section of code of interest; col-
lecting trace data for only certain operations, e.g. message passing calls; and tracing a 
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scaled down version of the application with a greatly reduced number of processes. 
These approaches all introduce the risk that the performance problem may be missed 
or misdiagnosed. The performance problem might be missed, for example if the prob-
lem only shows up with runs using greater than 2000 processes [10], or the problem 
occurred in time-steps that were not measured. In addition, they increase the burden 
on the tool user to identify the approximate location of the problem, and to make code 
changes to control which events are captured. 

Profiling is more scalable than tracing; however, event-based traces are still  
required for successful diagnosis of an important class of performance problems, be-
cause the needed information cannot be deduced from an execution profile [5]. A pro-
file gives an overall picture of the performance of the code, but can’t give information 
such as relative timings of events across processes. For example, a profile may show 
that a message-passing program is spending too much time in a receive call; however, 
trace data can reveal whether this is due to a “late sender” situation (the receiving 
process executes a blocking receive call in advance of the sending process executing a 
matching send call, causing the receiving process to waste time in the receive call), or 
if the send operation occurred on time, but network congestion caused the message to 
be received late.  

The current situation drives the need for new, more scalable approaches to event 
tracing. The necessary first step in such an effort is to gain a detailed understanding of 
the interactions between current approaches and typical runtime environments. In this 
paper we present the results of a series of experiments designed to identify and to 
quantify the overheads incurred when tracing the execution of an application on a rep-
resentative current architecture. Our particular focus is the runtime portion of the  
tracing process; scaling issues with merging processor-level traces, or post-mortem 
analysis and visualization tools, are outside of the scope of this study. Our goal was to 
characterize the scaling behavior by measuring the separate overheads of two distinct 
components: the overhead of just the trace instrumentation, and the overhead of flush-
ing the trace buffer contents to files. Breaking down the total trace overhead allows us 
to demonstrate that there is an important difference in the scaling characteristics be-
tween the instrumentation overhead and the writing overhead: the instrumentation 
overhead scales with the number of events, but the write overhead scales with the 
number of processes, even if the number of events remains fairly stable. Our results 
also demonstrate that behavior of the parallel file systems typically installed with 
high-end systems today is a significant factor in determining the performance of a 
tracing tool.  

2   Experiment Design 

Our experiments are designed to focus on separating runtime tracing overhead into 
two distinct components: the overhead of just the trace instrumentation, and the over-
head of flushing the trace buffer contents to files. We performed runs with and with-
out trace instrumentation (instr and noInstr); and with and without buffer flush to file 
enabled (write or noWrite), then calculated the overheads using the following metrics: 

• Wall clock time: MPI_Wtime, measured after MPI_Init and before 
MPI_Finalize. The following are not included in this measurement:  
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instrumentation overhead for tool setup, finalization, and function calls be-
fore/after the timer is started/stopped; and writing overhead for trace file 
creations, final trace buffer flushes before file closure, trace file closure, 
and, in the case of MPE, trace file merging. 

• Write overhead: Average total wall clock time of the write runs minus  av-
erage total wall clock time of the noWrite runs 

• Instrumentation overhead: Average total wall clock time of the runs that did 
not write the trace buffer minus average total wall clock time of the no-
Buff_noInstr_noWrite runs 

 
Given our goal of pushing to the current scaling limits of tracing, we wanted to 

measure an application with a very high rate of communication, so that trace records 
for a high number of MPI communication events would be generated. We picked 
SMG2000 (SMG) [1] from the ASC Purple Benchmark suite. SMG is characterized 
by an extremely high rate of messages: in our four process runs, SMG executed 
434,272 send and receive calls in executions that took approximately 15 seconds. For 
comparison, we also included another ASC Purple Benchmark, SPhot (SP) [18]. SP is 
an embarrassingly parallel application; in a four-process, single-threaded execution of 
512 runs with a total execution time of 350 seconds, the worker processes pass 642 
messages, and the master process passes 1926 messages. We configured both applica-
tions with one thread per MPI process. 

To vary the number of processes, we used weak scaling for the SMG runs. As we 
increased the number of processors, we altered the processor topology to P * 1 * 1, 
where P is the number of processors in the run, and kept the problem size per proces-
sor, nx * ny * nz, the same, thereby increasing the total problem size. We used both 
weak and strong scaling for the SP runs, referred to as SPW and SPS respectively.  
We configured these approaches by changing the Nruns parameter in the input file in-
put.dat, which controls the total amount of work done in a single execution. For 
strong scaling, we kept Nruns constant at 512 for all processor counts; for weak scal-
ing, we set Nruns equal to the number of MPI ranks.   

We used SMG’s built-in metrics to measure Wall Clock Time, summing the values 
reported for the three phases of the execution: Struct Interface, SMG Setup, and SMG 
Solve. We used the native SPhot wall clock time values for Wall Clock Time. Figure 
1 shows the scaling behavior of the uninstrumented applications. As expected, the 
execution time of SPS decreases with increasing numbers of processors, since we are 
keeping the total problem size constant. 

In some sense the choice of a particular tracing tool was irrelevant to our goals: we 
wanted to investigate a “typical” tracing tool. However, we wanted to avoid results 
that were in some way an artifact of one tool’s particular optimizations. Therefore, we 
used two different robust and commonly used tracing tools for our experiments: TAU 
and MPE.   

We built several versions of TAU version 2.15.1 [19]. For the noWrite versions we 
commented out the one line in the trace buffer flush routine of the TAU source that 
actually calls the write system call. We altered the number of records stored in the 
trace buffer between flushes, by changing the #define for TAU_MAX_RECORDS 
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Fig. 1. Performance of Uninstrumented Executions 

in the TAU source for each size and rebuilding, to test two different buffer sizes: 0.75 
MB (32,768 TAU events); 1.5 MB (default size for TAU; 65,536 TAU events); 3.0 
MB (131,02 TAU events); and 8.0 MB (349,526 TAU events). We used the default 
level of instrumentation for TAU, which instruments all function entries and exits. 

MPE (the MultiProcessing Environment (MPE2) version 1.0.3p1 [26]) uses the 
MPI profiling interface to capture the entry and exit time of MPI functions as well as 
details about the messages that are passed between processes, such as the communica-
tor used. To produce an MPE library that did not write the trace buffer to disk, we 
commented out three calls to write in the MPE logging source code. We also had to 
comment out one call to CLOG_Converge_sort because it caused a segmentation 
fault when there was no data in the trace files. This function is called in the MPE 
wrapper for MPI_Finalize, so it did not contribute to the timings reported in the 
SMG metrics. We altered the buffer sizes by changing the value of the environment 
variable CLOG_BUFFERED_BLOCKS. We also set the environment variable 
MPE_LOG_OVERHEAD to “no” so that MPE did not log events corresponding to 
the writing of the trace buffer. In MPE, each MPI process writes its own temporary 
trace file. During MPI_Finalize, these temporary trace files are merged into one 
trace file, and the temporary trace files are deleted. The temporary and merged trace 
files were written in CLOG2 format. We used two different buffer sizes: 1.5 MB (24 
CLOG buffered blocks), and 8.0 MB (default size for MPE; 128 CLOG buffered 
blocks). For SPW only, we altered the SPhot source to call MPE logging library rou-
tines to log events for all function calls, to correspond to the default TAU behavior 
more directly. We refer to this as “MPc” for MPE with customized logging. For the 
SPW MPc experiments, we disabled the trace file merge step in MPI_Finalize, 
because it became quite time consuming with larger trace files.  

We collected all of our results on MCR, a 1152-node Linux cluster at LLNL run-
ning the CHAOS operating system [8] (See Figure 2). Each node comprises two 2.4 
GHz Pentium Xeon processors and 4 GB of memory. All executions ran on the batch 
partition of MCR. The trace files, including any temporary files, were stored using the 
Lustre file system [3]. This platform is representative of many high end Linux clusters 
in current use. 

Each of our experiment sets consisted of thirty identical executions. 
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Fig. 2. Experiment Environment. The MPI processes in our experiments, represented by purple 
circles in the diagram, ran on a subset of the 1024 compute nodes of MCR. MPI communica-
tion between the processes traveled over the Quadrics QsNet Elan3 interconnect, shown by the 
purple dashed line. The I/O traffic for the Lustre file system, represented by the blue dotted 
line, also traveled over the Quadrics interconnect. Metadata requests went to one of two meta-
data servers (MDS), a fail-over pair. File data requests first went through the gateway nodes to 
an object storage target (OST), which handled completing the request on the actual parallel file 
system hardware. 

3   Results 

In this section, we present results from two studies: The first is an investigation of the 
relationship between system software and tracing efficiency; and the second is a study 
of tracing overheads as we scale up the number of application processes. These results 
are part of a larger investigation; full details are available as a technical report [14].  

3.1   Impact of Runtime System on Tracing Overheads 

We ran sets of executions of SMG with 4, 8, 16, 32, and 64 processes, measured with 
TAU, using three different buffer sizes: 0.75 MB (smBuff), 1.5MB (defBuff – the de-
fault setting for TAU), and 3.0 MB (bigBuff). Surprisingly, we found that there was a 
noticeable difference between bigBuff runs before and after a system software up-
grade. As shown in Figure 3, running under CHAOS 3.0 and Lustre 1.4.3.3 resulted in 
much higher overhead for the bigBuff runs than running under CHAOS 3.1 and Lustre 
1.4.5.8, regardless of whether or not the buffer contents were flushed to file. There 
were no statistically significant differences between the runs for the Struct Interface 
metrics, or for the smBuff_write case. However, the defBuff_write, defBuff_noWrite, 
bigBuff_write, and bigBuff_noWrite sets of runs all showed statistically significant 
differences due to system version. We performed a two-factor ANOVA test for each 
buffer size, with the two factors being the system differences and whether or not the 
trace buffer was written to disk.  The  results  showed a striking difference for the two 
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Fig. 3. Comparison of Executions with Different Buffer Sizes Showing System Differences. 
The chart shows the average values for the SMG Setup and Solve metrics. The y-axis is time in 
seconds. The legend shows the system configuration for each bar. The names that end in “_1” 
were run under CHAOS 3.0/Lustre 1.4.3.3. The names that end in “_2” were run under and 
CHAOS 3.1/Lustre 1.4.5.8. 

buffer sizes: the major contributor (> 90%) to variation between the defBuff runs was 
whether or not the trace buffer was written to disk, whereas the major contributor (> 
87%) for the bigBuff runs was the system differences. 

Operating system performance regression tests run before and after the upgrade 
showed no significant effect on OS benchmark performance: network and memory 
bandwidth, message passing performance, and I/O performance (Mike Haskell, per-
sonal communication, June 2006). We conclude that the performance differences we 
saw were due to changes to the Lustre file system. 

3.2   Scaling Behavior of Tracing Overhead 

In this study, we examined how the overheads of tracing change as the application 
scales. We ran sets of experiments with 32, 64, 128, 256, and 512 processes, traced 
with TAU and MPE, using buffer sizes of 1.5 and 8.0 MB. 

3.2.1   Event Counts and Trace File Sizes  
Here we describe the event counts generated while tracing the applications. Complete 
details can be found in the technical report [14]. For SMG, the counts for TAU and 
MPE exhibit similar trends, but are different by roughly an order of magnitude. As the 
numbers of processors double, the per-process event counts and trace data written by 
each process increase slightly (in part due to increased communication), while the to-
tal number of events and resulting trace file sizes double. For SPS, there are markedly 
different results between TAU and MPE; the event counts differ by six orders of 
magnitude. This is because with TAU we are measuring all function entries and exits, 
whereas with MPE we measure only MPI activity. For both TAU and MPE, doubling 
the number of  processors  results  in  the per-process event counts decreasing by half.  
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Fig. 4. Performance of Instrumented Executions. Here we show the total execution time for 
SMG measured with TAU and MPE, and SPhot measured with TAU. The colors in the bars in-
dicate the time spent in application code, time in trace instrumentation, and time writing the 
trace buffer. Each bar in a set represents the average behavior of executions with 32, 64, 128, 
256, and 512 processes, respectively. The set labels include (top to bottom): the benchmark 
name, the measurement tool, and the buffer size. 

For TAU only, the total event count and resulting trace file sizes remain constant, 
whereas for MPE, the maximum per-process event count, the total event count, and 
resulting trace file sizes increase slightly. For SPW, the counts for TAU and MPc are 
nearly identical, while the counts for MPE differ. Again, this is because of differences 
in what was measured by the tools. The total event count and trace file sizes for MPE 
are roughly six orders of magnitude less than those of TAU and MPc. 

We use this information to derive an expectation for tracing overheads for the dif-
ferent applications and tools. For the weakly-scaled SMG and SPW, we expect that 
the overheads of tracing would remain relatively constant with increasing numbers of 
processors because the amount of data being collected and written per-process re-
mains relatively constant. However, for SPW with MPE, we expect to see very little 
overheads due to the small amount of data collected. For SPS and TAU, we expect the 
overheads of tracing to decrease with increasing numbers of processors, because the 
amount of data being collected and written per-process decreases with increasing 
processes. For SPS with MPE, we expect to see very little overhead because of the 
small amount of data collected. 

3.2.2   Execution Time 
Figure 4 shows the average wall clock times for our experiments broken down into 
time spent in application code, trace instrumentation, and writing the trace buffer. The 
graph on the left shows the measurements for SMG with TAU and MPE, and SPW 
with TAU and MPc. In each run set, we see the same trend; as the number of proc-
esses increases, the total execution time increases, largely due to the time spent  
writing the trace buffer. The time spent in the application code and in trace instrumen-
tation remains relatively constant. The graph on the right shows the execution times 
of SPS with TAU. Here, as the numbers of processes increase, the total execution 
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time decreases. However, even though the time spent in writing the trace buffer de-
creases with increasing processors, it does not decrease as rapidly as the time spent in 
instrumentation or application code. For SPS and SPW with MPE, the differences be-
tween the write and noWrite executions were indistinguishable due to the very small 
amounts of data collected and written. 

We computed the percentage contribution to variation using three-factor ANOVA, 
with the buffer size, the number of processes, and whether or not the trace buffer was 
written to disk as the factors [14]. In general, there was quite a bit of variation in the 
running times of the executions that wrote the trace buffer, which explains the high 
contribution of the residuals. Sources of variability in writing times for the different 
executions include: contention for file system resources, either by competing proc-
esses in the same execution, or by other users of Lustre; contention for network  
resources, either by other I/O operations to Lustre, or by MPI communication; and 
operating system or daemon interference during the write. Any user of this system 
gathering trace data would be subject to these sources of variation in their measure-
ments. For SMG measured with TAU and MPE, the largest contributing factor was 
whether or not the buffer was written, at 33% and 26%, respectively. The largest con-
tributing factor for SPS with TAU was the number of processes in the run (19%), fol-
lowed closely by whether or not the trace buffer was written (14%). SPS with MPE 
had the number of processes as the dominating factor at 51%. SPW with TAU and 
MPc both had writing the trace buffer as the largest contributor, at 34% and 24%, 
while SPW with MPE had the number of processes as the largest, at 81%. The differ-
ences in the dominating factors for the SP runs with MPE are attributed to the com-
paratively very small amount of data collected. 

3.2.3   Execution Time vs Event Counts  
Table 1 shows the correlation of the average total wall clock time with the maximum 
event count over all ranks. SPS with MPE had a relatively weak negative correlation 
with the maximum event count, because as the process count increases, the number of 
messages that the master process receives increases, and the execution time decreases, 
giving a negative correlation. In general, executions that did not write the trace buffer 
to disk had a higher correlation with the event count than did the executions that did 
write the trace buffer to disk. 

Figure 5 shows the overheads of writing and instrumentation as the maximum 
number of events in a single rank increases. For SMG with TAU and MPE, we see a 
clear pattern.  The instrumentation overhead appears to vary linearly with the number  
 

Table 1. Correlation of Total Wall Clock Time with Maximum Event Count in a Rank 

 SMG SPS SPW 
Buffer Sz Write? TAU MPE TAU MPE TAU MPE-C MPE 
1.5 yes 0.96 0.85 0.91 -0.78 0.69 0.80 0.98 
8.0 yes 0.97 0.90 0.95 -0.81 0.61 0.76 0.98 
1.5 no 0.98 0.98 0.99 -0.70 0.81 0.55 0.96 
8.0 no 0.98 0.98 0.99 -0.79 0.74 0.77 0.95 
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Fig. 5. Tracing Overhead Behavior with Maximum Event Count in a Single Rank. The groups 
of bars from left to right in the charts represent different processor counts: for SMG they repre-
sent 32, 64, 128, 256, and 512 processes; for SPS they represent 512, 256, 128, 64, and 32 
processes; for SPW, they represent 32, 256, 128, 64, and 512 processes. 

of events, while the overhead of writing the trace increases much more rapidly, and 
does not appear to have a linear relationship with the event count. The behavior of 
SPS is different, because in this application, as the number of events increases, the 
number of processes decreases; however, the instrumentation overhead still appears to 
have a linear relationship with the event count. The write overhead is high at higher 
event counts, but also at the low event counts, when the number of writing processes 
is higher. For SPW, the instrumentation overhead is relatively constant, as expected 
since the number of events does not change much between the run sets. However, the 
writing overhead fluctuates widely. The reason for this is that the maximum event 
count in a rank does not monotonically increase or decrease with increasing proces-
sors as it does for SMG or SPS. 

4   Related Work  

Because perturbation is intrinsic to measurement [6], research focuses on techniques 
to lower or limit the overheads, remove the overheads in the resulting data, and to 
measure and model the overheads. 

Researchers have investigated methods to lower the overheads of tracing 
[11],[15],[16],[19],[24]. The Event Monitoring Utility (EMU) was designed to allow 
the user to adjust how much data was collected in each trace record, thereby altering 
the amount of overhead in each measurement [11]. The authors found the writing 
overhead to be the largest monitoring overhead. TAU [19] addresses instrumentation 
overhead by allowing users to disable instrumentation in routines that are called very 
frequently and have short duration. TAU also includes a tool that uses profile data to 
discover which functions should not be instrumented, and feeds this information to 
the automatic source instrumentor.  
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Several researchers have developed techniques to attempt to remove overheads 
from the reported data [4],[7],[23],[22],[25]. Yan and Listgarten  [25] specifically ad-
dressed the overhead of writing the trace buffer to disk in AIMS by generating an 
event marker for these write operations and removing the overhead in a post-
processing step.  

Overhead studies can be found in the literature, although their focus and content 
differ from ours. Chung et al [2] evaluate several profiling and tracing tools on BG/L 
in terms of total overhead and write bandwidth, and note that the overheads of tracing 
are high and that the resulting trace files are unmanageably large. They suggest that 
the execution time overhead is substantially affected by generation of trace file out-
put, but provide no measurements for their claim. 

Two research efforts have developed models of the overheads in measurement sys-
tems. Malony et al. developed a model to describe the overheads of trace data and de-
scribe the possible results of measurement perturbation [13], then extended it to cover 
the overheads of SPMD programs [17]. They noted, as we do, that the execution time 
of traced programs was influenced by other factors than just the events in each proc-
essor independently. However, they did not explore this further. Waheed et al. [21] 
explored the overheads of trace buffer flushing and modeled two different flushing 
policies [20]. They found that the differences between the policies decreased with in-
creased buffer sizes.  

A primary difference between our results and prior work is that we identify a pre-
viously unexplored scalability problem with tracing. To the best of our knowledge, 
while others have noted that the largest overhead of tracing is writing the data, none 
have shown how this overhead changes while increasing the scale of application runs. 

5   Conclusions and Future Work 

In our scaling experiments, the execution times of the noWrite runs tended to scale 
with the maximum number of events.  However, the execution times of the write runs 
did not scale as strongly with the number of events, and tended to scale with increas-
ing numbers of processors, possibly due to contention caused by sharing the file sys-
tem resource. Our results suggest that the trace writes will dominate the overheads 
more and more with increasing numbers of processes. They indicate that the trace 
overheads are sensitive to the underlying file system. They also imply that scaling by 
increasing the number of threads, which does not increase the total number of trace 
buffers, will primarily scale up the overheads associated with instrumentation, as op-
posed to writing, while increasing the number of trace buffers will quickly drive up 
the cost of writing. 

Our research proceeds in two directions:  modeling and data reduction.   
Previously developed models of the overheads of tracing make some simplifying 

assumptions and do not account for the overheads we saw in our experiments. The 
early work done by Malony et al. assumes that in the case of programs that do not 
communicate, the perturbation effect for each processor is only due to the events that 
occur on that processor [17]. Our results dispute this assumption. If the application we 
used did not contain communication, the times for writing the trace file to disk could 
have been extended due to resource contention on the network by the other processes 
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trying to write the trace file to disk, and could have increased with increasing numbers 
of processes sharing the resource. The model presented by Waheed et al. also does not 
account for this interaction when modeling the buffer flushing policies [20] – instead, 
they assume a constant latency for all writes of the trace buffer. We are developing a 
new model that accounts the characteristics of high end clusters and parallel file  
systems. 

Realization of a scalable approach to tracing will require an overall reduction in the 
total amount of data.  Data reduction is needed not only to reduce runtime overhead, 
but also to address the difficulties of storing and analyzing the resulting files. We are 
currently incorporating the results of our measurement studies into the design of an 
innovative approach to scalable event tracing. 
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Abstract. Checkpointing techniques are usually used to secure the ex-
ecution of sequential and parallel programs. However, they can also be
used in order to generate automatically a parallel code from a sequential
program, these techniques permitted to any program being executed on
any kind of ditributed parallel system. This article presents an analysis
and a modelisation of an innovative technique — CAPE — which stands
for Checkpointing Aided Parallel Execution. The presented model pro-
vides some hints to determine the optimal number of processors to run
such a parallel code on a distributed system.

1 Introduction

Radical changes in the way of taking up parallel computing has operated during
the past years, with the introduction of cluster computing [1], grid computing [2],
peer-to-peer computing [3]... However, if platforms have evolved, development
tools remain the same. As an example, HPF [4], PVM [5], MPI [6] and more
recently OpenMP [7] have been the main tools to specify parallelism in programs
(especially when supercomputers were the main issue for parallel computing),
and they are still used in programs for cluster and grid architectures. Somehow,
this shows that these tools are generic enough to follow the evolution of parallel
computing. However, developers are still required to specify almost every infor-
mation on when and how parallel primitives (for example sending and receiving
messages) shall be executed.

Many works [8,9] have been done in order to automatically extract parallel
opportunities from sequential programs in order to avoid developers from hav-
ing to deal with a specific parallel library, but most methods have difficulties to
identify these parallel opportunities outside nested loops. Recent research in this
field [10,11], based on pattern-maching techniques, allows to substitute part of a
sequential program by an equivalent parallel subprogram. However, this promis-
ing technique must be associated an as-large-as-possible database of sequential
algorithm models and the parallel implementation for any target architectures
for each of them.

At the same time, the number of problems that can be solved using parallel
machines is getting larger everyday, and applications which require weeks (or

R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 707–717, 2007.
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months, or even more...) calculation time are more and more common. Thus,
checkpointing techniques [12,13,14] have been developed to generate snapshots of
applications in order to be able to resume the execution from these snapshots in
case of problem instead of restarting the execution from the beginning. Solutions
have been developed to resume the execution from a checkpoint on the same
machine or on a remote machine, or to migrate a program in execution from one
machine to another, this program being composed of a single process or a set of
processes executing in parallel.

Through our researches, we try to address a different problem. Instead of se-
curing a parallel application using checkpointing techniques, checkpointing tech-
niques are used to introduce parallel computing inside sequential programs, i.e.
to allow the parallel execution of parts of a program for which it is known these
parts can be executed concurrently. This technique is called CAPE which stands
for Checkpointing Aided Parallel Execution. It is important to note that CAPE
does not detect if parts of a program can be executed in parallel. We consider
it is the job of the developer (or another piece of software) to indicate what can
be executed in parallel. CAPE consists in transforming an original sequential
program into a parallel program to be executed on a distributed parallel system.
As OpenMP already provides a set of compilation directives to specify parallel
opportunities, we decided to use the same in order to avoid users from learning
yet another API. As a result, our method provides a distributed implementation
of OpenMP in a very simple manner. As a result, CAPE is a good alternative
to provide a distributed implementation of OpenMP in a very simple manner.

Moreover, CAPE provides three main advantages. First, there is no need
to learn yet another parallel programming environment or methodology as the
specification of parallel opportunities in sequential programs is performed using
OpenMP directives. Second, CAPE inherently introduces safety in the execu-
tion of programs as tools for checkpointing are used to run concurrent parts of
programs in parallel. Third, more than one node is used only when necessary,
i.e. when a part of the program requires only one node to execute (for example
if this part is intrinsincly sequential), only one node is used for execution.

Other works have presented solutions to provide a distributed implementa-
tion of OpenMP [15]. Considering that OpenMP has been designed for shared-
memory parallel architectures, the first solution was consisting in executing
OpenMP programs on top of a distributed shared memory based machine [16].
More recently, other solutions have emerged, all aiming at transforming OpenMP
code to other parallel libraries, like Global Arrays [17] or MPI [18].

This article aims at presenting the model we developed to analyze the be-
haviour of CAPE implementations. Using this model, we determine the optimal
number of nodes one should use to minimize the execution time of a paralle
program based on CAPE. The article is organized as follows. First, we present
CAPE, our method to make a parallel program from a sequential program and
demonstrate that if Bernstein’s conditions are satisfied then the execution of
a program using CAPE is equivalent to the sequential execution of the same
program. Then, we introduce a model to describe the different steps involved
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in the execution of a program with CAPE; from the temporal equation derived
from the model, we determine the optimal number of processors one should use
to minimize the execution time of a given program.

2 CAPE

CAPE, which stands for Checkpointing Aided Parallel Execution, consists in
modifying a sequential program (for which parts are recognized as being exe-
cutable in parallel) so that instead of executing each part the one after the other
one on a single machine, parts are automatically spread over a set of machines
to be executed in parallel. In the following, we will just present the principle of
CAPE to make the rest of the article readable. A deeper presentation is available
in [19,20], which includes a proof of the concept.

As lots of works are on the way for distributing a set of processes over a
range of machines, in the following we consider that another application (like
Globus [21], Condor [22] or XtremWeb [23]) is available to start processes on
remote nodes and get their results from there. In this section, this application
is called the “dispatcher”. CAPE is based on a set of six primitives:

– create ( filename ) stores in file “filename” the image of the current process.
There are two ways to return from this function: the first one is after the
creation of file “filename” with the image of the calling process; the second
one is after resuming the execution from the image stored in file “filename”.
Somehow, this function is similar to the fork ( ) system call. The calling
process is similar to the parent process with fork ( ) and the process resuming
the execution from the image is similar to the child process with fork ( ).
Note that it is possible to resume the execution of the image more than once;
there is no such equivalence with the fork ( ) system call. The value returned
by this function has a similar meaning as those of the fork ( ) system call. In
case of error, the function returns -1. In case of success, the returned value
is 0 if the current execution is the result of resuming its execution from the
image and a strictly positive value in the other case (unlike the fork ( )
system call, this value is not the PID of the process resuming the execution
from the image stored in the file).

– diff ( first, second, delta ) stores in file “delta” the list of modifications to
perform on file “first” in order to obtain file “second”.

– merge ( base, delta ) applies on file “base” the list of modifications from file
“delta”.

– restart ( filename ) resumes the execution of the process which image was
previously stored in “filename”. Note that, in case of success, this function
never returns.

– copy ( source, target ) copies the content of file “source” to file “target”.
– wait for ( filename ) waits for any merges required to update file “filename”

to complete.
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The following presents two cases where CAPE can be applied automatically
with OpenMP: the first case is the “parallel sections” construct and the second
case is the “parallel for” construct.

In order to make the piece of code in Fig. 1 and Fig. 2 readable, operations
for both the modified user program and the dispatcher have been included, and
operations executed by the dispatcher are emphasized. Operations performed
by the dispatcher are initiated by the modified user program while sending a
message to the dispatcher. Operations are then performed as soons as possible
but asynchronously regarding the modified user program.

Error cases (especially when saving the image of the current process) are not
represented in Fig. 1(b). In some cases, a test is performed just after the creation
of a new image in order to make sure it is not possible to resume the execution from
the image direcly. This kind of image is used to evaluate variables updated by a
specific piece of code and its execution is not intended to be effectively resumed.

2.1 The “Parallel for” Construct

In the case of for loops (see Fig. 1(a) and Fig. 1(b)), the first step consists in
creating an “original” image for both having a reference for the “final” image

# pragma omp parallel for
for ( A ; B ; C )

D

(a) OpenMP

→

parent = create ( original )
if ( ! parent )

exit
copy ( original, target )
for ( A ; B ; C )

parent = create ( beforei )
if ( parent )

ssh hostx restart ( beforei )
else

D
parent = create ( afteri )
if ( ! parent )

exit
diff ( beforei, afteri, deltai )
merge ( target, deltai )
exit

parent = create ( final )
if ( parent )

diff ( original, final, delta )
wait for ( target )
merge ( target, delta )
restart ( target )

(b) CAPE

Fig. 1. Templates for “Parallel for”
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and having a basis for the “target” image which is used at the end to resume the
execution of the program sequentially after having executed the whole loop in
parallel. Thus, once created, the “original” image is copied to a “target” image
which will be updated step by step using deltas after the execution of each loop
iteration.

The second step consists in executing loop iterations. After executing instruc-
tion A and checking condition B is true, a “before” image is created. When
returning from function create ( before ), two cases are possible: either the func-
tion returns after creating the image, or the function returns after resuming from
the image. In the first case, the dispatcher is asked to restart the image on a
remote part and then the execution is resumed on the next loop iteration, i.e.
executing C, evaluating B... In the second case, the loop iteration is executed
and another image is saved in order to determine what are the modifications
involved by the execution of this loop iteration (these modifications are then
merged asynchronously to the “target” image by the dispatcher). Once all loop
iterations have been executed, the third step consists in creating the “final”
image which difference from the “original” image is used in order to set in im-
age “target” modifications involved when executing C and evaluating B for the
last time. Moreover, it ensures that the current frame in the execution stack
is correct. This is the reason why it is necessary to wait for all other merges
to be performed before including the one from “final”. When restarting image
“target”, the execution resumes after create ( final ). As the process resumes its
execution from an image, the last four lines in Fig. 1(b) are not executed the
second time.

# pragma omp parallel sections
{

# pragma omp section
P1

# pragma omp section
P2

}

(a) OpenMP

→

parent = create ( original )
if ( parent )

copy ( original, target )
ssh hostx restart ( original )
P1

parent = create ( after1 )
if ( parent )

diff ( original, after1, delta1 )
merge ( target, delta1 )
wait for ( target )
restart ( target )

else
P2

parent = create ( after2 )
if ( parent )

diff ( original, after2, delta2 )
merge ( target, delta2 )

(b) CAPE

Fig. 2. Templates for “Parallel sections”
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2.2 The “Parallel Sections” Construct

Let P1 and P2 be two parts of a sequential program that can be executed concur-
rently.Fig. 2(a)presents the typical codeone shouldwritewhenusingOpenMPand
Fig. 2(b) presents the code to substitute to run P1 and P2 in parallel with CAPE.

The first step consists in creating an “original” image used to resume the
execution on a distant node, calculate the delta for each part executed in parallel
and build the “target” image to resume the sequential execution at the end.

The second step consists in executing parts and generating deltas. Thus, the
local node asks the dispatcher to resume the execution of the “original” image on
a distant node. Parts are executed, two “after” images are generated to produce
two “delta” files; then, these “delta” files are merged to the “target” image;
all these operations are executed concurrently. The main difficulty here is to
make sure that both the current frame in the execution stack and the set of
processor registers are consistent. However, this can be easily achieved using a
good checkpointer.

The last step consists in making sure all “delta” files have been included in the
“target” image and then restarting the “target” image in the original process.

3 Parallel Model

This section presents an exact analysis of the model of our distributed imple-
mentation of OpenMP using CAPE. We are interested in the optimal number of
processors for which the processing time is minimal. The model presented below
has been done on modelling the temporal equations for each state of the model
under various assumptions regarding the master-slave paradigm.

In our model, there are two kinds of processors. The master is in charge of
distributing and collecting the data and the slaves are devoted to process the
data. By convention, the master node is allocated process #0 and the slaves are
allocated process number 1 to P . As a result, the total number of processes is
P + 1.

Let Δ
′
(resp. Δ

′′
) be the amount of memory sent to (resp. received from) the

slaves. In order to simplify the model, it is considered that these amounts of
data are the same for all slaves. This is effectively the case for Δ

′
as the image

of the original process do not change a lot from one loop iteration to another; we
also consider it is the case for Δ

′′
considering data and processes are equitably

shared among slaves processes.
In the model, let C be the time to create a checkpoint, S be the time to

send a message, N be the network latency (N is inversely proportional to the
throughput) and I be the time to receive a message to update the local image
of the process. Finally, let t1 be the sequential execution time and tP be the
execution time for each of the P processors. Considering that the amount of
work is equitably shared among processors, tP = t1

P .
Fig. 3 presents the different steps involve in the processing of the work through

several processes and the relationship between the master and the slaves. Let
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Fig. 3. The parallel model

Πp,e be the time when processor p (p ∈ [0, P ]) reaches state e. As a result, with
our model, we want to find the optimal value for P that makes ΠP,9 minimum.

From the analysis of the behaviour of our implementation of OpenMP for
distributed memory architecture with CAPE and in accordance to Fig. 3, we
can define ∀p ∈ [0, P ] the temporal equations (1) to (10).

Πp,0 = 0 (1)

Πp,1 = Πp,0 + CΔ
′

(2)

Πp,2 = Πp−1,2 + SΔ
′

(3)

Πp,3 = Πp,2 + NΔ
′

(4)

Πp,4 = Πp,3 + IΔ
′

(5)
Πp,5 = Πp,4 + tP (6)

Πp,6 = Πp,5 + CΔ
′′

(7)

Πp,7 = Πp,6 + SΔ
′′

(8)

Πp,8 = max(Πp,7 + NΔ
′′
, Πp−1,9) (9)

Πp,9 = Πp,8 + IΔ
′′

(10)

Equations (3) and (9) can be normalized with: Π0,2 = Π1,1 and Π0,9 = ΠP,2.
In fact, both relations are due to the fact that all messages from the master must
have been sent to the slaves before the master can receive the returning data
from the slaves.

The set of equations from (1) to (10) can be reduced to the following ones:

Πp,2 = (C + pS + N)Δ
′

Πp,7 = Πp,2 + (N + I)Δ
′
+ tP + (C + S)Δ

′′

Πp,9 = max(Πp,7 + NΔ
′′
, Πp−1,9) + IΔ

′′
.
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4 Program Execution Time

The time needed to perform the execution of a program with CAPE is given by
ΠP,9, ie. it is required the last processor has finished its work and returned it
to the master node. In the following, we provide an expression for ΠP,9 with no
recursion and that do not depend upon the value of p.

First, we need to determine the value for ΠP,8. From (9) and (10), we can see
that the value for ΠP,8 can be expressed using the following recursion:

ΠP,8 = max
{

ΠP,7 + NΔ
′′

ΠP−1,8 + IΔ
′′ (11)

After replacing the value for ΠP−1,8 by the corresponding expression provided
for ΠP,8 in (11), we obtain (12) for ΠP,8.

ΠP,8 =
P−2
max
i=0

{
ΠP−i,7 + (N + iI)Δ

′′

Π1,8 + (P − 1)IΔ
′′ (12)

Then, Π1,8 can be substituated its value using (9). After reduction, we have
the following expression for Π1,8:

ΠP,8 =
P−1
max
i=0

{
ΠP−i,7 + (N + iI)Δ

′′

ΠP,2 + (P − 1)IΔ
′′

After performing a variable change (P − i → i), ΠP−i,7 and ΠP,2 are substit-
uated by their respective values. From the new expression for Π1,8, Π1,9 can be
provided ∀p ∈ [0, P ] using (10):

ΠP,9 = max
{

(C + pS + N + I)Δ
′
+ t1

P + (C + S + N + (P − p + 1)I)Δ
′′

(C + PS)Δ
′
+ PIΔ

′′

(13)
The set of expressions that depends upon the value of p in (13) can be reduced

to two equations only. In fact, while taking p as a variable, this set of equations
can be written:

(SΔ
′ − IΔ

′′
)p + (C + N + I)Δ

′
+

t1
P

+ (C + S + N + (P + 1)I)Δ
′′

(14)

This is the equation of an affine function which maximum depends on the coeffi-
cient of p. As a matter of fact, we have two different interpretations for expression
(14) according to the sign of SΔ

′ − IΔ
′′
. If SΔ

′
< IΔ

′′
, expression (14) is max-

imized when p = 0; if SΔ
′
> IΔ

′′
, expression (14) is maximized when p = P .

As result, (15) for ΠP,9 does not depend upon the value of p and is not
recursive.

ΠP,9 = max
{

max(SΔ
′
, IΔ

′′
)P + t1

P + (C + N + I)(Δ
′
+ Δ

′′
) + SΔ

′′

(SΔ
′
+ IΔ

′′
)P + CΔ

′ (15)
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5 Optimal Number of Nodes

In the previous sections, we have defined a model to evaluate the performance
of the execution of a parallel program based on the framework developed with
CAPE and we have determine the time needed to perform the execution of
a program. In this section, we use the model defined above to determine the
optimal number of processors that one should use in the parallel machine in
order to minimize the execution time of the parallel program.

Let P ∗ be the optimal number of processors that minimizes the execution
time, ie. the number of processors that satisfies the following expression:

ΠP∗,9 ≤ ΠP,9 ∀P
Let f1(P ) and f2(P ) be the first and the second expressions in (15) respec-

tively, ie:

f1(P ) = max(SΔ
′
, IΔ

′′
)P +

t1
P

+ (C + N + I)(Δ
′
+ Δ

′′
) + SΔ

′′
(16)

f2(P ) = (SΔ
′
+ IΔ

′′
)P + CΔ

′

The derivation in P of f1 leads to the following expression:

f ′
1(P ) = max(SΔ

′
, IΔ

′′
) − t1

P 2
(17)

One can demonstrate that there are only two zeros for this expression. More-
over, only one of both resides in R+. This means that there is just one inflection
point in R+ for f1. As f2 is an affine function and as the coefficient for P in this
expression is bigger than the one in f1, there is one and only one intersection
point between f1 and f2. As a result, the maximum for (15) is provided by f1

before the intersection of both expressions and is provided by f2 in the other
case. In a more formal way:

P ∗ = min
{

f1 = f2

f ′
1 = 0

In order to determine the intersection of both expressions, we compute f1(P )−
f2(P ) = 0 which leads to expression (18).

min(SΔ
′
, IΔ

′′
)P 2 −

[
(C + S)Δ

′′
+ (N + I)(Δ

′
+ Δ

′′
)
]
P − t1 = 0 (18)

Note that the maximum in (16) has been transformed into a minimum in (18)
using the following relation:

x + y = min(x, y) + max(x, y) ∀x, y

Equation (18) is a second degree equation in P . Considering that C, S, N , I,
Δ

′
, Δ

′′
and t1 are all positive constants, the associated discrimant is necessarily

strictly positive and there is one and only one solution in R+.
In order to determine the value of P ∗ in the second case, we have to determine

the zero of f ′
1(P ) = 0. From (17), f ′

1(P ) = 0 can be transformed into a second
degree equation of the form ax2 + b = 0 which provides a single obvious solution
in R+.
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6 Conclusion

This article is based on an original way of transforming a sequential program
into a parallel program, CAPE for Checkpointing Aided Parallel Execution,
that uses checkpointing techniques rather than shared memory or any message-
passing library. Then, we introduced a model to evaluate the performane of
the distributed execution. In order to do so, we defined the parameters of the
model and provided the temporal equations. Finally, we determined the optimal
number of processors that should be used to minimize the execution time.

In the current model, we considered that the time spent by each slave processor
is the same on all slaves. In the future, we will consider that these time may vary
a little bit from one process to another.
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Abstract. To increase the scale and performance of high-performance
computing (HPC) applications, it is common to distribute computation
across multiple processors. Often without realizing it, file I/O is par-
allelized with the computation. An implication of this is that multiple
compute tasks are likely to concurrently access the I/O nodes of an
HPC system. When a large number of I/O streams concurrently access
an I/O node, I/O performance tends to degrade, impacting application
execution time. This paper presents experimental results that show that
controlling the number of file-I/O streams that concurrently access an
I/O node can enhance application performance. We call this mechanism
file-I/O stream throttling. The paper (1) describes this mechanism and
demonstrates how it can be implemented either at the application or
system software layers, and (2) presents results of experiments driven by
the cosmology application benchmark MADbench, executed on a vari-
ety of computing systems, that demonstrate the effectiveness of file-I/O
stream throttling. The I/O pattern of MADbench resembles that of a
large class of HPC applications.

1 Introduction

Many parallel high-performance computing (HPC) applications process very
large and complex data sets. Often the file I/O needed to store and retrieve
this data is parallelized along with the computation. This generates multiple
I/O streams (e.g., one for each MPI task) that concurrently access the system’s
I/O nodes. Because the number of I/O nodes usually is much smaller than the
number of compute processors, even when only one such application is executing
on a system, often an I/O node is concurrently accessed by multiple streams.
Due to the advent of multicore processors, as the number of processors in next-
generation systems grows to solve larger problem sizes and as the ratio of com-
pute processors to I/O nodes increases, the number of I/O streams concurrently
accessing an I/O node is destined to increase. Currently, this ratio is greater
than 40 for some high-end systems [1].
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In some cases, e.g., when the I/O nodes are RAIDs, I/O parallelization can
result in improved I/O performance. But, as indicated in [2] and as confirmed
by our experimental results, I/O performance drops rather precipitously in many
cases. When the number of I/O streams exceeds a certain threshold, application
execution times are impacted negatively – this is due to events that prevent full
I/O utilization, e.g., seek and rotational latencies, failure to take advantage of
prefetching, and/or insufficient I/O request frequency.

For HPC applications similar to MADCAP CMB [3], traditional paralleliza-
tion of file I/O can result in this behavior, which will be exacerbated in next-
generation systems. The challenge is, given a workload, schedule I/O so that
as much I/O-node bandwidth as possible is realized. Although this paper does
not address this challenge optimally, it describes and gives evidence of a po-
tential solution, i.e., dynamic selection of the number of concurrently-active,
synchronous, file-I/O streams. We call this control mechanism file-I/O stream
throttling.

The potential effectiveness of file-I/O stream throttling is demonstrated in
Figure 2(a). The figure compares MADbench1 execution times when one of 16,
four of 16, eight of 16, and 16 of 16 MPI tasks generate I/O streams that concur-
rently access an I/O node. The depicted experimental results show that careful
selection of the number of concurrently-active MADbench file-I/O streams can
improve application execution time: in this case, the optimal number of I/O
streams is four of 16. In comparison, with one of 16 or 16 of 16 (default paral-
lelization), execution time increases by 18% and 40%, respectively.

The paper describes this potential I/O performance problem in detail, shows
its impact on MADbench, which represents the I/O behavior of a large applica-
tion class, presents the file-I/O stream throttling mechanism, and demonstrates
the effect of this mechanism on I/O performance and application execution time.
I/O-stream throttling can be performed at the application or system software
layers. The former is achieved by having the application code specify the num-
ber of streams concurrently accessing an I/O node; this is the method that is
incorporated in the MADbench code. Throttling via system software could be im-
plemented by stream-aware I/O schedulers or file-system policies. The strengths
and weaknesses of each method are described in the paper.

The remainder of the paper is organized as follows. Section 2 describes related
work, Section 3 describes two different stream throttling methods, and Section 4
describes MADbench. Section 5 presents the systems used for experimentation,
while the results and their implications are presented in Section 6. Section 7
concludes the paper.

2 Related Work

There are several studies that concentrate on optimizing the parallel file-I/O per-
formance of HPC applications by providing libraries and parallel file systems, and

1 MADbench is a benchmark that represents the I/O behavior of the MADCAP CMB
application.
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exploiting advancements in storage technologies [4,5,6]. Other optimization tech-
niques include exploiting access patterns to assist file-system prefetching, data
sieving, and caching [7], overlapping computation with I/O [8], and employ-
ing asynchronous prefetching [9]. The latter technique is particularly suitable
for HPC applications, which generally have very regular data access patterns
that facilitate the identification of the data needed for subsequent computa-
tions. Given sufficient disk system bandwidth, prefetching may minimize the
effect of I/O-node performance on application performance. However, prefetch-
ing too aggressively increases memory traffic and leads to other performance
problems [10]. In addition, as mentioned above, when bandwidth is limited, the
problem of multiple streams concurrently accessing an I/O node is likely; this
can result in a loss of the benefits of prefetching.

Our contribution differs from these methods but is complementary to the data
sieving, data prefetching, and caching approaches. The focus of our work is on
runtime control of the number of file-I/O streams that concurrently access an
I/O node. Such control can minimize expensive disk-head positioning delays and,
thus, increase both I/O and application performance.

3 File-I/O Stream Throttling

File-I/O stream throttling controls the number of synchronous I/O streams con-
currently accessing the I/O system. In general, it must consider various appli-
cation characteristics, e.g., request characteristics (sequential or random) and
system characteristics, e.g., the numbers of I/O and compute nodes, numbers of
processors and tasks on a compute node, storage system configuration, compute-
node memory size, and application data size. The large number of characteristics
and the complexities associated with them make dynamic I/O-stream throttling
a challenging task, one that has not yet been accomplished.

However, many HPC applications (see, e.g., [3,11,12]) have sequential data
layouts, where each requested data stream is sequentially accessed from the
storage system, and tend to read in an iterative fashion. For such data layouts
and read behaviors, the number of streams that should concurrently access an

(a) Sequential stream (b) Concurrent streams

Fig. 1. Seek behavior of the disk head when using one or multiple I/O streams
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I/O node is dependent only on the I/O node configuration; the complexities
associated with application characteristics need not be considered. In this case,
given a single-disk I/O node, I/O performance can be enhanced by minimizing
expensive disk-head positioning delays; our experiments demonstrate this. For
example, consider an application with a computational loop that is iterated
multiple times by four MPI tasks that access unique files stored in an interleaved
fashion on a shared disk. When all four streams concurrently access the disk with
no coordination the disk head continuously seeks between files; this behavior is
illustrated in Figure 1(b). In contrast, as shown in Figure 1(a), when the number
of streams that concurrently access the disk is one (the four streams access the
disk one after another) the disk head hardly seeks. In this particular example, one
stream results in the best performance because the storage system is one simple
disk, the bandwidth of which is well utilized by the one I/O stream. In contrast,
an advanced storage system with multiple disks needs multiple streams to utilize
the available bandwidth. Thus, one should not conclude from this example that
using one stream is the best for all storage systems.

3.1 Application-Layer Stream Throttling

One way to change (throttle) the number of streams concurrently accessing an
I/O node is to wrap the parallelized I/O routines with code that implements a
token-passing mechanism [3] – this approach is used by some HPC applications,
including MADbench. If one token is used by all MPI tasks then access to storage
is sequentialized. At the other extreme, if the number of tokens is equal to the
number of MPI tasks, then all I/O streams can concurrently access storage.

The token-passing approach has two problems. First, it involves changes to
the application code, which often is targeted to run on various compute- and
I/O-node configurations. As shown in this paper, the selection of the number of
concurrently-active I/O streams depends on application I/O behavior and sys-
tem characteristics. Thus, selecting the number requires extensive knowledge of
both, as well as the ability to develop configuration-specific code that is tailored
to the various systems. As demonstrated in [3], it is not impossible to throttle
the number of I/O streams at runtime within an application. However, the use
of higher-level I/O libraries such as MPI-I/O can make this very challenging.

Second, I/O throttling is applicable only to synchronous I/O streams – not
to asynchronous I/O streams. A synchronous request blocks the execution of
the requesting task until it is satisfied by the underlying I/O system, while an
asynchronous request does not block task execution. In fact, asynchronous re-
quests often are queued and delayed in the system’s underlying memory buffer
cache and scheduled to the relatively slower I/O system at times that provide
opportunities for improved I/O performance. It is well known that larger asyn-
chronous request queues provide better opportunities for optimizing disk head
movement and improving I/O system performance. Thus, throttling the number
of asynchronous request streams is dangerous – it may constrain the number of
streams that generate data to the memory buffer cache and, thus, the number of
outstanding asynchronous requests in the buffer cache queue. Due to these two
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problems, application-layer I/O-stream throttling is not always the easiest and
most scalable option. Other alternatives, such as throttling in the OS, file sys-
tem, and/or middleware, should be explored to improve I/O-node performance.
In the next section, we discuss how I/O-stream throttling can be realized in the
OS layer of an I/O node.

To properly understand the effect of stream throttling at the application layer,
we must ensure that the number of synchronous I/O streams are not throttled
at other layers between the application and storage system. For example, I/O
scheduling algorithms in the OS often tend to minimize the positional delays on
the disk by servicing requests in a pseudo shortest-seek-first manner, rather than
a fair first-come-first-served manner – this is true of our test OS, Linux. Fortu-
nately, the latest versions of Linux allow users to select among four I/O schedul-
ing algorithms, one of which is a completely fair queuing algorithm (CFQ); we
use CFQ to demonstrate our application throttling approach.

3.2 System-Layer Stream Throttling

In Linux, the Anticipatory Scheduler (AS), unlike CFQ and other I/O sched-
ulers, has the ability to detect sequentiality in an I/O stream and allow a stream
that exhibits spatial locality of reference to continue to access the storage sys-
tem for a certain period of time. This throttling reduces disk-head positioning
delays even when multiple streams compete for the disk. In addition, the AS de-
tects asynchronous and synchronous streams and throttles only the synchronous
streams. We use AS to demonstrate the effect of system-software throttling.

The main advantage of the system-layer approach, over the application-layer
approach, is that it is transparent to the application and application program-
mer. There are many ways to implement I/O-stream throttling at the system
software layer, including the scheduler approach that we use in our experiments.
Disk controllers on modern I/O systems have intelligence built into them. This
means that I/O-stream throttling implemented at the controller could be more
beneficial than if implemented at the I/O-node OS software layer. Also, due to
adaptive prefetching policies, some disk controllers can handle multiple streams
very efficiently. For instance, [2] shows that storage devices can handle as many
as three streams efficiently. However, when the number of disk cache segments
is less than the number of streams, performance degrades significantly. Unfor-
tunately, the number of concurrently-active I/O streams that the device can
handle effectively is not always communicated to the OS software layer. Thus,
in comparison to throttling at the device, throttling at the OS layer may lose
some benefits. Also, since the AS is designed only to throttle down the number of
streams to one and is not able to judiciously change the number of concurrently-
active I/O streams, this scheduler will not be optimal for all system configu-
rations. Currently, a scheduler capable of judiciously selecting the number of
concurrently-active I/O streams per I/O node is under investigation.

An experimental evaluation of our system-layer throttling approach is de-
scribed in Section 6.2. These experiments use the AS and are driven by the
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unthrottled, concurrently-active file-I/O streams of MADbench – every MPI task
of MADbench concurrently generates I/O.

4 MADbench Cosmology Application Benchmark

MADbench [3] is a light-weight version of the Microwave Anisotropy Dataset
Computational Analysis Package (MADCAP) Cosmic Microwave Background
(CMB) power spectrum estimation code [13]. It was developed using MPI and
is one of a set of benchmarks used by NERSC at LBNL to make procurement
decisions regarding large-scale DoE computing platforms. MADbench represents
a large class of applications that deal with Cosmic Microwave Background Anal-
ysis. A significant amount of HPC resources are used by cosmologists, e.g., about
17% at NERSC. The I/O characteristics of MADbench are similar to those of
many other applications and benchmarks, such as SMC (electron molecule colli-
sion), SeisPerf/Seis (seismic processing), CAM, FLASH [12], and codes based on
the Hartree Fock algorithm like NWChem and MESSKIT [14,11]. This indicates
that this study, which is based on MADbench, has relevance to a large class of
applications and can be used to improve the I/O performance of applications
with I/O behavior that is amenable to file-I/O stream throttling.

MADbench has three distinct I/O phases: (1) dSdC (write only): Each MPI
task calculates a set of dense, symmetric, positive semi-definite, signal correlation
derivative matrices and writes these to unique files. (2) invD (read only): Each
MPI task reads its signal correlation matrices from the corresponding unique
files and for each matrix it calculates the pixel-pixel data correlation (dense,
symmetric, positive definite) matrix D and inverts it. (3) W (read only): Each
MPI task reads its signal correlation matrices and for each matrix performs dense
matrix-matrix multiplications with the results of InvD. Each of these three I/O
phases are comprised of the following five steps: (1) computation, (2) synchro-
nization (3) I/O, (4) synchronization, and (5) computation (except for dSdC).
The time that each task spends in the first (second) sync step can be used to
identify computational (I/O) imbalance among the tasks.

MADbench includes the following parameters that can be used to generate
configurations that differ with respect to the stress they apply on the I/O system:

– no pix: size(in pixels) of the pixel matrix. The size,S, in KBytes is 1
8 (no pix)2.

With P tasks, each task accesses a file of S
P KBytes.

– no bin: number of chunks of data in a file, where the chunk size, C, is
(S/P )/no bin. The choice of no bin impacts the layout and the interleaving
of the files on the disk. The number of chunks of data in a file equals the
number of iterations of the three phases.

– no gang: number of processors for gang scheduling. In our case there is no
gang scheduling, i.e., no gang = 1.

– blocksize: ScaLAPACK block size.

In our experiments we use no bin = 16 and blocksize = 32KB. These values
are comparable to the values used in the original MADbench study [3]. The value
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for no pix is based on the system’s memory size and must be set large enough
to stress the system’s storage subsystem. If no pix is too small, all the data will
fit in memory and the I/O subsystem will not be stressed.

Because of the MADbench lock-step execution model, all tasks concurrently
read or write their data from or to storage, creating multiple concurrently-active
I/O streams. Two additional input parameters, RMOD and WMOD, can be used to
control the number of concurrently-active reader and concurrently-active writer
streams, respectively. At most, one out of RMOD (WMOD) tasks are allowed to con-
currently access the I/O system. With N tasks, the total number of concurrent
readers is & N

RMOD '. MADbench can be executed in two modes: computation and
I/O, or I/O only [3]; we use both in our experiments.

5 Experimental Systems

Table 1 describes the three systems used in our experiments (Intel Xeon, IBM
p690, and Scyld Beowulf cluster) in terms of the number of processors, mem-
ory capacity per node, I/O system configuration, and I/O system through-
put. The Intel Xeon system, which runs Linux 2.6, contains dual processors
(2.80 GHz Pentium 4 Xeons with Hyper Threading) and is attached to a 7,200
RPM 10.2GB EIDE disk. The IBM p690 is a 16-way POWER4 SMP, which
also runs Linux 2.6. Experiments on the p690 are of two types w.r.t. mem-
ory size and I/O system configuration: memory size is either 16GB or 2GB,
while the I/O system is either a 7,200 RPM 140GB SCSI disk or a 350GB
DS4300 RAID-5 comprised of six 15,000 RPM SCSI disks. Each node of the
Scyld Beowulf cluster contains two 2.0 GHz AMD Opteron processors and 4GB
memory; it runs a custom Linux 2.4 kernel from Scyld. Experiments on this
system also are of two types, but w.r.t. the I/O system configuration: either a
1.4TB NFS-mounted RAID-5 disk system comprised of six 7,200 RPM 250GB
SATA disks or a local 7,200 RPM 120GB SATA scratch disk per node. On
all the systems, to eliminate the interference of I/O requests from OS activ-
ities, MADbench is configured to access a storage system different than that
hosting the OS. In addition, on all systems, to remove buffer cache effects, be-
fore an experiment is started, the MADbench storage system is unmounted and
remounted.

Table 1. I/O- and compute-node configurations of systems

System Nodes CPUs/ Memory/ I/O System(s) Throughput (MB/s)
Node Node(GB)

Intel Xeon 1 4 1 EIDE disk 23

IBM p690 1 16 16/2 SCSI disk/RAID-5 35/125

Beowulf Cluster 64 2 4 SATA/RAID-5 45
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6 Results of Experiments

To understand the importance of I/O performance, we conducted an experiment
with MADbench running in computation-and-I/O mode on the Xeon system. In
this case, I/O time, which depends on the number of concurrently-active readers
and writers, ranges from 14% to 37% of total execution time. Borrill, et al. [3]
report that on larger systems with >= 256 processors I/O consumes 80% of
execution time. This indicates that for this class of applications I/O contributes
significantly to application execution time.

To understand the true impact of I/O performance, one must ensure that
the data footprint does not fit in the main memory buffer cache. Otherwise,
requests are satisfied by the buffer cache rather than the I/O system. With the
explosive growth of the data needs of HPC applications, it is rare that the data
ever fits in main memory. Thus, the remainder of our experiments ensure that
the data footprint is larger than the combined size of the main memory of the
participating compute nodes.

We conducted two sets (base and base+) of experiments driven by MADbench
in I/O-only mode. Each experiment in the base set has one or all readers and
writers. The base+ set is the base set plus the following experiments: (1) two
readers/one writer, (2) four readers/one writer, and (3) eight readers/one writer.

6.1 Application-Layer Stream Throttling

The experiments discussed here use application throttling to control the num-
ber of concurrently-active MADbench readers and writers. To isolate the ef-
fect of application throttling, these experiments use the CFQ I/O scheduler,
which provides relatively fair disk access to all concurrently-active MADbench
I/O streams and does not inherently perform any I/O-stream throttling, as
does AS.

The base set of experiments was conducted on four system configurations,
while the base+ set was conducted on two. Rows E1 through E3 of Table 2 show
the input parameters for the base set of experiments and rows E4 and E5 show
this for the base+ set. Table 2 also shows the best and second-best number of
readers/writers for all experiments. Results of each experiment are presented in
terms of total execution time and I/O times (LBSTIO and TIO). Since each MPI
task waits at a barrier after each iteration of each MADbench phase, LBSTIO
represents the average load balancing time, including barrier synchronizations.
TIO is the average task I/O time. Note that LBSTIO depends on the number of
concurrently-active I/O streams and the underlying I/O scheduler. With a “fair”
I/O scheduler, if all tasks are allowed to access the I/O system concurrently, all
finish at approximately the same time, hence, the amount of time each waits at
a barrier for other tasks to finish will be minimal. In contrast, as the number of
concurrently-active I/O streams decreases, tasks scheduled earlier finish earlier
and experience longer delays at a barrier waiting for other tasks that are sched-
uled later. Because of this, we expect an increase in LBSTIO, indicating that
some tasks finish their I/O earlier than others.
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Table 2. Parameter values for experiments

Exp. System/ # of tasks no pix Data Size Memory Two Best
# Storage (GB) (GB) Readers/Writers

E1 p690/single disk 16 5,000 2.98 16 16/16 and 1/16

E2 Xeon/single disk 4 3,000 1.1 1 1/1 and 1/4

E3 p690/single disk 16 5,000 2.98 2 1/1 and 1/16

E4 Cluster/RAID-5/NFS 16 25,000 74.5 64 8/1 and 4/1

E5 p690/RAID-5 16 10,000 11.9 2 2/1 and 4/1

Intel Xeon System: The results of the base set of experiments run on this
system are shown in Table 3. Since the system contains dual processors, the
number of logical processors and, thus, the number of MPI tasks, is four. As
shown in Table 3, the default practice of all readers/all writers (4/4), results
in the longest application execution time. In contrast, employing one reader,
reduces execution time by as much as 22%. Note, however, that this decrease in
execution time is accompanied by a nine-fold increase in the LBSTIO time in
the W (InvD) phase, resulting in load balancing issues.

Given a fixed number of readers, the number of writers has a negligible impact
on total execution time – less than or equal to 5%. In contrast, given a fixed
number of writers, one reader, versus “all readers”, in this case four, improves
execution time by as much as 19.5%.

Table 3. Application-layer stream throttling: Total execution and I/O times for base
set of experiments run on Intel Xeon system

Number Number Time (s)
of of Total dSdC InvD W

Writers Readers TIO LBSTIO TIO LBSTIO TIO LBSTIO

4 4 243 12 9 83 3 77 1

1 4 235 12 5 83 2 77 1

4 1 199 12 12 53 13 45 10

1 1 189 18 9 48 10 42 10

IBM p690 – Single Disk/2GB Memory: For this system the number of
processors (number of MPI tasks) is 16. Similar to the results associated with
the Xeon system, given a fixed number of writers, one reader, versus “all readers”,
improves execution time. In this case, execution time increases by as much as 14%
with 16 readers. Again, with this execution time improvement comes an increase
in the I/O load-balancing time, LBSTIO; it increases from less than ten seconds
to as much as several tens of seconds. Similar to the results of the experiments
run on the Xeon system, given a fixed number of readers, the number of writers
has a negligible impact (less than 3%) on total execution time.
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Table 4. Application-layer stream throttling: Total execution and I/O times for base+
set of experiments run on Beowulf cluster with RAID-5

Number Number Time (s)
of of Total dSdC InvD W

Writers Readers TIO LBSTIO TIO LBSTIO TIO LBSTIO

16 16 6353 1330 66 2150 72 2210 68

16 1 8690 1320 67 1815 1596 1826 1606

1 1 6973 1559 1071 1148 793 1146 794

1 2 6406 1543 1000 1746 554 1128 568

1 4 5741 1583 1004 1073 273 1077 265

1 8 5627 1590 1035 1255 17 1249 17

1 16 6131 1781 1155 1374 12 1319 28

(a) IBM p690 with RAID-5 (b) Beowulf with RAID-5

Fig. 2. MADbench total and phase execution times for base+ set of experiments run
with different numbers of concurrently-active readers on p690 with RAID-5 and Be-
owulf cluster with RAID-5

Beowulf Cluster with RAID-5: The results of the base+ set of experiments
run on the Scyld Beowulf cluster with a 1.4TB NFS-mounted RAID-5 disk sys-
tem comprised of six 7,200 RPM 250GB SATA disks are shown in Table 4.
Only 16 processors, i.e., one processor on each of 16 compute nodes (16 MPI
tasks) were employed in the experiments. As shown in row E4 of Table 2, each
of the 16 nodes has 4GB memory (64GB total), thus, a larger problem size
(no pix = 25, 000) is used in order to force disk accesses.

Since each node runs one MPI task and the RAID-5 supports multiple concur-
rent streams, we expected that given a fixed number of readers, 16 (all) writers,
rather than one, would result in better execution time for the write phase (dSdC).
One writer is not likely to fully utilize the storage system bandwidth and “all
writers” results in larger I/O queues of asynchronous requests, which is known
to improve I/O performance [15]. As shown in Table 4, “all writers”, as com-
pared to one, does significantly reduce the dSdC write-phase I/O time (TIO) by
over 25% and results in better use of storage system bandwidth. A total of 74.5
GB is written in 1,900 seconds, which translates to 40MB/s, which is 90% of
peak bandwidth (45 MB/s). In contrast, one writer takes about 3,000 seconds,
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which translates to 25.5 MB/s, which is less than 60% of peak bandwidth. In
addition, as shown in Table 4, “all writers” results in relatively smaller load
imbalance times (LBSTIO) in the dSdC phase. However, the reduction in the
dSdC phase execution time due to the use of “all writers” does not translate into
a smaller application execution time because “all writers” has a negative impact
on the I/O times of the subsequent read phases: given a fixed number of readers,
“all writers” results in 60%, 69%, and 20% increases in the InvD and W TIO
times, and total execution time, respectively. We speculate that this is due to
data placement on the disk system. When multiple streams compete for storage,
the file system tends to allocate chunks to the streams in pseudo round-robin
fashion; this results in files that, although contiguous in memory, reside on non-
contiguous disk blocks. Thus, with multiple writers block allocation seems to
be random, which would significantly impact the subsequent read performance.
To circumvent the random placement, we use only one writer for our other ex-
periments. We anticipate that a single writer will remove randomness in block
allocation and result in consistent execution times.

Given one writer, we next identify the optimal number of concurrently-active
readers (1, 2, 4, 8, or 16) for this system. For each number, Figure 2(b) gives the
percentage increase in MADbench’s total and phase execution times; Table 4
contains the data. The sweet spot is eight. In comparison, with 16 readers, the
total execution time is about 8% higher; with two, 13% higher; with four, less
than 2% higher; and with one, more than 20% higher. With one reader the disk
system is underutilized (less than 85% peak bandwidth) because there are not
enough I/O requests; with 16, there are enough I/O requests but the disk system
spends a significant amount of time seeking to different locations (positional
delays) to service readers. In addition, as pointed out in [2], it is likely that 16
reader streams are more than the number of prefetch streams that the storage
system can handle; modern storage arrays can prefetch four to eight sequential
streams [2]. With eight readers, however, the disk system is well utilized (close
to 100% of peak bandwidth), which only means that the positional delays are
minimized and the storage system prefetching policies are effective. In summary,
as compared to the all writers/all readers (one writer/one reader) case, with one
writer and eight readers, application execution time improves by as much as 11%
(by about 20%) – see Table 4 and Figure 2.

IBM p690: RAID-5/2GB Memory: We repeated the base+ set of exper-
iments described in the last section on the IBM p690 with a high-end 350GB
RAID-5 I/O system. This is done to see if improved execution time results from
throttling down the number of readers, i.e., not using “all readers”, in other
types of storage systems. Note that the manufacturer of the p690’s storage sys-
tem is different than that of the cluster’s. In addition, the p690’s storage system
is comprised of more expensive hardware, has different disks, and has a faster
disk spindle speed (15,000 RPM as compared to 7,200 RPM). The p690’s stor-
age system gets a peak bandwidth of 125MB/s, while that of the cluster gets 45
MB/s. However, both systems have the same number of disks (six) and use the
same organization (RAID-5). Thus, we expected and got similar results. The
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results, shown in Figure 2(a), show that the sweet spot is four concurrently-
active readers. In comparison, 16 readers increases the execution time by about
40%; one increases it by over 13%; and for four and two readers, the difference
is less than 2%. Reasoning and analysis similar to that presented in Beowulf
cluster section can be used to explain these performance results.

Two interesting observations can be made by comparing Figures 2(a) and
2(b). First, examining the slope of the execution curves between 8 and 16 read-
ers (although, we do not have the data for the intermediate points, it is not
required for this observation), one could easily conclude that for MADbench the
cluster’s storage system handles high concurrency better than the p690’s stor-
age system. In comparison, the performance of the p690’s storage system drops
rather dramatically. Second, examining the slope of the execution time curves
between two and four readers, at a concurrency of two readers, the cluster’s
storage system seems more sensitive. We must acknowledge that since the file
system plays a major role in performance, and since these systems have different
file systems, this may not be attributable to the storage system alone.

6.2 System-Layer Stream Throttling

As discussed in Section 3.2, our experiments with system software I/O-stream
throttling are implemented at the OS layer using the Linux 2.6 Anticipatory
Scheduler (AS). This I/O scheduler does not throttle the number of concurrently-
active writers; it throttles only the number of concurrently-active readers. In
addition, it is designed to reduce the number of reader streams to one. We are
working on a scheduler that allows throttling to an arbitrary number of streams.

Using the AS, which is available only under Linux, our system-layer throttling
experiments reduce to experiments with “all writers” and one reader on the Intel
Xeon and IBM p690 systems. For comparison purposes, we also present the no-
throttling case, which is implemented using the CFQ I/O scheduler, and the best
case from the application-layer throttling experiments. The results of our exper-
iments indicate that the AS throttling behaves in a way that is consistent with
the results of our application-layer throttling experiments. With few exceptions,
the number of writers (fixed in this case and variable in application throttling)
has no significant impact on application execution time and one reader is a good
choice.

On the Intel Xeon system, although using the AS (System) decreases ex-
ecution time by 12%, as compared to the unthrottled case (UT), application
throttling performs best; its execution time is about 22% less than that of UT
and 11% less than that of System. Thus, it appears that system throttling may
provide a good alternative between no throttling and application throttling.
Similarly, experiments conducted on the p690, for which the number of pro-
cessors and MADbench MPI tasks is 16, shows that, although using the AS
(System) decreases execution time by 5%, as compared to the UT, application
throttling performs best; its execution time is about 12% less than that of UT
and 8% (Xeon: 11%) less than that of System. However, in both experiments,
system throttling results in much smaller LBSTIO times. This is because, as
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compared to application throttling, the AS provides fine-grained throttling of
streams and, thus, results in much lower I/O load imbalances in MADbench’s
read phases.

This gives further credence to the indication that application-transparent,
system throttling may provide a good alternative between no throttling and
application throttling. It is worth remembering that a big advantage of system
throttling is that it is transparent to the application programmer.

7 Summary and Conclusions

Our results indicate that synchronous I/O-stream throttling can improve execu-
tion time significantly for a large class of HPC applications. This improvement
is at least 8% and at most 40% for different systems executing MADbench. The
best number of concurrent readers is one for the single-disk case, four for the
16-processor SMP with a state-of-the-art RAID, and eight for a Beowulf cluster
with a RAID. This shows that stream throttling depends on application I/O be-
havior as well as the characteristics of the underlying I/O system. On the other
hand, we see that the effects of asynchronous I/O-stream throttling are indirect
and are not very well understood. On systems with a single disk the number
of writers has a negligible effect on total application execution time and on the
write-phase time. However, on systems with a RAID, although the number of
writers does not impact the write-phase time, it impacts the subsequent read
performance and, hence, the total execution time.

We explored I/O-stream throttling at the application layer and, in a limited
form, at the system software layer (i.e., via the Linux Anticipatory Scheduler,
which can dynamically reduce the number of streams to one). The former re-
quires changes to the application code, while the latter is transparent to the
application and can be implemented in the OS, file system, and/or middleware.

In summary, our work indicates that too few or too many concurrently-active
I/O streams can cause underutilization of I/O-node bandwidth and can nega-
tively impact application execution time. A general mechanism within system
software is needed to address this problem. We are developing a dynamically-
adaptive stream throttling system that will reside in the OS or file system of
I/O nodes. Because of the load balancing issues discussed in the paper, we plan
to provide controls to enable and disable this adaptation.
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Abstract. Disaster recovery solutions have gained popularity in the past few 
years because of their ability to tolerate disasters and to achieve the reliability 
and availability. Data replication is one of the most key disaster recovery 
solutions. While there are a number of mechanisms to restore data after 
disasters, the efficiency of the recovery process is not ideal yet. Providing the 
efficiency guarantee in replication systems is important and complex because 
the services must not be interrupted and the availability and continuity of 
businesses must be kept after disasters. To recover the data efficiently, we (1) 
present a fast disaster recovery mechanism, (2) implement it in a volume 
replication system, and (3) report an evaluation for the recovery efficiency of 
the volume replication system. It’s proved that our disaster recovery mechanism 
can recover the data at the primary system as fast as possible and achieve the 
ideal recovery efficiency. Fast disaster recovery mechanism can also be 
applicable to other kinds of replication systems to recover the data in the event 
of disasters. 

1   Introduction 

With the widespread use of computers, data is becoming more and more important in 
human life. But all kinds of accidents and disasters occur frequently. Data corruption 
and data loss by various disasters have become more dominant, accounting for over 
60% [1] of data loss. Recent high-profile data loss has raised awareness of the need to 
plan for recovery or continuity. Many data disaster tolerance technologies have been 
employed to increase the availability of data and to reduce the data damage caused by 
disasters [2].  

Replication [3] is a key technology for disaster tolerance and is quite different 
from the traditional periodical data backup. It replicates business data on a primary 
system to some remote backup systems in primary-backup architecture dynamically 
and on-line. It can not only retain the replicas in remote sites, but also make one of the 
backup systems take over the primary system in the event of a disaster. Therefore, it is 
widely deployed in disaster tolerance systems defend against both data loss and 
inaccessibility.  

Disaster recovery mechanism (abbreviated to DRM) is one of the focuses in 
replication research fields. It helps us restore data after a disaster. Designing a right 
disaster recovery mechanism is an important and complex task. Although some 
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mechanisms have been presented, e.g. full or difference disaster recovery mechanism, 
we still need to improve the recovery efficiency and to afford the trade-off between 
data loss and the efficiency. It is ideal to implement a fast disaster recovery 
mechanism with the minimal data loss. 

A replication system for disaster tolerance can be designed to operate at different 
levels, i.e. application-, file- or block-level. Of the three levels, block-level replication 
systems operate just above the physical storage or logical volume management layer, 
and they can take the advantage of supporting many different applications with the 
same general underlying approach. So we design a fast disaster recovery mechanism 
for volume replication systems at the block-level in this paper, although the 
mechanism could readily be implemented at file- and application-level.  

The remainder of the paper is outlined as follows. In Section 2, we put our work 
into perspective by considering related work. In Section 3, we describe a general 
model of volume replication system and then describe two key disaster recovery 
mechanisms used in it. In Section 4, we introduce a fast disaster recovery mechanism, 
and discuss its principle and process in detail. In Section 5, we implement fast disaster 
recovery mechanism to recover data of the volume replication system on Linux and 
give a simple evaluation for it. Finally, we conclude the paper by highlighting the 
advantages of this work in Section 6. 

2   Related Works 

While more and more disaster tolerance systems are established, the study of disaster 
recovery mechanisms is motivated for practical importance and theoretical interest.  

Many practitioners’ guides (e.g., [4][5]) offer rules of thumb and high-level 
guidance for designing dependable storage systems, and recovering these systems 
after disasters. These books focus mainly on the logistical, organizational and human 
aspects of disaster recovery. They do not treat detailed disaster recovery issues for 
any certain technology.  

Several recent studies explore how to improve the ability of a computer system or 
a storage system to recover from disasters and to meet user-defined goals (e.g., 
[6][7][8][9]). Practical guidelines are outlined that close the gap between business-
oriented analyses and technical design of disaster recovery facilities in [6]. Some 
methods for automatically selecting data protection techniques for storage systems to 
minimize overall cost of the system are given in [7]. An adaptive scheduling 
algorithm is proposed for disaster recovery server processes in [8] and several 
methods for finding optimal or near-optimal solutions to deal with the data recovery 
scheduling problem are presented in [9]. All these studies focus on evaluating the risk 
of computer systems or the dependability of data storage systems and then making a 
best choice among various data protection techniques or making a best scheduling. 
Unfortunately, they do not give a detailed disaster recovery solution for a replication-
based disaster tolerance system. 

In the replication research literatures, we can find that replication protocols are the 
focus. Authors have proposed several protocols, including IBM’s Peer-to-Peer 
Remote Copy (PPRC) [10], EMC’s Symmetrix Remote Data Facility (SRDF) [11], 
Hitachi’s Remote Copy [12] and VERITAS’s Volume Replicator (VVR) [13]. Some 
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optimized replication protocols are presented, such as Seneca [14], SnapMirror [15] 
and RWAR [16]. Disaster recovery mechanisms are scarcely mentioned in these 
books and papers, and some of them simply introduce a planned Failback operation to 
restore each site to its pre-failure role. 

Failback has already been researched in cluster computing [17] [18]. In order to 
build up a fault-tolerant cluster, the features of Failover and Failback services are 
demanded. Failback process is exercised when a system in the cluster is switched 
back from the normally secondary to the normally primary host. But Failback is 
mainly used to switch the role rather than to recover the data. So it is different 
between a cluster and a replication system. 

To restore the data as soon as possible, we present a fast disaster recovery 
mechanism for volume replication systems based on referring to the technology of 
Failback. Our fast disaster recovery mechanism can not only switch the role of a 
replication system, but also restore its data fast. 

3   Current Disaster Recovery Mechanisms for a Volume 
Replication System 

3.1   The Volume Replication System 

Volume management systems provide a higher-level view of the disk storage on a 
computer system than the traditional view of disks and partitions. This gives us much 
more flexibility in allocating storage to applications and users. A typical volume 
replication system is a remote and online replication system based on volume 
management systems. It is mainly composed of Client, Primary and Backup (or 
Secondary), and its architecture is shown in Fig. 1.  

When Primary receives a request committed by Client, it writes a copy of the data 
of the request into the log volume and the storage volumes. At the same time, it sends 
the data to Backup and then Backup records the data. 

Both Primary and Backup are a pair of peers to implement the process of 
replication. Replicator is their key component. It builds up the replication link 
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Fig. 1. Architecture of a typical volume system 
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between Primary and Backup, and runs the synchronous or asynchronous replication 
protocol. The log volume and the storage volumes are used to store the log and the 
data respectively. The volume replication system establishes one or more backup 
copies by replicating the data online and remotely. Once Primary suffers any disaster, 
Backup can take over the role of Primary and supply services to Client, which is 
referred to as Failover.  

Obviously, the ability of the primary system (Primary) to tolerate disasters is 
increased by replicating. But if there is only a Failover mechanism, the primary 
system cannot restore its data according to the backup system (Backup) and be back 
to its primary role. 

3.2   Current Disaster Recovery Mechanisms 

Apart from the technology of Failback, there are some technologies to recover the 
data of the primary system, and they are unified as disaster recovery mechanisms. Full 
and difference disaster recovery mechanisms are the most key ones to recover the data 
of the primary system: 

• Full disaster recovery mechanism: is a process to synchronize the former 
primary system with the current and new primary system (i.e. the former backup 
system) fully. That is, all the blocks at the former backup system are read and 
then sent to the former primary system. After receiving these blocks, the former 
primary system uses them to overwrite the local blocks. 

• Difference disaster recovery mechanism: is a process to synchronize the former 
primary system with the current and new primary system by computing the 
differences between each pair of blocks at both the systems. That is, we 
compare a block at the former primary system with a corresponding one at the 
new primary system. If the pair of blocks are identical, the block at the new 
primary system does not need to be transferred to the former primary system; 
otherwise, the block must be sent to the former primary and be used to 
overwrite the local block. For all the blocks of the storage volumes at both the 
primary and backup systems have to be read, the differences are mostly gained 
by computing and comparing MD5 checksums for each pair of blocks to reduce 
the workload.  

In order to describe the two mechanisms clearly, we define two rules as follow: 

Definition 1: When restoring its data, a system must refer to the current and new 
primary system. It is defined as the newest referring rule (abbreviated to NRR). 

Definition 2: After completing the process of restoring, a system must have the same 
image as the new primary system. It is defined as the data consistency rule 
(abbreviated to DCR). 

At the same time, we define a set of symbols to describe the data sets at the 
different positions as follow: 

Definition 3: p lD −  deontes the set of the log data at the primary system, p sD −  

deontes the set of the storage data at the primary system, b lD −  deontes the set of the 

log data at the backup system, and b sD −  deontes the set of the storage data at the 
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backup system. p sD −  and b sD −  also denote the image of the primary system and the 

one of the backup system respectively. 
If the storage volume is considered as a set composed of N  data blocks, we can 

describe the process of full and difference disaster recovery mechanisms in Table 1. 

Table 1. The processes of current disaster recovery mechanisms 

Full disaster recovery mechanism Difference disaster recovery mechanism 
BEGIN 
i:=1; 
REPEAT 
B:=BackupReadBlock(i); 
BackupSendBlock(B); 
PrimaryRecieveBlock(B); 
PrimaryWriteBlock(B,i); 
i++; 

UNTIL i==N+1; 
END 

BEGIN 
i:=1; 
REPEAT 
Bp:=PrimaryReadBlock(i); 
Mp:=ComputeMD5Checksum(Bp); 
PrimarySendMD5Checksum(Mp); 
BackupReceiveMD5Checksum(Mp); 
Bb:=BackupReadBlock(i); 
Mb:=ComputeMD5Checksum(Bb); 
Tag:=Difference(Bb,Bp); 
IF Tag==0 THEN 
BEGIN 
BackupSendBlock(Bb); 
PrimaryRecieveBlock(Bb); 
PrimaryWriteBlock(Bb,i); 

END 
i++; 
UNTIL i==N+1; 

END 

In Table 1, Primary denotes the former primary system and Backup denotes the 
former backup system (i.e. the new primary system). BackupReadBlock(), 
BackupSendBlock(), PrimaryRecieveBlock(), PrimaryWriteBlock(), PrimaryRead 
Block(), PrimarySendMD5Checksum(), BackupReceiveMD5Checksum(), ComputeMD5 
Checksum() and Difference() are API functions to implement the process of disaster 
recovery mechanisms. It is easy for us to understand the former seven functions which 
involve four basic operations, i.e. Read, Write, Send and Receive. ComputeMD5 
Checksum() and Difference() are two important functions for difference disaster recovery 
mechanism. ComputeMD5Checksum() is used to compute the MD5 checksum for a 
block. Difference() is used to compare two MD5 checksums. If the two MD5 checksums 
are identical, it returns 1; otherwise, it returns 0. 

As shown in Table 1, full disaster recovery mechanism needs to transfer all the 
blocks from the backup system to the primary system, so it is very time-consuming. 
Moreover, although difference disaster recovery mechanism reduces the number of 
transferred blocks, it needs to compare the MD5 checksums for each pair of blocks 
and then increases the number of the operations of Read, Send and Receive. In 
addition, when running full and difference disaster recovery mechanisms, users have 
to stop replicating the data of all applications. Therefore, it is possible for us to 
optimize both the disaster recovery mechanisms. 
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4   Fast Disaster Recovery Mechanism (FDRM) 

4.1   The Principle of FDRM 

To optimize the disaster recovery mechanisms, we present a fast disaster recovery 
mechanism. It tracks the incremental changes as they happen. Only the changed 
blocks at the new primary system are read and sent back to the former primary 
system. Hence the number of transferred blocks is smaller than full disaster recovery 
mechanism, and the number of read operations required is smaller than difference 
disaster recovery mechanism. In addition, it does not need to stop the replication 
operation of the replication system. 

Fast disaster recovery mechanism synchronizes the former primary system with 
the new primary system by finding out the changed blocks at the new primary system 
after the former primary system broke down. That means that we need record the 
changes at the new primary system after it took over the former primary system.  But 
some changes may be omitted. For example, in a volume replication system, some 
blocks have been wrote on the data volumes at the primary system before disasters 
occur to the primary system, but they may fail to be replicated to the backup system, 
be written on the data storage at the primary system, or even be acknowledged to the 
primary system after being written at he primary system. Thus the corresponding 
blocks at the backup system are stored as an older version than those at the primary 
system. According to NRR in Definition 1, when recovering the primary system, 
these blocks at the new primary system (i.e. the former backup system) become a part 
of all the changes. 

 
 

 
 

 
 
 
 

Fig. 2. Principle of fast disaster recovery mechanism 

A simple description of fast disaster recovery mechanism is shown in Fig. 2. It 
assumes that P and B are a pair of systems for disaster tolerance. At first, P is the 
primary system and B is the backup system. At the time 2t , P suffers some disasters 

and B takes over P. At that time, the image of P is 2( )p sD t−  and the one of B is 

2 1( ) ( )b s b sD t D t− −= . At the time 3t , P comes back and becomes a new backup system 

for B. The data set of incremental changes at B from 2t  to 3t , 

3 2 2 1( ( ) ( )) ( ( ) ( ))b s b s b s b sD t D t D t D t− − − −− −U , is transferred back to P. This process can 

be implemented without stopping applications and last out from 3t  to 4t , where  
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3 2( ) ( )b s b sD t D t− −−  is the data set of real incremental changes at B from 2t  to 4t  and  

2 1( ) ( )b s b sD t D t− −−  is the original data set of changes at P from 1t  to 

2t , 2 1( ) ( )p s p sD t D t− −− . Then, the data set of incremental changes at B from 3t  to 4t , 

4 3( ) ( )b s b sD t D t− −− , is transferred back to P. At the time 5t , according to DCR in 

Definition 2, the whole recovery process is finished and P has the same image as B. P 
also can rerun as the primary system and supply services again. 

4.2   The Process of FDRM 

According the above description, the key issue for fast disaster recovery mechanism is 
to compute and gain 3 2( ) ( )b s b sD t D t− −− , 2 1( ) ( )b s b sD t D t− −−  and 4 3( ) ( )b s b sD t D t− −− . 

In order to simplify the problem, we build a change bitmap table for each storage 
volume and use it together with the log volume to track writes in the volume 
replication system. When a block in the storage volume at the primary system is 
changed, its data are also stored temporarily and a flag bit in the change bitmap table 
is set. Based on the bitmap tables at P and B, we can gain 3 2( ) ( )b s b sD t D t− −− , 

2 1( ) ( )b s b sD t D t− −−  and 4 3( ) ( )b s b sD t D t− −−  easily.  

The process of fast disaster recovery mechanism is shown in detail in Table 2. 

Table 2. The process of fast disaster recovery mechanism 

Fast disaster recovery mechanism 
1 BEGIN
2 Tp:=PrimaryBuildBitmapTable(Logp);//Build the bitmap table based on the

log volume Logp at the former primary system,
and Tp denotes the bitmap table corresponding

to the data set of 2 1( ) ( )
p s p s

D t D t− −−
3 PrimarySendBitmapTable(Tp);
4 BackupReceiveBitmapTable(Tp);
5 Tall:= BackupComputeOR(Tp, Tb); // Tb denotes the bitmap table for the

data set of 3 2( ) ( )
b s b s

D t D t− −− and is obtained by

tracking the changes at the new primary system 
//Compute the value of OR operation for Tp

and Tb, and Tall denotes the bitmap table for

the data set of 3 2 2 1( ( ) ( )) ( ( ) ( ))
b s b s b s b s

D t D t D t D t− − − −− −
6 i:=1;                   //Scan the bitmap table Tall, transfer the 

relevant
data set to the former primary system and recover it 

7 REPEAT                         
8 Flag:=CheckBitmapTable(Tall);
9 IF Flag==1 THEN 
10 BEGIN 
11 Bb:=BackupReadBlock(i);
12 BackupSendBlock(Bb);
13 PrimaryRecieveBlock(Bb);
14 PrimaryWriteBlock(Bb,i);
15 END 
16 i++; 
17 UNTIL i==N+1;  
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Table 2. (continued) 

18 Tnew:=BackupBuildBitmapTable(Logb);//Build the bitmap table based on the
log volume Logb at the new primary system,
and Tnew denotes the bitmap table for the

data set of 4 3( ) ( )
b s b s

D t D t− −−
19 j:=1;                  // Scan the bitmap table Tnew, transfer the 

relevant
data set to the former primary system and recover it 

20 REPEAT 
21 Flag:=CheckBitmapTable(Tnew);
22 IF Flag==1 THEN 
23 BEGIN 
24 Bb:=BackupReadBlock(j);
25 BackupSendBlock(Bb);
26 PrimaryRecieveBlock(Bb);
27 PrimaryWriteBlock(Bb,j);
28 END 
29 j++; 
30 UNTIL j==N+1; 
31 END  

 
 

 
 
 

 
 
 

 
 
 
Fig. 3. An example of building change bitmap tables 

In the process of fast disaster recovery mechanism, the change bitmap table plays 
an important role. In Table 2, Step 2, Step 5 and Step 18 are the key steps to build pT , 

allT  and newT  ( bT  is build by tracking the changes from 2t  to 3t  at the primary 

system). An example is illustrated in Fig. 3. After pT , bT , allT  and newT  are computed, 

the data sets transferred to the former primary system are easy to obtain and then the 
former primary system can be recovered as fast as possible. 

5   Implementation and Evaluation 

Logical volume replicator (LVR) is a remote and online volume replication system 
prototype developed by us based on logical volume manager (LVM) [19] on Linux. 
We can create one replicated volume group at the primary system, which includes a 
log volume and several storage volumes. We also can create the other replicated 
volume group at the backup system. Both the replicated volume groups are a pair of 
peers to build up the replication link and implement remote replication and disaster 
recovery. 
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In order to evaluate the fast disaster recovery mechanism in detail, we compare it 
with full and difference disaster recovery mechanisms by analyzing theoretically and 
doing experiments. 

5.1   Analysis 

Fast disaster recovery mechanism can be evaluated with many parameters. Of all the 
parameters, the number of data blocks recovered, time consumption and space 
consumption are the three main ones. The number of data blocks recovered means  
 

Table 3. Comparison of FDRM and conventional mechanisms 

Mechanism 
The number 

of data blocks 
recovered

Time consumption Space consumption 

Full disaster 
recovery mechanism N ( )r n wN t t t dN s

Difference disaster 
recovery mechanism M

5(2 2 )

( )

r md n diff

n w

m

d

N t t t t

M t t

s

s (2 2 )d mN s s

Fast disaster 
recovery mechanism I J K

( )( )

b
bitmap n or

d

r n w

s
I t t t

s

I J K t t t

2 ( )d b dI s s I J K s

 

how many data blocks are transferred to the former primary system to recover the 
data. Time consumption means how long it takes to implement the whole process of 
disaster recovery mechanism. And space consumption means the size of the memory 
space used at the primary and backup systems. The comparison of fast disaster 
recovery mechanism and the other two mechanisms are shown in Table 3. 

In Table 3, we adopt some symbols to denote the element values of the three main 
parameters. They are explained as follow: 

N  is the number of the storage volume at the primary system or at the backup 
system, and M  is the number of the different blocks at both the systems. I  is the 
number of the blocks on the log volume at the primary system. These blocks were 
written to the storage volume but not replicated to the backup system, i.e. 

2 1| ( ) ( ) |p s p sI D t D t− −= − . J  is the number of the changed blocks at the backup system 

from the backup system taking over the primary system to now, i.e. 

3 2| ( ) ( ) |b s b sJ D t D t− −= − . K  is the number of the same blocks between I  blocks and 

J  blocks, i.e. 3 2 2 1| ( ( ) ( )) ( ( ) ( )) |b s b s b s b sK D t D t D t D t− − − −= − −I . 

rt , wt  and nt  are the time of Read, Write and Transfer respectively to deal with a 

block. Transfer includes two steps of Send and Receive. 5mdt  is the time to compute 

the MD5 checksum of a block. difft  is the time to compare the MD5 checksum of one 

block at the primary system with that of the other corresponding block at the backup 
system. bitmapt  is the time to establish a bitmap table according to the log at the 
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primary system. ort  is the time to compute the OR value of the primary bitmap table 

and the backup bitmap table.  
In addition, ds  is the size of a data block. ms  is the size of a MD5 checksum. bs  is 

the size of a bitmap table. 
From Table 3, we can find that the number of the recovered blocks in full disaster 

recovery mechanism is the largest one, and the number of the recovered blocks in 
different disaster recovery mechanism is equal or less than the one of fast disaster 
recovery mechanism. That is, M I J K N≤ + − ≤ . We also can find that the time 
consumption and the space consumption in difference disaster recovery mechanism 
may be the largest of the three mechanisms because of computing the MD5 checksum 
for each block and comparing each pair of MD5 checksums. In addition, we can find 
that although the number of the recovered blocks in fast disaster recovery mechanism 
may be larger than different disaster recovery mechanism, the other two parameters in 
fast disaster recovery mechanism may be the smallest ones in all the three 
mechanisms.  

When using MTBF (Mean Time Between Failures) and MTTR (Mean Time To 
Recover) to measure the reliability and the maintainability of the replication system, the 

failure rate λ  is a constant for each disaster recovery mechanism, i.e. 
1

MTBF
λ

=  is a 

constant. At the same time, the maintenance rate μ  in fast disaster recovery mechanism 

is the largest. Therefore, 100% 100%
MTBF

Availability
MTBF MTTR

μ
λ μ

= × = ×
+ +

 in fast 

disaster recovery mechanism is the largest and then it is the most ideal for a replication 
system. 

5.2   Experiments 

Obviously, it is not enough to compare the three disaster recovery mechanisms and to 
evaluate fast disaster recovery mechanism by analyzing. In order to understand the 
advantages of fast disaster recovery mechanism, we do some experiments based on LVR. 

LVR is run on a pair of the primary and backup systems. Either of the two systems 
is an Intel Celeron 1.7 GHz computer with 512 MB of RAM. At the either system, the 
log volume is 1 GB and the storage volume is 2 GB. The versions of Linux kernel and 
LVM are 2.4.20-8 and 2.00.07 respectively. The block size used by LVM is set to 
4KB and the Gigabit-Ethernet 1000baseT is used as connection between the primary 
system and the backup system. The replication protocol is the standard asynchronous 
one and the random write of IOzone-3.263 benchmark [20] is used to simulate the 
applications at the primary system. 

With the cost of the memory becoming lower and lower, the space consumption is 
playing a less important role. So in the following two experiments, we do not consider 
the space consumption for the three mechanisms again. 

In the first experiment, a manual disaster is made at a fixed time (i.e. 2t ) after 

replication was started at the primary system. Disaster recovery occurs at a fixed time 
(i.e. 3t ) after the backup system took over the primary system. Here 2t  is assumed to 

a moment when replication has been running for 100s and 3t  is assumed to a moment 
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Table 4. The number of recovered blocks and the time to recover for the three mechanisms 

Mechanism The number of data 
blocks recovered 

The time to recover (s) 

Full disaster recovery mechanism 524288 673 
Difference disaster recovery mechanism 140243 464 

Fast disaster recovery mechanism 173975 257 

when the backup system has served as a new primary system for 30s. The results of 
comparing are shown in Table 4. 

In the second experiment, we evaluate fast disaster recovery mechanism by testing 
the impact of 3t . In practice, 1t  and 2t  are the objective moments that can not be 

changed artificially. 4t  and 5t  are the moments that are affected by 3t . Here 2t  is still 

assumed to a moment when replication has been running for 100s and 3t  is the 

moment to start recovering the primary system where 3 2t t−  is set with a series of 

values. The results are shown as Table 5.  

Table 5. Impact of the moment to implement fast disaster recovery mechanism 

3 2t t−  (s) The number of data blocks recovered The time to recover (s) 

20 113821 127 
40 320420 410 
60 433975 543 
80 500288 664 

100 514337 729 

From Table 4, we can find that the time to recover in fast disaster recovery 
mechanism is the smallest. From Table 5, we can find that it is ideal for fast disaster 
recovery mechanism to run as soon as possible after disasters occur.  

In a word, it is proved by the above experiments that fast disaster recovery 
mechanism is worth deploying in the current replication systems. 

6   Conclusion 

With data becoming more and more important, all kinds of information systems 
require 24x7 availability. Replication is a rising data disaster-tolerance technique, and 
disaster recovery mechanisms play an important role in replication systems. How to 
recover the data at the primary system as soon as possible after the primary system 
suffers disasters is important to design a efficient replication system.  

Fast disaster recovery mechanism is presented to recover the data at the primary 
system quickly and to improve the recovery efficiency of volume replication systems. 
Its principle and process are described in detail, and then it is implemented in logical 
volume replicator on Linux. It’s proved by analyzing theoretically and doing 
experiments that fast disaster recovery mechanism makes the recovery process of 
volume replication systems fast and also guarantees the availability of the system. 
Therefore, it is helpful for volume replication systems to tolerate various disasters. 
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Abstract. A large-scale optical network will carry various traffic classes
with different fault-tolerance requirements. Several previous papers sug-
gest a preemptive multi-class routing scheme. They have proposed Inte-
ger Linear Programming (ILP) formulations to implement this routing
scheme and simulate it under the assumption that the traffic holding
on the network will not depart. However, in the real world, most of the
traffic is the dynamic traffic: the traffic holding on the network will leave
at the end of connection holding time. In this paper, we propose a de-
tailed algorithm for Dynamic Preemptive Multi-class Routing (DPMR)
scheme under dynamic traffic pattern. Furthermore, we compare DPMR
scheme with DPP (Dedicated Path Protection) and SPP (Shared Path
Protection), and evaluate their performances from resource utilization
ratio and blocking probability. In addition, we propose a modified link
cost function for Dynamic Preemptive Multi-class Routing scheme to
find the routes.

1 Introduction

The growth in internet traffic has led to a tremendous demand for bandwidth.
Wavelength-division -multiplexing (WDM) technology can meet this demand
and is deployed in the next generation network infrastructures [1]. Due to per
fiber bandwidths of the order of several hundred gigabits-per-second (Gb/s),
enormous data loss may be experienced in the event of network failures such as
node, link, or channel faults. So it is critical to consider networks survivability
and design survivable WDM networks [2].

Survivability mechanisms proposed for wavelength routed WDM networks are
typically classified as preplanned protection mechanisms and dynamic restora-
tion mechanisms. In [3] and [5], the authors have introduced conventional protec-
tion and restoration schemes, and discussed the benefits of different survivable
approaches. For example, path protection scheme (dedicated path protection and
shared path protection[5]) which will assign a backup path to its primary path
can provide quick and guaranteed recovery, but does not use resources efficiently.
Correspondingly, the restoration scheme which will not assign backup resources
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to its primary path can use resources efficiently, but does not guarantee 100%
recovery when resources are inadequate for recovery path allocation.

In these studies [3,5], the researchers have focused their attention on a single
class of traffic. In practical network services, different connections will have dif-
ferent service level requirements [4]. For example, critical applications, such as
emergency applications and banking institution transactions, will coexist with
non-critical applications like Internet radio, file transfer, web browsing and e-
mail Therefore, it is greatly necessary to differentiate different services and meet
different customers’ demands in finite network resources. Papers [6,7,8] have sug-
gested differentiated reliability in mesh networks with shared path protection.
They assign different backup resources to primary paths according to the pri-
mary path’s different reliability requirements. It is an efficient approach to meet
customer’s different requirements using finite network resources. However, they
do not consider that certain traffic’s primary paths can share resources with
high priority traffic’s backup path which will save more resources. Papers [9,10]
just differentiate priority of traffic and suggest that high priority traffic’s backup
path can share resources with low priority traffic’s working path. But they just
propose Integer Linear Programming (ILP) formulations to implement the rout-
ing scheme and simulate it under the assumption that the traffic holding on the
network will not depart at all.

However, the fact is that more and more connection requests from customers
will change from time to time, so the simulation assumption in [9,10] may result
in low resource utilization and less flexibility [11,12]. Because of the mentioned
reasons before, the investigation of dynamic network behavior for WDM optical
networks becomes much more essential and important to us. In addition, general
link cost function used to compute the shortest paths is designed to increase the
degree of wavelength sharing. Due to the definition of preemptive multi-class
routing scheme-low priority traffic primary paths can share resources with high
priority traffic’s backup paths-link cost function for it will be modified.

This paper is organized as follows: Section 2 presents three schemes: DPP,
SPP and DPMR. Section 3 introduces link cost function and network model.
Section 4 details algorithms for DPP, SPP and DPMR under dynamic traffic.
Section 5 analyses the simulation and compares the performances. Section 6
concludes.

2 Scheme Description

In this section, we will describe three routing schemes: Dedicated Path Pro-
tection, Shared Path Protection and Dynamic Preemptive Multi-class Routing
schemes. Detailed description will be shown in the following.

– Dedicated Path Protection
• only single class traffic is considered.
• every traffic will be assigned two link-disjoint paths: primary path and

backup path.
• backup paths can not share resources with each other.
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– Shared Path Protection
• only single class traffic is considered.
• every traffic will be assigned two link-disjoint paths: primary path and

backup path.
• backup paths can share resources with each other.

– Dynamic Preemptive Multi-Class Routing
• multi-class traffic is considered.
• not every traffic will be assigned two link-disjoint paths: primary path

and backup path; only high priority traffic will have backup paths.
• high priority traffic’s backup paths can share resources each other.
• high priority traffic’s backup paths can share resources with low priority

traffic’s working paths.

3 Link Cost Function and Network Model

3.1 Link Cost Function

In this section, we will discuss two link cost functions: general link cost function
and modified link cost function. General link cost function is used by Dedicated
Path Protection scheme and Shared Path Protection scheme. Due to the differ-
ence of Dynamic Preemptive Multi-class Routing (DPMR) with DPP and SPP,
we will modify the general link cost function to implement it into DPMR scheme.

General Link Cost Function. A large degree of wavelength resource sharing
is the advantage of shared protection. In order to achieve this goal, we will
define the link cost function in the following which will be used for computing
the primary and backup paths to implement the wavelengths sharing.

The capacity of link i can be divided into three types:

1. Free capacity (fi): the free capacities that can be used by the following
primary or backup paths.

2. Reserved capacity (RCi): the reserved capacities of some backup paths.
3. Working capacity (Wi): the working capacities of some primary paths and

can not be used for any other purpose until the corresponding primary path is
released. The link cost function CP for finding a primary path with requested
bandwidth (RB) is calculated as

CPi =
{

+∞ fi < RB
ci fi ≥ RB

(1)

where ci is the basic cost of link i that is decided by physical length of the
fiber link, the expense of fiber link installation, and so on.

In order to find a backup path for the primary path, we should define the
corresponding link cost function firstly. Concerning the requested bandwidth
(RB) and the found primary path, the reserved capacity (RCi) on link i can be
further divided into two types:
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1. Sharable capacity (sci): the capacities reserved by some protected path(s) and
is shared by the found primary paths, where the “some protected path(s)”
should be link-disjoint with the found primary paths.

2. Non-Sharable capacity (none-sci): the capacities reserved by some protected
path(s) and is not shared by the found primary paths, where the “some
protected path(s)” should not be link-disjoint with the found primary paths.

Obviously, RCi = sci + none-sci. Fig.1 shows the capacity along link i.

Fig. 1. Capacity along link i

The link cost function CB for finding a backup path for protected path with
requested bandwidth (RB) is calculated as

CBi =

⎧⎨⎩
ε RB ≤ sci

ε + α · RB−sci

fi
sci < RB ≤ sci + fi

+∞ sci + fi < RB

(2)

where ε is a adequately small positive constant, for instance, 0.001 or 0.0001;
α is a parameter that is a positive constant (In the simulation of this paper,
set ε = 0.001 and α = 1). In our algorithm, if there is enough sharable capacity
available along the link, the backup path will take the sharable capacity on a link
firstly. The value of link cost will have two cases: 1) If there is enough sharable
capacities to meet the requested bandwidth (RB), then the sharable capacities
will be reserved for the backup path of the new request without needing to
allocate new wavelength resource, thus we make the cost of link i be a adequately
small positive constant ε; 2) If there isn’t enough sharable capacity along the link,
then certain free capacities will be occupied and the link cost will be determined
by how many free capacities will be taken. If the summation of the sharable and
free capacities is less than the RB, then the link is unavailable for the backup
path, so we make the link cost be infinite. Therefore, in (2), we can observe that
those links with enough reserved capacities will have smaller link cost. If the
backup paths traverse these links, then we do not need to reserve new backup
wavelengths. Thus, the resource utilization ratio will be improved.

Modified Link Cost Function. Because in Dynamic Preemptive Multi-class
Routing scheme, there has multi-class traffic: high priority traffic and low priority
traffic. Furthermore, high priority traffic’s backup path can share resources with
low priority traffic. So we will modify the general link cost function to improve
wavelength resource sharing.
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1. Link cost function for low priority traffic’s path(s)

CP ∗
i =

⎧⎨⎩
+∞ fi < RB
ci fi = RB

ci · (1 − fi−1
|W | ) fi > RB

(3)

where ci,fi,W and RB are the same meaning with the notations in the last
subsection. We can observe that the link cost reduces as the free wavelength
links increase. The shortest path algorithm will favor fiber links that have
much more free wavelength links. Therefore, the low priority traffic’s working
capacities will be distributed to all the links, and the load will be more
balanced. The load balancing may lead to more low priority traffic’s paths
link disjoint and result in more spare capacities to be shared by high priority
traffic’s backup path(s)[13].

2. Link cost function for high priority traffic’s primary path
We will still adopt (1) in general link cost function (see the last subsection)
to compute the high priority traffic’s primary path.

3. Link cost function for high priority traffic’s backup path
Because the high priority traffic’s backup path can share resources with
low priority traffic, so we must consider the factor into the link cost func-
tion for high priority traffic’s backup path. With the requested bandwidth
(RB) and the found high priority traffic’s primary path(FHPP), the re-
served capacity(RC∗

i ) along link i can be further divided into three
types:
(a) Sharable capacity (sc∗i ): the capacities reserved by high priority traffic’s

protected path(s) and is shared by FHPPs, where the “high priority
traffic’s protected path(s)” should be link-disjoint with FHPPs.

(b) Non-sharable capacity (none-sc∗i ): the capacities reserved by some pro-
tected path(s) and is not shared by FHPPs, where the “high priority
traffic’s protected path(s)” should not be link-disjoint with FHPPs.

(c) Low priority traffic’s capacity (lci): the capacity reserved by low priority
traffic’s working path(s) and is shared by high priority traffic’s backup
path(s).

Obviously, RC∗
i = sci + none-sc∗i + lci. Fig.2 shows the capacity along

link i.

Fig. 2. Capacity along link i
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The link cost function CB∗
i for finding a backup path for high priority

traffic’s primary path with requested bandwidth (RB) is calculated
as

CB∗
i =

⎧⎨⎩
ε∗ RB ≤ sc∗i + lci

ε∗ + α∗ · RB−sc∗i −lci

fi
sc∗i + lci < RB ≤ sc∗i + lci + fi

+∞ sc∗i + lci + fi < RB

(4)

where ε∗ is also a sufficient small positive constant comparing with ε in the
last subsection, such as 0.001 or 0.0001; α∗ is a parameter that is a positive
constant (in the simulation of this paper, set ε∗ = 0.001 and α∗ = 1). The
similar explanation process of (4) which has explained in the last subsec-
tion will present in the following. In our algorithm, the high priority traffic’s
backup path will take the sharable capacity and low priority traffic’s ca-
pacity along a link firstly if there are enough sharable capacity and low
priority traffic’s capacity available on the link. If there are enough sharable
capacities and low priority traffic’s capacity to meet the requested band-
width (RB), then the sharable capacities and low priority traffic’s capacity
would be reserved for the backup path of the new high priority traffic’s
request without allocating new wavelength, so we let the cost of link i to
be a sufficient small positive constant ε∗. If there isn’t enough sharable ca-
pacity and low priority traffic’s capacity along the link, then certain free
capacities will be taken and the link cost will be determined by how many
free capacities will be taken. If the summation of the sharable, free and low
priority traffic’s capacities is less than the RB, the link is unavailable for
the backup path, so we make the link cost to be infinite. From (4), we can
observe that these links with enough reserved capacities will have smaller
link cost. If the backup paths traverse these links, then we do not need to
reserve new backup wavelengths. Thus, the resource utilization ratio will be
improved.

3.2 Network Model

The network topology is denoted as G(N, L, W ) for a given survivable meshed
WDM optical network, where N is the set of nodes, L is the set of bi-directional
links, and the W is the set of available wavelengths per fiber link. |N |,|L|, and
|W | denote the node number, the link number and the wavelength number, re-
spectively. We assume each required bandwidth is a wavelength channel and each
node has the O/E/O wavelength conversion capacity. In some simple method,
such as in [14], a standard shortest path algorithm (e.g., Dijkstra algorithm) can
be used to find the connection’s primary path and link-disjoint backup path.
After finding the shortest primary path, the links traversed by the primary path
will be removed. In the residual graph, the shortest backup path is selected by
a standard shortest path algorithm.
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4 Algorithms Description for DPP, SPP and DPMR
Under Dynamic Traffic

4.1 Algorithm for DPP

– Input: the network graph G(N, L, W ) and the connection request will be
routed, whose source node is s and destination node is d. The required band-
width is a wavelength channel.

– Output: one primary path and one dedicated protected backup path for the
connection request

– Step1: wait for a request, if one request comes, then go to step 2 , else
update the network state.

– Step2: compute the primary path for this connection according (1) firstly,
if the primary path is found, then record routes information and wavelength
assignment. Update the network state and link cost function, go to step 3. If
either the primary path or available wavelengths is not found, go to step 4.

– Step3: compute the backup path for this connection according to (1), if
the backup path is found, then record routes information and wavelength
assignment. Update the network state and link cost function, go to step 1.
If either the backup path or available wavelengths is not found, go to step 4.

– Step4: block this request and go to step1.

4.2 Algorithm for SPP

– Input: the network graph G(N, L, W ) and the connection request will be
routed, whose source node is s and destination node is d. The required band-
width is a wavelength channel.

– Output: one primary path and one shared protected backup path for the
connection request.

– Step1: wait for a request, if one request comes, then go to step 2 , else
update the network state

– Step2: compute the primary path for this connection according to (1), if the
primary path is found, then record routes information and wavelength assign-
ment. Update the network state and link cost function, go to step 3. If either
the primary path or available wavelengths is not found, go to step 4.

– Step3: compute the backup path for this connection according to (2), if
the backup path is found, then record routes information and wavelength
assignment. Update the network state and link cost function, go to step 1.
If either the backup path or available wavelengths is not found, go to step 4.

– Step4: block this request and go to step 1.

4.3 Algorithm for DPMR

– Input: the network graph G(N, L, W ) and the connection request will be
routed, whose source node is s and destination node is d. The required band-
width is a wavelength channel.
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– Output: one primary path and one shared protected backup path for the
connection request.

– Step1: wait for a request, if the request is high priority traffic, then go
to step 2; if the request is low priority traffic, then go to step4; otherwise,
update the network state.

– Step2: compute the primary path for this high priority connection according
to (1), if the primary path is found, then record routes information and
wavelength assignment. Update the network state and link cost function, go
to step 3. If either the primary path or available wavelengths is not found,
go to step 5.

– Step3: compute the backup path for this high priority connection accord-
ing to (4), if the backup path is found, then record routes information and
wavelength assignment. Update the network state and link cost function, go
to step 1. If either the backup path or available wavelengths is not found, go
to step 5.

– Step4: compute the working path for this low priority connection according
to (3), if the working path is found, then record routes information and
wavelength assignment. Update the network state and link cost function, go
to step 1. If either the working path or available wavelengths is not found,
go to step 5.

– Step5: block this request and go to step 1.

5 Simulation Results and Analysis

All simulations have been performed on the 24 nodes USANET topology as
shown in Fig.3, Each node pair is interconnected by a bi-directional fiber link
and each fiber link has 8 wavelengths. We assume all nodes have full O/E/O
wavelength convertible capacity. All connection requests are arriving by Pois-
son process and uniformly distributed among all resource-destination pairs. The
holding time of each connection is normalized to unity and follows a negative
exponential distribution. We simulate arrivals and departures of 100000 connec-
tions. Two main parameters: blocking probability and resource utilization will
be performed.

5.1 Performance Parameters

Two main parameters: blocking probability and resource utilization.

1. Blocking probability
BP = B/A

Blocking probability is the ratio of the total number of blocked connections
(B) and the total number of arrivals (A). Obviously, the small value of BP
means the small blocking probability.

2. Resource utilization
RU = H/CW
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Fig. 3. USANET

Resource utilization is the ratio of the connections that are holding on the
network (H) and the consumed wavelengths (CW ). When the value of RU
is big, the resource utilization ratio is high.

5.2 Analysis

We compare the performances of DPMR to SPP (Shared Path Protection) and
DPP (Dedicated Path Protection). In Fig.4, we find that DPMR has larger values
than DPP and SPP, and it means that resource utilization of DPMR is higher
than that of DPP and SPP. The reason for this is that high priority traffic’s
backup paths can share resources of low priority traffic, thus DPMR can save
more resources. As the network load increases, the value of DPMR increases
which means the much higher resource utilization. It is because the chances
of share resource between high priority traffic’s backup paths and low priority
traffic increase when more connections arrive in the network under much higher
traffic intensity.

Fig. 4. Resource utilization vs. network load in Erlangs in USANET
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Fig. 5. Blocking probability vs. network load in Erlangs in USANET

In Fig.5, we also find that blocking probability of DPMR is much lower than
that of DPP and SPP. The reason is that DPMR can save more wavelength
resources as mentioned before. Then the network will have more resources to
support the incoming connections and establish them successfully. When the
network load increases, the advantage of DPMR is more significant.

6 Conclusions

In this paper, we have proposed an algorithm DPMR under dynamic traffic.
We also have modified the general link cost function according to Dynamic Pre-
emptive Multi-Class Routing scheme and used it to find the routes. Then, we
have evaluated the performances from resource utilization and blocking proba-
bility. Simulations show that DPMR is better than DPP and SPP in resource
utilization and blocking probability
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Abstract. A new evaluation method is presented that employs cut sequence set 
(CSS) to analyze fault trees. A cut sequence is a set of basic events that fail in a 
specific order that can induce top event. CSS is the aggregate of all the cut 
sequences in a fault tree. The paper continues its former researches on CSS and 
uses CSS, composed of sequential failure expressions (SFE), to represent the 
occurrence of top event. According to the time relationships among the events 
in each SFE, SFE can be evaluated by different multi-integration formulas, and 
then the occurrence probability of top event can be obtained by summing up all 
the evaluation results of SFE. Approximate approaches are also put forward to 
simplify computation. At last, an example is used to illustrate the applications 
of CSS quantification. CSS and its quantification provide a new and compact 
approach to evaluate fault trees. 

1   Introduction 

Since the first use in 1960s, fault tree analysis has been widely accepted by reliability 
engineers and researchers for its advantages of compact structure and integrated 
analyzing methods. There have been many methods developed for the evaluation of 
fault trees (FT) [1]. With the development of computer technology, former static fault 
tree (SFT) analysis is not applicable to some new situations, because SFT can not 
handle the systems that are characterized by dynamic behaviors, Hence, Dugan et al 
[2] introduced some new dynamic gates, such as FDEP, CSP, PAND and SEQ gates, 
and put forward dynamic fault trees (DFT) to analyze dynamic systems. In DFT, top 
event relies on not only the combination of basic events, but also on their occurrence 
order. The dynamic behaviors bring the difficulty to evaluate DFT. 

Fussell et al [3] firstly analyzed the sequential logic of PAND gate, where they 
provided a quantitive method for PAND gate with no repair mechanism.  

Tang et al [4] introduced sequential failures into the traditional minimal cut set for 
DFT analysis, and provided the concept of minimal cut sequence. Minimal cut 
sequence is the minimal failure sequence that causes the occurrence of top event, and 
it is the extension of minimal cut set. However, [4] did not indicate how to extend 
minimal cut set to minimal cut sequence and did not make quantitive analysis. 

Long et al [5] compared Fussell’s method [3] with Markov model, and got the 
same result for PAND gate with three inputs. Then, in [6], Long et al presented the 
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concept of sequential failure logic (SFL) and its probability model (SFLM), by which 
the reliability of repairable dynamic systems are evaluated by multi-integration. 
SFLM reveals the thought that dynamic systems can be translated into SFL, but it 
does not provide an integrated method to solve general DFT. 

Amari et al [7] introduced an efficient method to evaluate DFT considering 
sequence failures. However, in the processes to evaluate spare gates, the method has 
to employ Markov model which will confront the problem of state explosion. 

Our earlier work [8] indicated that cut sequence is intuitive to express the 
sequential failure behavior, and that it is an applicable way to make reliability 
analysis using cut sequence. So, in [8], we provided an integrated algorithm, named 
CSSA, to generate the cut sequence set (CSS), the aggregate of all cut sequences in 
DFT. This paper will continue our research and focuses on the quantification of CSS 
based on the analysis of SFLM. The purpose of the paper is to provide a new and 
compact quantification approach to calculate the reliability of dynamic systems. 

Section 2 of this paper provides some concepts. Section 3 introduces the generation 
of CSS briefly. The quantification of CSS is detailed in section 4. In section 5, an 
example is used to illustrate our approach. And the conclusion is made in section 6. 

2   Background and Concepts 

2.1   Notation 

xi an input to SFL. 

ixλ  the failure rate of xi. 

ixμ  the repair rate of xi. 

τi the duration of xi in operation state. 
τi’ the duration of xi in warm standby state. 
F(t) the probability that top event occurs at time t. 
α the dormancy factor of warm standby component, and 0<α<1. 

)(tf
ix  the failure probability density of xi in operation state. 

)(tf
ix  the failure probability density of xi in warm standby state. 

2.2   Dynamic Fault Trees 

Using dynamic gates, DFT obtain the ability to describe dynamic systems in a more 
feasible and flexible way. Fig. 1 shows the symbols of dynamic gates. 

PAND gate is an extension of AND gate. Its input events must occur in a specific 
order. For example, if a PAND gate has two inputs, A and B, the output of the gate is 
true if: 

• Both A and B have occurred, and 
• A occurred before B. 

FDEP gate has tree types of events: 
• A trigger event: it is either a basic event or the output of another gate in the tree. 
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Fig. 1. Dynamic gates used in DFT 

• A non-dependent output: it reflects the status of the trigger event. 
• One or more dependent events: they functionally rely on the trigger event, which 

means that they will become inaccessible or unusable if the trigger event occurs. 

CSP gate has a primary input and one or more alternate inputs. All inputs are basic 
events. The primary input is the one that is initially powered on, and the alternate 
input(s) specify the components that are used as the cold spare unit of the primary 
unit. The output of CSP gate becomes true if all inputs occur. 

WSP gate is similar to CSP gate except that the alternate units in a WSP gate can 
fail independently before primary active unit. 

SEQ gate forces events to occur in a particular order. The output of SEQ gate does 
not occur until all its inputs has occurred in the left-to-right order in which they 
appear under the gate. SEQ gate can be contrasted with PAND gate in that the inputs 
in PAND gate can occur in any order, whereas SEQ gate allows the events to occur 
only in a specified order. All the inputs, except the first one, of SEQ gate must be 
basic events, so, if the first input is a basic event, SEQ gate is the same to CSP gate. 

2.3   Sequential Failure Logic Model 

In SFLM [6], SFL is used to describe the failure relation among events. SFL is a 
qualitative expression of PAND gate. For example, if the inputs of SFL are x1, x2, …, 
xn, respectively, the output will occur when x1, x2, …, xn fail in a fixed sequence. If x1 
fails at time τ1, and x2 fails at time τ2, …, xn fails at time τn, where τ1<τ2<…<τn, the 
output of SFL will occur at τn. If xi fails after xj, where i < j, output will not occur. 

Long et al used the following formula to provide the probability that the output of 
SFL occurs at time t: 

∫ ∫ ∫
−

−= t t t
nnnxxx

n n
dddffftF

0 1121
1 1 21

)()()()( τ τ ττττττ LLL  (1) 
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In formula (1), the multi-integration implies the probability that inputs remain in 
failed states after their failing in a particular sequence, and that the sequences by 
which the occurrence of the output is not generated are excluded. 

In this paper, we suppose that components and system can not be repaired, and that 
τi’ is independent to τi. Besides, we suppose that components are exponentially 
distributed, then, the failure probability density function of xi in operation state is 

t
xx

ix

ii
etf

λλ −=)( , and the failure probability density function of xi in warm standby 

state is t
xx

ixix

ii
etf

λαλ −=)( . 

3   Generation of CSS 

Using dynamic gates, DFT gain the ability to describe dynamic systems in a more 
feasible and flexible way (refer to [2] for more information about DFT). The top event 
of DFT depends not only on the combination of basic events, but also on the failure 
sequence of basic events. Tang et al expended the concept of minimal cut set for static 
fault trees, and provided the concept of minimal cut sequence for DFT [4]. Compared 
to cut set, which does not consider the sequences among basic events, cut sequence is 
a basic event sequence that can result in the occurrence of top event in DFT. For 
example, cut sequence {A->B} means that top event will occur if event A fails before 
event B. 

Therefore, the top event of DFT can be described in a format composed of basic 
events and their sequential relations. In [8], we defined a new symbol, sequential 
failure symbol (SFS) “→”, to express the failure sequence of events. 

Connecting two events, SFS indicates that the left event fails before the right event. 
SFS and its two events constitute sequential failure expression, SFE, such as A→B, 
where A and B can be basic events or their combination. Several events can be 
chained by SFS. For example, A→B→C indicates that A, B and C fail according to 
their positions in the expression, namely, A fails first, B fails next, and C fails last. 

Using SFS, the top event of DFT can be expressed by SFE, which are actually cut 
sequences. And all the cut sequences constitute the CSS. If there are more than one 
cut sequences, CSS can be expressed by the logic OR of some SFE. 

For the AND gate that has n inputs, n! SFE can be obtained. For example, if the 
structure function of a fault tree is Ф = ABC, it has 3! = 6 SFE, namely 

)}()()(

)()(){(

ABCBACACB

CABBCACBACSS

→→∪→→∪→→
∪→→∪→→∪→→=  (2) 

It is relatively simpler to get the CSS of a PAND gate, since we can use SFS to 
connect its inputs according to their sequence. For example, if a fault tree has the 
structure function Ф = A PAND B PAND C, its CSS is {A→B→C}. 

The CSS generation for FDEP gates needs to be considered carefully, since it 
depends on two conditions, i.e., the condition that trigger event occurs and the 
condition that trigger event does not occur. Let E1 denote the trigger event of a FDEP 
gate. If E1 occurs, this means that all its dependent events are forced to occur. In this  
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condition, we can analyze the fault tree and get one or more result SFE, which are 
denoted by E2. If E1 does not occur, we can also get one or more SFE in the new 
condition, which is denoted by E3. Then, the CSS of the fault tree is (E1∩E2)∪E3. 

In order to get the CSS of CSP gate, a new expression is needed, i.e., BA
0 . BA

0  

means that B is a cold spare unit of A, and that B does not start to work until A fails. 
The failure rate of B is zero before A fails. We can use BA A

0→  to express the failure 

relation between A and B, where B is a cold spare unit of A. 
WSP gate is similar to CSP gate except that the alternate units in a WSP gate can 

fail independently before primary active unit. In order to show this kind of relation, 
additional two concepts are used: BA

α  and Bα . 

• BA
α  means that B is a warm spare unit of A, and that B do not turn to operate until 

A fails. The dormancy factor of B is α, which means that the failure rate of B is α 
times to its normal failure rate before A fails. 

• Bα  means that B fails independently and its dormancy factor is α before B fails. 

Using the above two symbols, we can write down the SFE that express the 
dynamic behavior of WSP gate. 

The detailed procedures about the CSS generation can be found in [8], where an 
integrated study of generating CSS for DFT is discussed. 

4   Quantification of CSS 

In this section, we will apply the analysis method about SFL introduced in [6] to SFE, 
and obtain a quantitive model for CSS. 

Now that CSS is expressed by SFE, we can compute the occurrence probability of 
top event using the following formula: 
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Each term of formula (3) can be decomposed recursively into one or several SFE. 
And eventually, the formula comes down to compute the probability of SFE set. 

4.1   Quantification of Normal SFE 

For AND, SEQ and PAND gates, their SFE can be expressed using SFE= 
x1→x2→…→xn, the occurrence probability of which is 
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Proof: SFE=x1→x2→…→xn means that xj fails after xi but before xk, where 
1≤i<j<k≤n. If xi fails at time τi (0<τi≤t), we have τi<τi+1≤t. Therefore, the occurrence 
probability of SFE is 

},,,0Pr{)( 1211 ttttF nn ≤<≤<≤<= − τττττ L  (6) 

From the conditional probability function, we have 
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we have the final expression: 
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If the event number is large, the evaluation of formula (4) is difficult to perform. 
Then, we can turn to an approximate way that divides time t into M intervals and use 
h=t/M as the integration step (just like Amari’s approach [7]). The result is 
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4.2   Quantification of SFE for CSP Gates 

For CSP gates, the SFE is 
nxx xxx

n

0
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→→→ L , the occurrence probability of which is 
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Proof: 
nxx xxx

n

0
2

0
1

11 −
→→→ L  means that xi+1 does not start to work until xi fails (1≤i≤n). 

Therefore, the occurrence probability of SFE can be represented by 
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The probability can be computed by convolution function, which is 
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The integral region is below the n-dimension hyperplane of t
n
k i =∑ =1τ . The iterated 

integral form is 
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Thereby, we prove the formula (11). The approximation of formula (11) is 
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4.3   Quantification of SFE for WSP Gates 

For a WSP gate, its corresponding SFE has two forms, namely, 
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E is the trigger event of WSP gate, xi is the component that fails after going to 
operation, and yi is the component that fails independently in its warm standby state. 

The occurrence probability of SFE (16) is  
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Proof: The time relationships of SFE (16) can be expressed by Fig. 2. Therefore, its 
occurrence probability can be expressed by 
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It easy to get the following probability 
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Since the duration in warm standby state for a component is independent to that in 
operation state, utilizing formula (11), we have the final equation: 
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The approximation of formula (18) is 
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SFE (17) also derives from WSP gates, where y1, y2, …, yn fail independently and 
x1, x2, …, xm are warm spare units that fail in a fixed sequence. Let σi’ denote the 
duration of yi in warm standby state, then the occurrence probability of SFE (17) is  
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Proof: The time relationship among the events in the SFE is shown in Fig. 3. 
Therefore, the probability of the SFE can be expressed by 
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Therefore, utilizing formula (18), we have the final equation (25). 
The approximation of formula (25) is 
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For any SFE that describes event sequential failures, it has a general formation like 
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We can work out the probability of expression (31) using formula (25), and get its 
approximation using formula (29). 

5   Case Study 

In this section, we will present the quantification processes of CSS using a case 
system. The system is named Hypothetical Dynamic System, HDS. 

HDS has four components, namely A, B, C and S. We would like to suppose that A, 
B and C are power supports of an equipment, and S is a switch that controls C. C is a 
cold spare unit that will take over A or B depending on which one fails first. If S fails 
before A or B, it will affect C that C can not switch into the system and thus can be 
thought failed. However, if S fails after it switches C into the system, it will no longer 
influence C. HDS requires at least two power supplies for operation. The fault tree of 
HDS is shown in Fig. 4, where FDEP gate indicates that its trigger event, which is the 
output of a PAND gate, will suspend C. The output of PAND gate becomes true if S 
fails before A or B.  

The CSS of HDS is: [8] 
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Fig. 4. The fault tree of HDS 

The failure probability of HDS can be computed by the following formula: 
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SFE1, SFE4, SFE5 and SFE6 can be evaluated using formula (10) and SFE2 and 
SFE3 can be evaluated using formula (15). 

All intersection results of SFEi∩SFEj are listed in Table 1. The probability of the 
SFE can be computed using formula (10), (15) or (29). From the conclusion in [6], we  
 

Table 1. The results of ji SFESFE ∩  

21 SFESFE ∩  
)(

)(
0

0

BCA

CBA

A

A

→→

∪→→  
62 SFESFE ∩

)()(

)()(

)()(

00

00

00

BCSABCAS

CBASBSCA

CBSACABS

AA

AA

AA

→→→∪→→→

∪→→→∪→→→

∪→→→∪→→→
 

31 SFESFE ∩ )( 0CBA B→→  43 SFESFE ∩ )()( 00 CABACB BB →→∪→→  

41 SFESFE ∩  Does not exist 53 SFESFE ∩
)()(

)()(

)()(

00

00

00

ACSBACBS

CABSASCB

CASBCBAS

BB

BB

BB

→→→∪→→→

∪→→→∪→→→

∪→→→∪→→→
 

51 SFESFE ∩  )( BAS →→  63 SFESFE ∩ )( 0CBS B→→  

61 SFESFE ∩  
)(

)(

BAS

BSA

→→
∪→→  

54 SFESFE ∩
)(

)(

ABS

ASB

→→
∪→→  

32 SFESFE ∩  * 64 SFESFE ∩ )( ABS →→  

42 SFESFE ∩  )( 0CAB A→→  65 SFESFE ∩
)(

)(

ABS

BAS

→→
∪→→  

52 SFESFE ∩  )( 0CAS A→→    



 Quantification of Cut Sequence Set for Fault Tree Analysis 765 

Table 2. The unreliability of HDS 

Time t[h] h=10 h=1 Relex 
300 0.0592 0.0496 0.0432 
600 0.1548 0.1431 0.1395 

1000 0.3152 0.2997 0.2947 

can ignore the results of the third term and the latter terms in formula (33), because 
their values are very small. 

Suppose that the components in HDS are exponential distributed and the failure 
rates are λA=λB=0.0004, λC=0.0005, λS=0.0006. We computed formula (33) using 
Matlab software given that h=1 and h=10 respectively. As a comparison, we also 
evaluated HDS using Relex software [9] that uses Markov model to solve dynamic 
gates. The unreliability of HDS for different time t is listed in Table 2. From the 
results, we can see that, with the decreasing of h, the evaluation result based on CSS 
becomes closer to that based on Markov model. 

References 

1. Amari, S.V., Akers, J.B.: Reliability analysis of large fault trees using the Vesely failure 
rate. In: Proceedings of Annual Symposium on Reliability and Maintainability, pp. 391–396 
(2004) 

2. Dugan, J.B., Bavuso, S., Boyd, M.: Dynamic fault tree models for fault tolerant computer 
systems. IEEE Transactions on Reliability 41, 363–377 (1992) 

3. Fussell, J.B., Aber, E.F., Rahl, R.G.: On the quantitative analysis of priority-AND failure 
logic. IEEE Transactions on Reliability, 324–326 (1976) 

4. Tang, Z., Dugan, J.B.: Minimal Cut Set/Sequence Generation for Dynamic Fault Trees. In: 
Proceedings of Annual Symposium on Reliability and Maintainability, LA (2004) 

5. Long, W., Sato, Y.: A comparison between probabilistic models for quantification of 
priority-AND gates. In: Proc. PSAM-4, vol. 2, pp. 1215–1220 (1998) 

6. Long, W., Sato, Y., Horigone, M.: Quantification of sequential failure logic for fault tree 
analysis. Reliability Engineering & System Safety 67, 269–274 (2000) 

7. Amari, S., Dill, G., Howald, E.: A New Approach to Solve Dynamic Fault Trees. In: 
Proceedings of Annual Symposium on Reliability and Maintainability, pp. 374–379 (2003) 

8. Liu, D., Xing, W., Zhang, C., et al.: Cut Sequence Set Generation for Fault Tree Analysis. 
In: Lee, Y.-H., et al. (eds.) ICESS 2007. LNCS, vol. 4523, pp. 592–603. Springer, 
Heidelberg (2007) 

9. http://www.relex.com/ 



R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 766–775, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Improving a Fault-Tolerant Routing Algorithm Using 
Detailed Traffic Analysis  

Abbas Nayebi, Arash Shamaei, and Hamid Sarbazi-Azad 

Sharif University of Technology, Tehran, Iran, and 
IPM School of Computer Science, Tehran, Iran 

{nayebi,a_shamaei}@ce.sharif.edu, azad@{sharif.edu,ipm.ir} 

Abstract. Currently, some coarse measures like global network latency are 
used to compare routing protocols. These measures do not provide enough 
insight of traffic distribution among network nodes in presence of different fault 
regions. This paper presents a detailed traffic analysis of f-cube routing 
algorithm achieved by a especially developed tool. Per-node traffic analysis 
illustrates the traffic hotspots caused by fault regions and provides a great 
assistance in developing fault tolerant routing algorithms. Based on such 
detailed information, a simple yet effective improvement of f-cube is suggested. 
Moreover, the effect of a traffic hotspot on the traffic of neighboring nodes and 
global performance degradation is investigated. To analyze the per-node traffic, 
some per-node traffic metrics are introduced and one of them is selected for the 
rest of work. In an effort to gain deep understanding of the issue of traffic 
analysis of faulty networks, this paper is the first attempt to investigate per-node 
traffic around fault regions. 

1   Introduction 

There exist several computational-intensive applications that require continued 
research and technology development to deliver computers with steadily increasing 
computing power [  1]. The required levels of computing power can only be achieved 
with massively parallel computers, such as the Earth Simulator [  2] and the Blue-
Gene/L [  3]. The long execution time of these applications requires keeping such 
systems running even in the presence of failures. However, the vast number of 
processors and associated devices significantly increases the probability of failure in 
the system. In particular, failures in the underlying interconnection network in a 
mulicomputer may isolate a large fraction of machine, wasting many healthy 
processors. It is also noteworthy that increasing clock frequencies leads to a higher 
power dissipation, which could lead to failures [  4].  

It has been reported that network-on-chips (NoCs) applications are prone to faults 
and have power dissipation restrictions [ 5-  8]. The mesh network topology, due to its 
ideal simplicity and planarity, is widely used in NoCs [  4,  6]. Power dissipation is also 
an important issue in developing NoCs. Due to high level of complexity of VLSI 
circuit, uniform distribution of power dissipation and avoiding hotspots is so critical, 
too [  9]. 
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It is desirable for any fault-tolerant algorithm to be associated with a detailed 
traffic analysis. One drawback is that achieving per-node traffic is a time consuming 
process and requires advanced tools. Therefore, many of published works did not 
perform a detail analysis of traffic around fault regions [ 11- 16, 20]. There is only a 
brief analysis in [  21] reported in the literature.  

In this paper, we try to analyze traffic distribution around faulty regions in a most 
classical fault-tolerant routing algorithm, called f-cube [  10], which is the basis of 
many other routing algorithms too. Here, some metrics for per-node traffic are 
provided and one of them is selected for the rest of the work. Based on the gained 
insight of traffic pattern around fault region, a simple but efficient improvement is 
proposed which has a noticeable effect on the performance measures of the f-cube 
routing algorithm. 

The rest of paper is organized as follows. Section 2 provides an overview of related 
work. Section 3 presents f-cube routing algorithm briefly. Section 4 introduces some 
per-node traffic metrics which will be later used in our analysis. Section 5 gives the 
simulation methods used and the results on the distribution of traffic around fault 
regions. Our proposed improvement is explained in Section 6, and the last section, 
section 7, concludes the paper. 

2   Related Work 

Numerous deterministic fault-tolerant routing algorithms in meshes have been 
proposed in recent years [  10- 16,  20,  22] most of which augment the dimension-order 
routing algorithm to tolerate certain faults. Boppana and Chalasani proposed a fault-
tolerant routing algorithm for mesh networks [  10], and for mesh and torus networks 
[  11]. The key idea of their algorithms is that, for each fault region, a fault ring or fault 
chain consisting of fault-free nodes and channels can be formed around it; if a 
message comes in contact with the fault region, the fault ring or chain is used to route 
the message around the fault region. This point implies that traffic around fault 
regions must be uneven and intensive. Deadlocks can be prevented by using four 
virtual channels per physical channel for deterministic (dimension-order) fault-
tolerant routing. Their fault model is rectangle or special convex. 

In this work, two measures have been used to compare the overall performance of 
the proposed routing algorithm: "latency" and newly introduced metric "AVC" 
(average number of used virtual channels in each node). There is nothing in the 
presented work giving insight about traffic intensity around fault region. Sui and 
Wang [ 15], Zhou and Lau[ 19], Tsai [  17], and Wu [  22] proposed some fault-tolerant 
wormhole routing algorithms using various number of virtual channels. Performance 
degradation reported in the above papers is mainly due to some bottlenecks in small 
areas of network especially at the corners of fault rings. We investigate this issue in 
details for the f-cube algorithm and show how a bottleneck in a corner of fault region 
could propagate traffic to neighboring nodes and increase the total network latency. 
This phenomenon is related to the nature of wormhole routing which has a great 
potential to propagate effects of regional bottlenecks into the entire network. 
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In [  18], an appreciable analysis of traffic is performed and fairness of traffic is 
investigated but it is all about fault free networks. 

3   The f-Cube Routing Algorithm 

The f-cube routing algorithm was introduced in [  10]. In this algorithm messages are 
assigned types based on the relative positions of the source and destination nodes and 
dimension-order routing. In a 2D mesh network, messages are typed as east-west 
(EW), west-east (WE), north-south (NS), or south-north (SN) based on the relative 
values of offsets in the first dimension. Routing is in dimension order until a message 
encounters a fault region. Depending on the type, the message is routed around the 
fault region (Figure 1).  

The direction around the fault region is selected based on the relative position of 
the destination node. The WE and EW messages use c0 channels, and NS and SN 
messages use c1 channels as shown in Figure 1. Since the topology is mesh and there 
are no wraparound channels, there are no cyclic dependencies between c0 channels 
(and also between c1 channels). A brief description of the routing algorithm is 
presented in Figure 2. 

 

Fig. 1. Usage of virtual channels in f-rings 

 

Fig. 2. The f-cube2 algorithm 

Algorithm f-cube2 (Fault-Tolerant Routing around Block Faults in 2D meshes) 

1. Set and determine the message type (EW, WE, NS, or SN) based on the 
relative address of the destination. 

2. At an intermediate node, a message is routed as follows: 
− If the message has reached the destination, deliver the message. 
− If the message has reached the destination column, set the message type to 

NS or SN. 
− The message is forwarded along the dimension-order path if fault-free. 
− The message has encountered a fault region. If this is the first hop in the 

fault ring, the message picks a direction to follow along the fault ring 
according to figure1and the relative location of the destination. 

− If a dimension-order path is not free, the message continues in the same 
direction along a fault ring. 
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4   Per-Node Traffic Metric 

In order to deal with local traffic in a node, a metric must be declared which depicts 
how a single node may block the incoming messages and lead to a bottleneck. Some 
of the metrics that can be considered are: 

• AUC: Average Utilization of incoming and outgoing physical Channels of a node. 
• ANB: Average Number of Blocked messages in routing element. 
• AWB: Average Waiting time in Blocking queue. 
• AVC: Average number of used Virtual Channels in the node switch. 

In this paper, we use the AVC metric which shows the utilization level of node 
switch. Figure 3 shows the effect of global traffic on different metrics in a 16x16 
mesh network with a Poisson node traffic generation distribution and uniform 
destination traffic pattern. Channel delay is assumed to be one cycle and 
switching/routing delay is set to zero. Switching method is wormhole with 8 virtual 
channels per physical channel. The above mentioned measures are captured for the  
 

center node (8,8) in the network. These values are normalized to be comparable. As 
depicted in this figure, AUC metric is almost linear before saturation region. So, AUC 
indicates that the traffic is linear and is not sensitive when getting close to saturation 
point. However, AUC depicts the traffic intensity.  

ANB metric has the sharpest curve. It's almost zero before saturation region and 
rise up rapidly near saturation point. This metric provides no insight on traffic 
propagation of hotspots because of ignoring the traffic levels lower than a threshold. 
However, ANB diagnose hotspots more clearly.  

AWB is much similar to AUC. Note that AVC has the benefit of highlighting the 
hotspots with its exponential-like curve and also notices the low level values of traffic 
(unlike ANB). 

5   Simulation Results 

Simulation experiments are performed using XMulator [  23]. XMulator (which is 
developed by the authors) is a complete, flit-level, event-based, and extensively 
detailed package for simulation of interconnection networks which can simulate 
different interconnection networks with arbitrary topology, switching methods, 
routing algorithms, and even in the presence of faults.  

For the sake of this study, delays for switching and routing are ignored and only 
delay of physical channels is considered. Two virtual channels are used for each 
physical channel. Injection channels and ejection channels have 2 virtual channels, 
too. Message consumption and generation bandwidth is unlimited. Message 
generation rate for each node is 0.0003 which keeps the network in a normal 
functional situation in all the scenarios and does not make the network saturated. 
Physical channel delay is 1 cycle and message length is chosen to be 32 flits.  
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Fig. 3. Effect of global traffic on different per-node traffic measures in a 16x16 mesh 

A 32 × 32 mesh is simulated, since we are interested in large parallel systems. 
Uniform traffic pattern is generated by each node and message generation interval has 
exponential distribution (a Poisson distribution of number of generated messages per 
a specified interval). As mentioned before, AVC (average number of used virtual 
channels in each node) is considered as the traffic metric. This is the time-averaged 
value of number of connected virtual channels in a switch element. 

Four fault regions are simulated: A 1 × 8 region, an 8 × 1 region, and two 8 × 8 
regions. Three of these fault regions are placed in the centre of the network and an 8 × 
8 region is placed in the east side of the network to investigate the effect of fault 
region position on the traffic distribution. The last fault region which placed near 
network edges is not stuck to network edge and there is a line of nodes to the edges. 
This space is considered for better comparison of results. 

Results of simulation are depicted in Figure 4.a, c, e and g. Figure 4.a depicts the 
presence of 4 × 4 faulty region at the centre of network. As illustrated in the figure, 
the semi-flat surface of Figure 4.a is substantially changed here and two peaks at 
south-east and north-east of faulty area are appeared. Figure 4.e depicts the effect of a 
1 × 8 horizontal fault region. Figure 4.g depicts the results for a centered 8 × 8 fault 
region while Figure 4.c shows similar results for an 8 × 8 region cited at the east side 
of the network. 

There are two horizontal lines which rise just above and below the fault region. 
This is because of the nature of dimension-order routing. When an east to west or 
west to east message arrives at a fault region, it must go up or down and turn around 
the fault region but can not go back to its previous row unless it has been reached to 
destination column. As depicted in the figures, centered fault regions make stronger 
traffic hotspots than fault regions located in the corners. Moreover, comparing  
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Figure 4.e with Figure 4.a, c, and g reveals that f-cube algorithm performs poorly in 
case of horizontal fault regions. Comparing the overall latency values confirms this 
observation, too. 
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Fig. 4. Traffic level (AVC) for various fault regions. (a), (c), (e) and (g) are 4 × 4, 8 × 8(East), 
1 × 8 and 8 × 8 regions respectively by f-cube2 algorithm and (b), (d), (f) and (g) are the same 
fault region applied by modified f-cube2 algorithm 
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Fig. 4. (continued) 

6   Improvement 

Analyzing the above results makes it clear that degrading the traffic intensity at the 
corners of block faults may diminish the effects of bottlenecks and improve  
the performance of the f-cube algorithm. All EW (WE) messages which encounter the 
fault region should traverse SE/NE (SW/NW) corner. To reduce the traffic intensity at 
these corners, it is a good idea to divide the messages into two categories which turns 
at two different corners. Half of the messages with destinations absolutely outside the 
entire fault ring use a secondary corner just below/above the main SE/NE (SW/NW) 
corner and turn at this point and remaining messages go through the ordinary SE/NE 
(SW/NW) corner. Using two corners distributes the traffic at one corner and reduces 
the effects of bottleneck.  

Similar procedure is proposed for NS and SN messages. The proposed method is 
deadlock free, since f-cube2 is deadlock free [ 10]. An example of the acyclic directed 
networks of virtual channels used by four types of messages is given in Figure 5. 
Comparing this figure with the corresponding figure in [ 10], it can be easily inferred 
that there is no cyclic dependency on the virtual channels acquired by the messages 
blocked in the network.  

Comparing the two methods, for a range of message generation rate in Figure 6, 
shows that the proposed method has reduced the average message latency and 
improved the saturation point of the network. 

Figure 4 also shows the effect of applying the proposed method for various fault 
regions. As depicted in the figure, the traffic intensity and bottleneck drawbacks are 
reduced significantly. 
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Fig. 5. Example of acyclic directed graph used by modified f-cube2 in an 8x8 mesh with four 
faulty regions. The channel graph in part (a) is used by East to West messages, part (b) by West 
to East messages, part (c) by South to North messages and part (d) by North to south messages. 

0

50

100

150

200

250

300

0.0001 0.00015 0.0002 0.00025 0.0003 0.00035 0.0004 0.00045

Traffic Generation Rate

A
ve

ra
g

e 
M

es
sa

g
e 

L
at

en
cy

FCube2_M32

FCube2_M_M32

FCube2_M64

FCube2_M_M64

 

Fig. 6. Simulation result for a 32×32 mesh 

7   Conclusions 

In this paper, we analyzed the traffic distribution around faulty regions in mesh 
interconnection network. The f-cube algorithm is chosen as a classical fault-tolerant 
routing algorithm. 

a. EW b. 

d. c. 
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Four metrics of per-node traffic are proposed and the AVC (average number of 
used virtual channels in switch) is selected in the rest of the paper for the sake of this 
study. Simulations are performed on a typical 32 × 32 mesh network with uniform 
destination traffic pattern and with a moderate message generation rate at each node 
(that does not cause traffic saturation). Results show that the f-cube algorithm may 
lead to a traffic hotspot at north-east and south-east of the fault ring. In a simulated 8 
× 8 fault region located in the centre of the network, traffic at the north-east corner 
was increased by a factor of 7.7 in comparison to a fault-free network. This result is 
so important and useful in designing power-aware NoCs. Moreover, it is 
demonstrated that f-cube algorithm makes two horizontal lines with intensive traffic 
on the top and bottom of fault region. 

Our approach is the first attempt to provide insight on the traffic distribution 
around fault regions. Using the detailed information about the traffic hotspots, a 
simple but efficient improvement was made to f-cube algorithm which was shown 
through simulation experiments. 
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Abstract. An ontology for Semantic Web Services is proposed in this paper, 
whose intention is to enrich Web Services description. Distinguish from the 
existing ontologies, the proposed ontology is based on both functionalities and 
performances, and it is organized as a layered construction. The discovery 
related with the proposed ontology is also discussed. Based on the Service 
Oriented Architecture, the proposed ontology is helpful for requesters to find 
their suitable services according to their own preference. Besides, as an 
example, an ontology for the learning resource is organized in the paper. 

1   Introduction 

As a novel Internet component, the significance of Web Services means enhanced 
productivity and quality by reuse and composition of Web Services. Developers use 
the services as fundamental elements for applications. As an emergent paradigm, 
Services Oriented Computing (SOC) is based on the service provider and service 
requester, where the provider builds a set of invocable applications that provide 
certain functionalities, while the requester invokes the services or composes suitable 
application. 

With the development of network, there are more and more Web Services that are 
on different software and vendor platforms, and how to discover and compose them is 
one of the most challenges. All kinds of network environments require effective 
discovery and composition to satisfy the different kinds of requirements of requesters. 

1.1   Existing Architecture––Service Oriented Architecture (SOA) 

There are three main roles in SOA, which are services provider, services registry and 
services requester. In order to implement the basic operations (publication, discovery 
and binding), SOA should describe the services explicitly. The service descriptions 
are organized as a Service Directory. For example, UDDI (University Description, 
Discovery and Integration) Registry is a well-known tool. 

However, UDDI organizes the services according to the defined categories 
(including the built-in NAICS, UN/SPSC and the user defined ones) without any 
semantic analysis, such as content or context. UDDI’s search is based on syntax and 
relies on XML, which also enables syntactic. Syntax-based matching limits the reuse 
of Web services provided by the different kinds of providers. As we know, content 
and context play the important roles during the dynamic discovery and composition 
process, and semantic-based matching allows the requesters query through the content 
and context. 
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Furthermore, UDDI doesn’t provide the quality description so that it can’t enable 
the requesters to select the suitable ones. One of the paper’s intentions is to enhance 
the semantic capabilities of UDDI by using tModel and so on. 

1.2   Semantic Web Services 

Fillman states that the Semantic Web intents to generate Web pages or services with 
formal declarative descriptions that programs can use to find the appropriate service 
and use it correctly [1]. To enrich Web Service description, the set of methods and 
tools in Semantic Web are employed. Ontology is an important part in the semantic 
web architecture proposed by Tim Burners-Lee in 2000 [2]. OWL-S is a well-known 
technology built inside the Web Services, and it is an ontology for web services that 
supplies Web Service providers with a core set of markup language constructs for 
describing the properties and capabilities of their Web Services in unambiguous, 
computer-interpretable form [3].  

However, OWL-S also depends on WSDL (Web Services Description Language), 
an XML format for describing network services [4]. As one of main areas of Web 
service protocol stack, WSDL is used for describing the public interface to a specific 
web service. When OWL-S is introduced to describe services, the transformation 
from OWL-S to WSDL occurs. And there are semantic losses in the mapping stage. 
That means WSDL doesn’t keep the rich semantics of OWL-S. 

Although there are different ways to enhance the discovery of Web Services, there 
are several limitations in its description: (i) lack of semantics, such as pure WSDL, 
(ii) lack of non-functional attributes. All the above also bring forward new challenges 
to traditional SOC. The intention of this paper is to propose an ontology for Semantic 
Web Services in SOA so that UDDI can discover the more suitable services according 
to the preference of the requesters. 

2   Ontology for Semantic Web Services 

Ontology is a modeling tool for conceptual model, which describes the information 
system in terms of semantics and knowledge. The following is famous Guarino’s 
definition of ontology: [5] 

An ontology is a logical theory accounting for the intended meaning of 
a formal vocabulary, i.e. its ontological commitment to a particular 
conceptualization of the world. 

The definition shows that the intention of ontology is to capture, describe 
knowledge in explicit way, where the domain knowledge is represented as concepts 
and relationships. As a result, knowledge sharing is attained. 

2.1   Ontology for General Purpose 

Definition 1. Ontology O is defined as: 

O = <c, p, a> 
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Where: 

• c is a set of name concepts, 
• p is a set of property concepts, 
• a is a set of axioms. 

In Definition 1, the axioms are the constraints and rules that are defined on the 
concepts and properties.  There are four types of relationships between the concepts, 
which are part-of, kind-of, instance-of and attribute-of. 

The triple in Definition 1 is corresponding to OWL (not OWL-S). The set c is 
equal to Class in OWL, whose elements are URI or expressions. The set p is equal to 
Attributes so that all the data types in XML Schema can be used in OWL. 

In a word, Ontology is a static conceptual model for domain knowledge, which 
uses terminologies and their relationships agreed upon by wide communities to 
describe the domain knowledge and its structure. 

2.2   Ontology for Web Services 

Definition 2 (Web Services description model). A Web Service is defined as: 

Service（d，f，p） 

Where: 

• Service is a Web Service that supports semantics; 
• d is the basic information about Service, including name, ID, provider ID, 

taxonomy, version, etc. 
• f is the functional information about Service, including related properties, the set of 

input/ output data and data-type, etc. 
• p is the performance information about Service, including concerned non-

functional properties. 

At present, almost the web services descriptive languages are compliance with the 
model spontaneously, but they are all one-sided. For instance, WSDL addresses to 
describe the online communications in a structured way by defining an XML 
document for network services. It cannot deal with the semantic heterogeneity and not 
support the description for constraints that are important to composition. 

As semantic markup for Web Services, OWL-S defines an upper ontology for 
services. Each instance of service will present a ServiceProfile description, be 
described by a ServiceModel description, and support a ServiceGrounding 
description. These descriptions answer respectively “what does the service provide for 
prospective clients?”, “how is it used?”, “how does one interact with it?”. Besides the 
semantic loss that is mentioned above, OWL-S is regardless of quality of service [6]. 
For these matters, when semantic web service is proposed, there are several problems 
must be solved: (i) ontology-based representation, (ii) quality model, (iii) support  
of discovery and composition. The remainder of this paper will discuss the related  
issue. 
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2.3   A Layered Construction 

According to the ontology methodology, certain service ontology can be organized 
into a layered construction (Shown in Fig. 1): 

• Top level: there is the general knowledge or common sense, independent of any 
domain. In a word, they are shared by wide communities. For example, NAICS 
(The North American Industry Classification System) is a new industry 
classification. 

• Domain knowledge level: there are domain ontology and upper ontology. The 
upper ontology is defined by Definition 2, which is a model to describe  
the attributes and operations of web service. Domain ontology aims to serve for the 
providers who are in certain domain. For example, a travel service. Both domain 
ontology and upper ontology is not invocable, just like an abstract class. What they 
provide is a framework for a concrete, invocable service. This level can also be 
called as a semantic level. 

• Concrete level: there are invocable services that are described by OWL and 
organized according to the framework defined in the upper level. Besides, there are 
bindings to the specific implementations. 

 

Fig. 1. A Layered Construction of Ontology 

2.4   Quality Model 

Definition 3 (Quality Model of Web Services). QoS = {t,c,a,s….} 
Where: 

• t: the response time of the certain Web service. 
• c: the cost of the invoking of the certain Web service. 
• a: the probability of availability of the certain Web service in a given interval, it is 

a statistic. 
• s: the probability of success of the certain Web service in a given interval, it is also 

a statistic. 
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Vectors t, a and s are mature metric for quality of software, so their values are 
computed in the same way as that in quality of software [7].  

(i) Vector t is numeric parameter, whose value is assigned when the ontology for a 
concrete service is built. For example, a provider assigns vector t according to 
the performance of his service when publishes his service, and a requester also 
assigns vector t according to his requirements when he summits his request. 

(ii) Vector a, s can be computed by a counter in an Agent which is developed by the 
third party. Vector a is computed by the following formula, and Vector s can be 
computed by a similar way:  

a = 
)_(

)_(
invocationtotalnum

invocationavailablenum
 (1) 

(iii) Vector c plays a critical role in discovery of SOC. Just like in the real world, the 
requesters pay more attentions on it than other vectors.  

Definition 3 shows a general quality model. Considering the various domains, the 
model is defined as an open structure, where the users can define their own vectors 
about quality of service, and values of vectors vary with the domains. tModel in 
UDDI is exploited to support the model [8]. 

2.5   Implementation of Ontology 

In order to implement the defined ontology, we select Protégé as the editor. Protégé is 
based on Java and provides a PnP environment. Protégé ontologies can be exported 
into a variety of formats including RDF (S), OWL, and XML Schema. Furthermore, 
RacerPro is a selection of inference engines as the back-end inference system 
(reasoner) for use with Protégé. The RacerPro system implements the description 
logic and can reason about OWL knowledge bases, together with some algebraic 
reasoning beyond the scope of OWL. With the help of Protégé, the defined 
framework of Service Ontology can be designed and the previous version of 
knowledge based can be exploited together.  

3   An Example––Learning Resource Ontology 

In this section, we will consider an example about service ontology. Learning 
Resources (for short: LR) have played an important role in modern education.  
While in terms of Web Services, all the items in the Internet, such software,  
hardware, information and so on, can be regarded as available Services. So is learning 
resources.  

With reference to the main standard for learning object, we can define an ontology 
for LR compliance with Definition 2. Table 1 shows attributes of LR and related 
standards. Ontology LR is organized as shown in Table 1. 
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Table 1. Attributes of LR and Related Standard 

Attribute Sub-Element Related Standard 
identifier 

title 
language 
keywords 

description 
version 

d 

contribute 
format 

size 
requirement 

duration 
intended end 

f 

user role 
cost 

IEEE LOM 

scientificity 
accessibility 

update-interval 
CELTS-24 

response time  

p 

probability of success  

The following give more details about LR: 

• LR lies in the concrete level of Fig. 1, just like book buying. 
• IEEE LOM (Learning Object Metadata) [9] is a standard developed by IEEE, 

which lies in the domain level of Fig. 1. 
• CELTS (Chinese E-learning Technology Standardization) [10] is a standard 

developed by Chinese government, and CELTS-24 is its sub-standard for Service 
Quality of e-Learning. 

• Except attribute response time and succeed-probability, other attributes are 
assigned values compliance with the standards. 

4   Discovery Process 

The intention of Service Ontology defined in Section 2 is to add semantics to WSDL 
and UDDI. In this section, we show how to use Service Ontology to find the suitable 
service for requesters or compound service developers. 

4.1   Discovery Process 

(i) Transform the requests of customers in forms of Service Template compliance 
with Service Ontology. All the vectors f, d, p in Definition 2 as well as their sub-
elements, will be used in the following match. It is necessary for compound 
service developers to decompose the request into atomic process. 
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(ii) Search engine in UDDI matches the requests against Service Advertisement. 
IOPE (Input, Output, Precondition, Effect ) is the major factors in this stage. As 
a result, a candidate set of services is gained. 

(iii) Analyze the performance constraints and order the selected services in the 
candidate set so that customers can select the most suitable services according to 
their own preference. Matching algorithm will be exploited, which is introduced 
in following section. 

4.2   Similarity Matching 

During the discovery process, several Agents are needed. Those Agents aim to 
implement matching algorithms. With the increase of Web Services specification in 
UDDI, it is difficult to find out a suitable service. The traditional retrieval 
technologies, such as keyword-based match, are not applicable. So is the classical set 
theory, whose logic is based on either 0 or 1. In this paper, Fuzzy Theory and 
Similarity Function [11,12] are selected to match Service Template against Service 
Advertisement. The result of match computed by Formula 2 is on closed interval 
[0,1]. This is a quantified analysis, whose result is more accurate than that of some 
other algorithms. 

s (a,b)=Σ ( µ i si (a,b) )   

(μi > 0, ∑ μi = 1 ) 
(2) 

Where: 

• s (a, b) is similarity between a and b, where a is the description given by a 
provider, b is that of a requester. 

• μi is the weigh coefficient, they reflect the weightiness of attributes of service. 

Apparently, it is easy to compute the value of similarity when IOPE is matched in 
step (ii) during discovery process. As for the match in step (iii), semantic relationships 
among services compliance with Definition 2 can be exploited so as to support the 
customers in discovery services that fit their requirements. A simplified form of 
Tversky function is applicable. We state more details about it in [13]. Furthermore, μi 
will be assigned by domain experts. 

4.3   Implementation 

The models and methods introduced are also used within SOA. This section states 
how to enable service discovery as described above. 

4.3.1   Enhancing UDDI 
Undoubtedly, all of the concrete services (mentioned in Section 2.3) are stored in 
UDDI Registry, while the existing UDDI Registry supports neither the description in 
OWL nor the performance vector in Definition 2. Therefore, one of our works is to 
extend the UDDI Registry, maintaining a full compatibility with it, so that the 
developers or the customers can either exploit the existing UDDI APIs or invoke the 
APIs provided. 
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Fortunately, one goal of UDDI is to make it easy to describe Web Services 
meaningfully, and its tModel structure provides the ability to describe compliance 
with certain specifications, concepts or other shared design. Besides tModel, UDDI v2 
defines several elements for category: (i) keyedReferenceGroup, which is a simple list 
of keyedReference structures that logically belong together. It must contain a 
tModelKey attribute that specifies the structure and meaning of the keyedReferences 
contained in the keyedReferenceGroup.  (ii) catagoryBag, which contains a list of 
business categories that each describes a specific business aspect of the 
businessEntity, such as industry category or a simple list of keyedreferneceGroup. It 
also can be used to categorize tModel. [14]  

Making use of the extensive mechanism, UDDI can contain service description 
compliance with Definition 2. In the proposed method, we define a set of tModel to 
represent vector p in Definition 2, and some tModel for IOPE. All the sets are related 
with Service Ontology, while each keyedReferernce has its own keyValue that 
represents different ontology. 

4.3.2   Annotated WSDL 
Although Service Ontology is edited in OWL rather than OWL-S, WSDL is a de-
facto standard for service functionality description. In the proposed method, we select 
Semantic Annotations for WSDL (for short: SAWSDL).  

SAWSDL defines a set of extension attributes for WSDL that allows description of 
additional semantic of WSDL components. SAWSDL doesn’t specify a language for 
representing the semantic models. Instead it provides mechanisms by which concepts 
from the semantic model can be referenced from within WSDL and XML Schema 
components using annotations. It also can be mapped into an RDF form compatible 
with previous versions. [15] 

5   Conclusion and Further Work 

An ontology for Semantic Web Services with both functional and non-functional 
attributes has been built in Protégé. By making use of the ontology in the model 
proposed in [13], much improvement will be made in Service discovery. 

Service discovery is an ongoing research direction in Web Services community. 
Service Ontology is introduced to enrich the semantics of Web Service, including 
performance description. The proposed construction of Service Ontology makes it 
easy to identify and maintain the relationships among services. Exploiting such an 
ontology, as well as extension of UDDI and SAWSDL, service discovery techniques 
are used to match Service Template against Service Advertisement efficiently. 

The further work includes: 

• Do more competitive trials to prove the effect of the proposed method by recalling 
the services described in different way, such as WSDL, OWL-S and the proposed 
method. 

• Do more study on mechanism in UDDI in order to enhance its semantics.  
• Improve the match algorithm with reference to optimization technology in 

nonlinear systems. 
• Optimize this method by take full advantage of traditional retrieval methods, such 

as Levenshtein Distance for string matching. 



784 Q. Qiu and Q. Xiong 

References 

1. Fillman, F.R.: Semantic services. IEEE Internet Compute. 7 (2003) 
2. Berners-Lee, T.: Semantic Web–XML2000 (2000), http://www.w3.org/2000/talks/ 1206-

xml2k -th1/ silde10-0. html 
3. Martin, D., et al.: OWL-S: Semantic Markup for Web Services (2004),  

   http://www.w3.org/Submission/OWL-S/ 
4. Christensen, E., Curbera, F.: Web Services Description Language (WSDL)1.1. (2001), 

http://www.w3.org/TR/wsdl 
5. Guarino, N.: Formal Ontology and Information Systems. In: Proceedings of FOIS 1998 

(1998) 
6. Ankolenkar, A., et al.: OWL-S: Semantic Markup for Web Services, OWL-S 1.0 Draft 

Release (2003) 
7. Pressman, R.S.: Software Engineering: a Practitioner’s Approach, 5th edn. China Machine 

Press (2005) 
8. van Moorsel, A.: Metrics for the Internet Age: Quality of Experience and Quality of 

Business. In: Proceedings of the 5th Performability Workshop (2001) 
9. Anonymity, Standard for Learning Object Metadata (2006), http://www.imsglobal.org/ 

metadata/mdv1p3/ imsmd_bestv1p3.html  
10. Chinese E-Learning Technology Standardization Committee, Specification for Service 

Quality Management System of e-Learning (2003), http://www.celtsc. 
edu.cn/680751c665875e93  

11. Guoen, Y., Rong, A.: A Review of Theories and Models of Similarity in Categorization. 
Psychological Exploration (2005) 

12. Wang, Y., et al.: Semantic structure matching for assessing web-Service Similarity. In: 
Orlowska, M.E., Weerawarana, S., Papazoglou, M.M.P., Yang, J. (eds.) ICSOC 2003. 
LNCS, vol. 2910, Springer, Heidelberg (2003) 

13. Qizhi, Q., et al.: Study on Ontology-based Web Services Discovery. In: Proceeding of the 
11th International Conference on Computer Supported Cooperative Work in Design 
(2007) 

14. Bellwood, T., et al.: UDDI: Version 3.0.2 (October 2004),  
  http://uddi.org/pubs/uddi_v3.htm# _Toc85908023 

15. Farrel, J., et al.: Semantic Annotations for WSDL and XML Schema (2007),  
  http://www.w3.org/TR/sawsdl 



R. Perrott et al. (Eds.): HPCC 2007, LNCS 4782, pp. 785–796, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

DISH - Dynamic Information-Based Scalable Hashing 
on a Cluster of Web Cache Servers* 

Andrew Sohn1, Hukeun Kwak2, and Kyusik Chung2 

1 Computer Science Department, New Jersey Institute of Technology,  
Newark, NJ 07102, U.S.A. 

2 School of Electronic Engineering, Soongsil University, 511 Sangdo-dong, Dongjak-gu,  
Seoul 156-743, Korea 

sohn@cs.njit.edu, {gobarian,kchung}@q.ssu.ac.kr  

Abstract. Caching web pages is an important part of web infrastructure. The 
effects of caching services are even more pronounced for wireless 
infrastructures due to their limited bandwidth. Medium to large-scale 
infrastructures deploy a cluster of servers to solve the scalability problem and 
hot spot problem inherent in caching. In this report, we present Dynamic 
Information-based Scalable Hashing (DISH) that evenly hashes client requests 
to a cluster of cache servers. Three types of runtime information are used to 
determine when and how to cache pages, including cache utilization, CPU 
usage, and number of connections. Pages cached are stored and retrieved 
mutually exclusively to/from all the servers. We have implemented our 
approach and performed various experiments using publicly available traces. 
Experimental results on a cluster of 16 cache servers demonstrate that the 
proposed hashing method gives 45% to 114% performance improvement over 
other widely used methods, while addressing the hot spot problem.  

1   Introduction 

Caching web pages is an important part of web infrastructures [1, 2]. Those pages that 
are frequently requested can be saved in a way that they can be quickly handed out 
later without having to involve web, file and database servers, since reading and 
preparing files by these servers can take much time from the CPU’s perspective. By 
saving these frequently requested files, the user can experience less response time 
and, at the same time, the servers can save the time for preparation, resulting in 
overall performance improvement. Efficient caching can help reduce the impact of the 
temporary hot spot problem and server down time when a deluge of a particular set of 
pages (files) is requested. Caching practice is particularly important in wireless 
infrastructure, where, unlike the land-line based infrastructure, the bandwidth is 
limited. Cache servers can be placed in various places in Web infrastructure, 
depending on the requirements of the enterprise. Three methods are typically used to 
place cache servers, including forward, transparent, and reverse caching [3]. Forward 
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cache servers are placed on the edge of the enterprise, close to clients, while reverse 
cache servers are placed close to the web server(s). Transparent cache servers are 
placed between the clients and the web server, hence maintaining the transparency 
since the location is not explicitly known to the clients. 

For small enterprises, one cache server would suffice, since the traffic would not 
warrant high performance. Or, conversely, the web server itself can handle caching as 
well. However, for medium to large-scale enterprises, the roles and importance of 
cache servers can be critical, since loss of client requests means loss of business. For 
this reason, large-scale enterprises employ a cluster of cache servers to keep the 
response time tolerable. Deploying a cluster of cache servers presents technical 
challenges, mainly regarding performance scalability. Since multiple servers are 
deployed for caching, it is expected that the servers be highly available with tolerable 
response time, regardless of the traffic condition. These servers need to work together 
to achieve this common goal of performance scalability, hence cooperative caching 
[4, 5]. Central to cooperative caching is the storing and retrieval of cached pages. 
Managing cached pages can be classified into two types: distributed and copied. In 
the copy approach, each and every server can have exactly the same cached pages so 
that any server can serve any pages. Obviously this approach is against the use of 
cluster since the number of pages that can be cached is limited by the capability of an 
individual server. Furthermore maintaining the coherence of cached pages can be 
expensive, since any change must be reflected in all servers. It is, therefore, essential 
that the cached pages be distributed mutually exclusively across all servers.  

Distributing cached pages presents its own challenges in identifying page location 
and resolving hot spots. Since pages are distributed, it is critical to quickly identify 
where the requested pages are cached. Secondly, since a particular page is cached in 
one server, a deluge of requests for that “hot” page(s) can overwhelm the server’s 
capability. This is a typical situation encountered in the event of breaking news, as, if 
the server responsible for delivering this news becomes inaccessible, it defeats the 
very purpose of scalability. Therefore, cooperative caching needs to address these two 
challenges to be a scalable alternative to the copied approach. Numerous cooperative 
caching methods have been put into practice, which can be classified into two 
categories: protocol-based [6, 7] and hashing-based [8-14]. Protocol-based methods 
rely on the neighboring servers for cached pages. If a server does not have the 
requested page, it asks the neighboring servers. If none of the neighboring servers has 
the page, it would turn to the web server to produce the page. Hashing-based methods 
use the hashed value of the URL to locate a cache server. Since it is fixed, the hashing 
function always produces the same cache server for the URL. If the hashed server 
does not have the page, the server asks the web server for the page.  

While hash-based methods are widely accepted, the main challenge of hashing-
based caching is the distribution of URLs to cache servers. There is no guarantee that 
the hashing function will reasonably and evenly distribute URLs to servers. Some 
servers may have many while some have few, resulting in a load imbalance across the 
servers. As a result, performance scalability suffers. Hot pages will only amplify this 
problem. It is precisely the purpose of this paper to solve these two challenges of hot 
spot and performance scalability of cache servers. We use runtime server information 
to dynamically change how the pages are hashed to avoid the fixed nature of hashing. 
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The paper is organized as follows. Section 2 presents background materials on web 
page hashing. In Section 3, we explain our approach in detail. In section 4, we provide 
our experimental environment and results using publicly known Web traces. In 
Section 5, we analyze our results and compare them with the results of widely used 
methods. The last section concludes our work. 

2   Background Work 

Message Digest 5, introduced in 1992 [8], is a frequently used hashing method for 
messages, in particular mapping URLs to a cache server. Each message (Web page 
address or URL) of the size of up to 264 bits is converted to a unique 128-bit hash 
value. The resulting 128-bit hash value is mapped to a cache server by taking a 
modular operation with the number of cache servers. MD5 generates a fixed-length 
hash value for every client request. Since it computes hash value at runtime, MD5 
requires no memory to store this URL mapping to a cache server. A distinct 
advantage of MD5 is that cache servers can be added to and removed from the pool of 
servers without affecting the mapping. However, since hash value is computed each 
time, a large number of client requests can degrade the performance. 

Consistent Hashing, introduced in 1997 [9], expands MD5 by organizing hash 
values between 0 and 1 in a circular fashion. The front-end load balancer keeps a 
table with entries to map a point in the circle. Each entry consists of hash value and its 
corresponding cache server. The client request is first converted to a fixed-sized hash 
value using, for example, MD5. If there is an entry in the table for this value, the 
corresponding server is used to serve the request. Otherwise, the nearest server in the 
clockwise direction is selected. The main advantages of consistent hashing include 
simple addition and removal of cache servers. However, it does not address the even 
distribution and hot spot problems. 

Cache Array Routing Protocol (CARP), introduced by Microsoft in 1997 [10], 
combines both the URL and cache server name to determine the cache server. The 
front-end load balancer keeps an array consisting of rows with URL hash values and 
columns with cache server names. The main advantage of this method is that it allows 
flexible addition and removal of cache servers. And, at the same time, it addresses 
scalability to a limited extent, since it goes by hard-wired cache server names, 
provided the requests are reasonably distributed across different URL domains and 
cache servers. On the other hand, it suffers from the hot spot problem even more than 
other methods, since the server with hot pages is fixed. 

Modified Consistent Hashing [11] is designed to fix the load imbalance problem of 
consistent hashing described above. Consistent hashing finds the nearest cache server 
in the clockwise direction. Modified consistent hashing attempts to find the nearest 
cache server in both clockwise and counter clockwise directions. The load imbalance 
can be spread over two directions (two servers) instead of one. While this method 
attempts to alleviate the load imbalance problem, it does not eliminate the problems 
of consistent hashing. (I.e., hot spot and load imbalance). 

Adaptive Load Balancing [12] attempts to address mainly the hot spot problem by 
round-robin request distribution. The front-end load balancer keeps a list of popular 
pages using the Least Frequently Used policy. If it is on the list, the client request will 
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be sent to a cache server in a round-robin fashion. Otherwise, it will go through MD5-
like hashing to find a cache server. While this approach solves the hot spot problem, 
other problems, such as load imbalance, addition/removal of cache servers and 
performance scalability, are not addressed. 

Extended Consistent Hashing [13] literally extends consistent hashing by providing 
a window of servers. Consistent and Modified Consistent caching methods find the 
nearest next server either clockwise or counter clockwise. Extended caching provides 
a window of servers in which the best suitable server is selected. URLs and pages that 
are frequently requested are assigned to a larger window of servers while others are 
assigned to a smaller number of servers. While it improves the distribution of requests 
to neighboring cache servers, extended caching does not address the inherent issues of 
consistent caching, namely scalability and overall distribution of requests. 

Cache Clouds Dynamic Hashing [14] introduces a hierarchical organization of 
cache servers to utilize runtime server information. At the top of the hierarchy are 
multiple sets of servers, called Beacon Rings, each of which consists of three beacon 
points (servers). Client requests are first assigned to a particular Beacon Ring through 
MD5 hashing, followed by the second level hashing to eventually find a suitable 
cache server. The second level hashing uses CPU capacity and the current load 
information to find the best one within the ring. This method solves the hot spot 
problem by having a ring of multiple servers to serve hot pages. However, the method 
does not address the scalability in terms of even distribution of requests and server 
utilization across the rings since it inherits the characteristics of MD5 to begin with. 

3   DISH - Dynamic Information-Based Scalable Hashing 

3.1   The Proposed Method  

The hashing methods described above translate hash values directly to cache servers. 
We propose in this report a new method that takes into account dynamic server 
information before translating to a cache server. Three types of dynamic server 
information are considered in this study: cache utilization, CPU usage and number of 
connections. Cache utilization refers to the frequency access to a particular cached 
page (or data). To control importance and granularity, each resource has weight 
associated with it, ranging from 0 to 10 with the increment of 1. The three usage types 
are combined together with individual weights to find the overall resource utilization 
Uoverall for each cache server:  

 

U = wcache * ucache + wcpu * ucpu + wconn * uconn, 
 

where wcache = weight for cache utilization, wcpu = weight for CPU usage, wconn = 
weight for the number of connections between the front-end load balancer LVS and a 
cache server, ucache = cache utilization / average cache utilization, ucpu = CPU usage / 
average CPU usage, and uconn = number of connections / average number of 
connections. Assigning client requests to cache servers is done by finding the server 
with the lowest overall utilization U at the time of request. This weight usage 
combined with the three dynamic resource types ensures that the hashed requests are 
spread equally across all cache servers.  
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Fig. 1. DISH – Dynamic Server Information-based Distribution 

Figure 1 illustrates the proposed approach DISH. The front-end load balancer 
maintains two tables: hash and resource usage with weights. The hash table consists 
of a list of pairs, with each designating a hash value and server. The resource usage 
table keeps a list of three weights for each cache server. 

The example in Figure 1 illustrates how the proposed approach works. The LVS 
load balancer just received the URL www.cnn.com/candy.gif, and then generated the 
hash value 0x0002 using MD5. Suppose the entry 0x0002 is empty, indicating no 
cache server has been assigned to this hash value. The LVS looks up the resource 
usage table and computes the lowest overall usage as described above. Suppose 
further that the LVS finds Cache server 1 with the lowest weighted usage. This server 
is now assigned the hash value, as the curved arrow indicates. The mapping just 
established between the hash value and server is used to route future incoming 
requests that result in the same hash value. The hash table will eventually be filled, in 
which case the routing decisions will remain unchanged. 

Hot spots are detected and handled in a round-robin fashion. When a cache server 
is asked to handle more than 400 requests a second, it is deemed that the server is 
overloaded with a hot spot. Should this situation persist for over a second, the hot 
page(s) will be copied to all servers, each of which will handle requests for the hot 
pages in a round-robin fashion. If and when the deluge of requests for the URL 
recedes and the hot spot situation is mitigated, client requests for the URL will be 
served by the one to which the URL was originally assigned. The fixed threshold of 
400 requests is derived based on our experimental results for the given machine 
specifications. The threshold is determined by factors such as machine memory size 
and CPU speed, and is therefore subject to adjustment. 

3.2   Finding Weights 

Finding the best weight for each parameter is critical in determining cache servers, as 
inadequate weights may adversely affect the overall performance. To find the best 
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weights, we have performed extensive experiments. The three parameters of cache, 
CPU, and connection each take on 0 to 10 with the increment of 1. There are a total of 
11x11x11=1331 possible combinations with duplicates. We have performed 
experiments with all combinations to identify how the three weights play out. For 
example, the combination of wcache =0, wcpu =10, and wconn =0 indicates that only CPU 
usage is used to compute the overall utilization of each server. On the other hand the 
combination of wcache =5, wcpu =5, and wconn =5 indicates that all three parameters are 
equally significant in computing server utilization. While complex equations or 
methods may be used to combine the three weights more precisely, they would 
present new and unnecessary complications while, in turn, providing minimal 
improvement to the process. We only wish to identify the general trends that help 
combine the three weights for improved performance. 

Figure 2 shows the performance difference between our method and MD5. The x-
axis shows various combinations of weights while the y-axis shows the performance 
difference in terms of requests serviced per second. The results in the figure are based 
on the experimental setup which will be described shortly. Positive difference 
indicates that DISH serviced more requests per second than did MD5. 
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Fig. 2. Performance difference between DISH and MD5 

When the weight for cache utilization is over 5, the performance of DISH 
improves. The best performance of DISH occurs when the weight for cache utilization 
is maximum, i.e., 10 out of 10. In other words, no information other than cache 
utilization is used. The main reason for this clear distinction is how current the 
“current” information is. Cache utilization is the most current information, while CPU 
usage and connection are less current than cache utilization. CPU usage and 
connections change much more often than cache utilization, since CPU usage is 
affected by many other runtime conditions, while cache utilization is fixed relative to 
CPU usage. For example, a clock tick of Linux kernel is 10 milliseconds while the 
LVS collects resource usage every second. The difference between the kernel tick of 
10 milliseconds and the application time interval of 1 second is vast, indicating that 
the “current” information is not so current. Hashing decisions based on this less 
current information can adversely affect the performance. It is clear from the figure 
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that CPU usage and connection information are not very effective in determining 
servers for processing client requests. For our main experiments, we use only cache 
utilization. 

4   Experimental Results 

4.1   Experiment Environment 

To test the proposed approach, we have set up an experimental environment as shown 
in Figure 3. There are four types of machines: clients, LVS-based front-end server, a 
cluster of cache servers, and a web server. The machine specifications are listed in 
Table 1. The client machines generate requests using the publicly available traces of 
Webstone and Surge. The requests consist of HTML files and images. The front end 
LVS (Layer-4 switching) [18] distributes requests round-robin to the cache servers, 
while the Kernel TCP Virtual Server (KTCPVS for Layer-7 switching) [19] in each 
server decides where and how to send requests based on the hashing method. The six 
hashing methods discussed earlier have been implemented, and their results are 
presented.  

Clustered

 

Fig. 3. Experimental setup 

Table 1. Specifications of the machines 

Hardware 
 

CPU (MHz) RAM (MB) 
Software # 

Client/Master P-4 2260 256 
Webstone [15] 

Surge [16] 
10 / 1 

LVS P-4 2400 512 Direct Routing 1 
Cache Squid [17] 

Server 
Distiller 

P-2 400 256 
JPEG-6b 

16 

Web Server P-4 2260 256 Apache 1 

 
If the requested pages were cached in one of the 16 servers, the selected server 

would send them directly to the client without going through the LVS machine, hence 
direct routing. Therefore, the LVS will only handle one-way, incoming traffic. If the 
requested pages were not cached, the Web server would be called to provide  
the contents. The fresh contents received from the Web server are cached (stored) in 
the selected server that will subsequently send directly to the client. Squid is used to 
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cache contents received from the Web server. Round-Robin is used mainly for 
comparison purposes since it gives optimal performance. When caching fresh pages 
received from the Web server, Round-Robin copies them to every server in the cluster 
while other methods do not. The other methods keep the data in only one server 
among the cluster. There is no copy involved, hence eliminating the cache coherence 
problem and enabling storage scalability. As all servers have exactly the same files in 
RR, no particular distribution strategy is necessary, and there are no hotspots in RR. 

4.2   Distribution of Connections 

Figure 4 shows the number of connections for each cache server, where connections 
refer to client requests. The x-axis is the cache server number while the y-axis is the 
number of connections. For all of the traces, the proposed method demonstrates that 
the number of connections is relatively constant in each of the 16 servers. On the 
other hand, other methods show that the numbers fluctuate due to inefficient hashing. 
These fluctuations will directly affect the cluster performance. Note that the y-axis is 
plotted to log scale for readability. 
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 (a) Surge-100                            (b) UNC-2001 

Fig. 4. Distribution of connections 

4.3   Distribution of URLs 

Figure 5 shows the total number of URLs hashed to each cache server. The x-axis 
represents the cache server number while the y-axis represents the number of 
connections. A total of 100 different URLs drawn from the traces [20] are used in the 
experiment. It is clear from the figure that the proposed method shows a relatively 
constant number of URLs hashed to each and every cache server. On the other hand, 
other methods show a fluctuation in the numbers. Round-Robin results show exactly 
the same number of URLs, since every server has the same copy of files. 

4.4   Standard Deviation 

Standard deviation shows how far a sample is from the mean of a collection of 
samples. We wish to find exactly how efficient each hashing method is in comparison 
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Fig. 5. Distribution of URLs 

to one another based on connections, URLs hashed and CPU usage. For each hashing 
method, the standard deviation is computed using 16 values, each taken from a server. 
As a result, standard deviation indicates how far each server is from the mean number 
of hashed URLs or connections. The smaller the standard deviation is, the better the 
hashing method is, because it indicates an even distribution of hashing to servers. 
Figure 6 depicts the standard deviations for all of the hashing methods. 
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(a) Standard deviation for URLs           (b) Standard deviation for connections 

Fig. 6. Standard Deviation 

Figure 6(a) shows the standard deviation for the URLs hashed to each server. As 
we can see from the figure, the proposed method (DISH) is the smallest among the six 
methods. Note that Round-Robin shows no bar charts, because the standard deviation 
for RR is zero. Round-Robin has exactly the same number of URLs in each server, 
resulting in zero deviation. The standard deviation for connections shown in Figure 
6(b) is slightly different than the URL’s. Here RR shows a slight standard deviation, 
mainly because the 100 total URLs cannot evenly be divided across 16 servers. Some 
servers will receive one more request than the others. The figure indicates the 
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proposed method DISH outperforms all other methods except RR, which is included 
for comparison purposes only. 

4.5   Scalability 

Scalability is measured in terms of the number of requests serviced per second. Figure 
7 shows the scalability of the methods using Surge-100 and UNC-2001 trace. The x-
axis shows the number of cache server while the y-axis shows the requests served per 
second. Note that RR shows the highest scalability, as expected. Again, the main 
reason is that any server can handle any request since every server has exactly the 
same copy of files. It is used solely as a reference point. 

For Surge-100 in Figure 7(a), the proposed method DISH yields higher 
performance scalability than other methods. When the number of servers is increased 
to two from one, the number of requests serviced per second also increases to 350 
from 250, resulting in 40% improvement. On the other hand, the other methods show 
little improvement in terms of the number of requests serviced as the number of 
servers is increased. For UNC-2001, DISH still shows better performance than all 
other methods. In summary, DISH gives up to 6 fold improvement on 16 machines 
while the other methods show slightly over 2 fold improvement. The results 
demonstrate that DISH is scalable compared to the others. This performance 
scalability reaffirms that dynamic server information such as cache utilization is 
essential when hashing URLs to a cluster of cache servers. 
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Fig. 7. Number of requests serviced per second. Round-Robin (RR) shows an ideal performance 
since all servers have the same copy while other methods distributed files mutually exclusively 
across the servers. RR is included for reference. 

4.6   Overall Comparison 

As we have demonstrated through experimental results on 16 cache servers, the 
proposed method DISH provides performance scalability through balanced hashing 
and distribution of client requests. Table 2 summarizes the features of the methods 
discussed in this study.  
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Table 2. Summary of features and characteristics for the six hashing methods 

Methods Complexity Server add/del Scalability Even distribution Hot-Spot 
MIT-CH [9] 2 steps O X X X 
CARP [10] 3 steps O X X X 

Modified CH [11] 2 steps O X X X 
Adaptive LB [12] 3 steps O X X O 
Extended CH [13] 3 steps O X X O 
Cache Clouds [14] 3 steps O X X O 

DISH 3 steps O O O O 

5   Conclusions 

Caching a large number of web pages requires multiple servers typically configured 
in a cluster. While multiple cache servers are designed to cache and quickly hand out 
frequently accessed pages, mapping these requests to cache servers presents several 
challenges in hot spot problems, request distribution and, ultimately, performance 
scalability. We have presented in this report a scalable hashing method that uses 
dynamic server information, including cache utilization, CPU usage and connections. 
Decisions as to where the requested pages are cached are made based on this dynamic 
data. All pages are mutually exclusively stored across all servers. Each request is 
directed to the server that has cached the pages. When a hot spot occurs, this 
particular page is distributed to all cache servers in the cluster in a way that all the 
servers can simultaneously hand out the page in a round-robin fashion. 

To test out this approach, we set up an experimental environment consisting of a 
cluster of 16 cache servers, an LVS load-balancer, 10 client machines, and a Web 
server. Client machines generated requests based on the publicly available Web 
traces, including Surge-100 [16] and UNC-2001 [20], as well as various images and 
html pages. Our experiments are in two steps: First, determine the impact of each type 
of runtime information on performance. We have found that cache utilization affects 
the overall performance most among the three (cache, CPU, and connections). 
Second, the experiments are performed using the best performing runtime 
information. We ran two web traces on the cluster using cache utilization as the 
determining factor. 

Experimental results have indicated that our method distributed the requests almost 
evenly across all of the cache servers while other methods did not, as evidenced by 
the standard deviation of requests. The standard deviation for URL distribution is 
approximately 0.5 for the proposed method DISH as opposed to 2 to 6 for others. This 
indicates that the proposed method is 4 to 12 times better in terms of how well the 
requests can be distributed. In fact, this even distribution of requests is the main 
reason why DISH has demonstrated the highest scalability among the six. 
Experimental results indicate that DISH is 114% more scalable than other methods 
using Surge-100 and 45% more scalable using UNC-2001 while, simultaneously, 
eliminating the hot-spot problem. 
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Abstract. Service composition, which enables users to construct com-
plex services from atomic services, is an essential feature for the usability
of Mobile Ad hoc Networks (MANETs). Service composition in MANETs
should be fault-tolerant and distributed. Efforts in this area are rare and
sounds not meet the requirements very well. In this paper, we present
a distributed Fault-Tolerant Service Composition Protocol (FTSCP) for
MANETs. FTSCP has two main features. Firstly, it is efficient for that
all atomic services consisted in a composite service are discovered in just
one service discovery session. Secondly, it is fault-tolerant since that ser-
vice composition process is entirely under the supervision of Execution
Coordinator (EC) and inaccessible services can be rediscovered trans-
parently. Both mathematical analysis and simulation results show that
FTSCP outperforms another broker-based service composition protocol
for MANETs in both terms of packet overhead and promptness.1

1 Introduction

Service composition refers to the process of combining simple services to form a
larger, more complex service[1]. This offers users a great degree of transparency
in discovery and selection of required services, instead of having to be cognizant
of all the details about the simpler services that constitute the complex ones. A
service can be any software or hardware entity that can be utilized by others.

In the context of service composition, an atomic service is a service provided by
one single node that does not rely on any other services to fulfill user requests; a
composite service is compound service constructed from other composite services
or atomic services; the number of necessary atomic services consisted in the
composite service is called as composite service size.

Service composition has been extensively studied in the context of wired net-
works where service composition always adopts a centralized approach[2,3,4]. In
1 This work is supported by National Postdoctoral Research Program

(No.NPD060234), Postdoctoral Research Program of HeiLongJiang
(No.HLJPD060234), Fundamental Research Foundation of Harbin Engineer-
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centralized approaches, a particular node acting as a service composition man-
ager supervises the whole process of service integration and execution.

With the popularity of portable devices, MANETs are abstracting more re-
search efforts. Most efforts are focused on some other aspects, such as MAC pro-
tocol, routing, broadcasting, etc. Only very limited efforts has been performed on
service composition in MANETs, such as [1,5]. Furthermore, these approaches
are not satisfiable for variable reasons, such as more packet overhead, longer
response time, etc.

Because of the highly dynamic topology of MANETs, service composition
architectures should be distributed, fault-tolerant, and context aware.

In this paper, we present a Fault-Tolerant Service Composition Protocol
(FTSCP) that meets the first two requirements. Context aware characteristics
will be introduced in future work. Additionally, all atomic services can be dis-
covered in just one service discovery session in FTSCP. Mathematical analysis
and extensive simulations confirms the efficiency of FTSCP.

The organization of the rest of the paper is as follows: Section 2 gives an
overview of related works. Section 3 shows the architecture of FTSCP and its
operation procedure. Section 4 compares the performance of FTSCP and the ap-
proach proposed in[1] through mathematical analysis and extensive simulations.
Section 5 concludes the paper.

2 Related Works

Research efforts in service composition follow two directions. One direction of re-
search tries to define semantic-rich machine-readable description languages that
can be used to describe services and workflows appropriately. The other direction
aims in developing architectures that facilitate service composition. We focus on
service composition architectures since we believe that it is critical in MANETs
and requires a different approach from service composition architectures in wired
context.

Current service composition architectures have been designed with the in-
herent assumption of fixed network infrastructure and high bandwidth commu-
nication channels, such as eFlow[2], CMI[3], Ninja[4], etc. These architectures
are based on a centralized manager or broker that manages the various tasks of
service composition, such as service discovery, combination of different services,
and management of the information flow between services.

Because of the highly dynamic nature of MANETs, service composition ar-
chitecture in MANETs calls for an alternate design approach. Notifying this,
some research efforts have been performed in these areas[1][5]. Chakraborty et.
al[1]proposed a distributed broker-based protocol for service composition in per-
vasive/ad hoc environments. In their approach, service composition is delegated
to a broker selected during broker arbitration phase and then the broker searches
for all necessary component services one by one. Obviously, broker arbitration
and iterated service discovery scheme causes too much packet overhead, which
is a great drawback since bandwidth is a critical resource in MANETs. Basu et
al.[5] described a hierarchical task-graph based service composition protocol for
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MANETs. In their work, a composite service is represented as a task-graph with
leaf nodes representing atomic services. Sub trees of the graph are constructed in
distributed mode, and service composition process is coordinated by the client.
However, the coordinator uses flood scheme to search for all atomic services,
which leads to larger packet overhead.

3 FTSCP

Our FTSCP service composition architecture consists of 7 components, as shown
in Fig. 1. UnRecoverable Exception Manager (UREM) deals with all exceptions
happened during the overall service composition period. It usually sends a no-
tify message to the user application. Composite Service Request Parser (CSRP)
extracts atomic services from composite service request received from user ap-
plication. A notification will be sent to UREM in case of exception. Service
Discovery Manager (SDM) finds all atomic services necessary to compose the
requested composite service in just one service discovery session. Execution Co-
ordinator (EC) schedules and supervises the executions of all atomic services.
Under the supervision of EC, all atomic services cooperate in harmony to fulfill
the requested composite service. Result Constructer (RC) combines the results
of all atomic services and gets the final integrated results. Service Relation-
ship Info Manager (SRIM) stores the information obtained by the CSRP when
parsing composite service request. Context Manager (CM) collects and stores
context information, which facilitates context-aware semantic service matching
during service discovery sessions.

Fig. 1. Service Composition Architecture

FTSCP essentially consists of flowing four phases: 1) Composite service re-
quest parse phase, 2) Service discovery phase; 3) Service execution coordination
phase; 4) Result construction phase.
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3.1 Composite Service Request Parse Phase

In this phase, CSRP receives service composite request from end user applica-
tion. CSRP extracts all atomic services necessary to fulfill the composite service
request as well as the dependencies between these services. This information is
stored in SRIM. This information is necessary for service scheduling. Composite
service requests describes a task that requires coordination of atomic services as
well as other composite services. We designed a new Document Type Definition
(DDT) file for describing service composite request as follows.

<!ELEMENT Request (Service|AtomicService)*)>
<!ELEMENT Service (

(Service|AtomicService, Element2Operator, Service|AtomicService)
|(Factor, Element1Operator, Service|AtomicService)
|AtomicService)*)>

<!ATTLIST Element2Operator name
(SeqNormal|SeqArbitrary|SeqInitial|ConcurrentNoCom|ConcurrentCom)
#REQUIRED>

<!ATTLIST Element1Operator name (Repeat) #REQUIRED>
<!ATTLIST Factor Value CDATA #REQUIRED ”1”>
<!ATTLIST CompositeService Name CDATA #IMPLIED >
<!ATTLIST AtomicService Name CDATA #REQUIRED>

Coordination relationships between atomic services are listed in Table 1.

Table 1. Notations used in the paper

Relation Meaning DTD Keyword

S1

⊙
S2: service S1 and S2 should be executed in sequence. SeqNormal

S1 � S2: either service S1 or S2 can be executed first. SeqArbitrary
S1  S2: service S1 must be activated before S2. SeqInitial
S1 ‖ S2: S1 and S2 can run in parallel without inter-communications. ConcurrentNoCom
S1 � S2: S1 and S2 should run in parallel with inter-communications. ConcurrentCom

3.2 Service Discovery Phase

In this phase, all atomic services will be discovered by SDM using some service
discovery protocols implemented in the system. All service discovery protocols
relies on some kind of service request packet spreading scheme to search for
matched services. Service request packets and corresponding service reply pack-
ets makeup the main part of packet overhead. For each necessary atomic service,
if one service discovery session is performed, more request packets will be gener-
ated. To reduce packet overhead, we implements a multi-task service discovery
protocol (referred as MDFNSSDP)[6] which can find all atomic services in just
one service discovery session. For each atomic service, there may be multiple
matched services. The service with maximum priority is selected. All founded
services are cached in SDM for possible latter use. During service discovery, con-
text information can be get from CM to facilitate service matching operation.
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3.3 Service Execution Coordination Phase

In this phase, all discovered atomic services will be performed under the super-
vision of EC. During this period, all atomic services cooperate in harmony to
fulfill the requested composite service. The operation cycle in EC is as follows.

– Step1. From the information get from SRIM, EC knows the dependent rela-
tionships among atomic services. From the service descriptions of discovered
atomic services from SDM, EC knows how to invoke services. Thus, EC can
then schedule the execution of these services.

– Step2. EC invocates services according to the its schedule and supervise the
operation of these services. During this process, some runtime information
and temporary results are cached into Run Time DataBase (RTDB). The
information in RTDB is used to facilitate the work of EC. If all services are
finished successfully, results are passed to the RC component and this stage
completes. Otherwise, in case of any exception during the execution, EC first
checks if the exception is recoverable. If it is unrecoverable, an exception is
thrown to UREM and the stage finished. If the exception is recoverable, such
as that a service becomes unreachable, then goes to step 3.

– Step3. EC starts a run time service discovery session to find servers that
provides the losted service. Recall that in service discovery phase, all founded
service information are cached. Thus, a matched service that can replace the
lost service may be found directly from SDM. Thus, new service discovery
session is not necessary. Information in RTDB is used to in semantic service
matching. Then it goes to step1.

Thus, the system is resistant to topology changes, and so it is suitable for
MANETs where topology variation is frequent.

3.4 Result Construction Phase

Result Construction Phase When service execution coordination phase is finished
successfully, it changes to result construction phase. In this phase, results of
all atomic services are combined and the final integrated results are given to
the user application. Till now, user application’s service composition request is
completed.

4 Performance Analysis and Simulations

4.1 Select Comparative Solutions

We implemented our service composition protocol in Glomosim[9]. To make com-
parative study, the Broker-based Distributed Service Composition Protocol (BD-
SCP) proposed in [1]is also implemented.

BDSCP consists of four phases. 1) In Broker Arbitration Phase, the client
broadcasts a Broker Request Packet, and then in a following fixed period TBAP,
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the node waits for broker reply packets. The broker request packet floods in the
network for limited hops. All nodes receiving the packet reply with a Broker
Reply Packet enclosing its runtime priority value. The client then selects the
neighbor with biggest priority value as its broker. 2) In Service Discovery Phase,
the selected Broker uses the underlying GSD service discovery protocol to dis-
cover all required atomic services one by one. 3) In Service Integration Phase,
atomic services are scheduled. 4) In Service Execution Phase, atomic services
are executed according to the schedule.

4.2 Performance Metrics

The superiority of FTSCP over BDSCP mainly results from two aspects: 1)
Broker arbitration phase is eliminated since broker arbitration is helpless in
MANETs, and 2) One service discovery session searching for all atomic services
is used instead of one service discovery session for each atomic service. Following
performance metrics are used in our analysis and simulation study.

– Number of Composition Preparation Packets: In BDSCP, composi-
tion preparation packets include 1) broker request packets and broker reply
packets, and 2) service request packets and service reply packets. Whereas
in FTSCP, only the second part is included. This metric is averaged over all
composite service requests successfully instantiated.

– Delay of Composite Service Discovery: It is the interval between the
generation of a service composition request and the time when all necessary
atomic services are founded. This metric is averaged over all composite ser-
vice requests that are successfully instantiated. It measures the promptness
of service composition protocols.

– CompositionEfficiency:Composition efficiency refers to the fraction of ser-
vice composite requests that all atomic services are discovered successfully.

4.3 Performance Analysis

In this section, mathematical analysis will be performed to estimate the perfor-
mance of FTSCP and BDSCP in terms of performance metrics listed in previ-
ous section. Although MDFNSSDP outperforms GSD very much both in packet
overhead and promptness[6], the analysis in the section is based on the following
assumptions for simplicity: 1)MSDP (averaged number of service request pack-
ets and service reply packets sent in one service discovery session)in FTSCP
is equal to that in BDSCP, 2)TSDP (averaged interval between the time that
a service discovery session is started and the time the first reply packet with
matched services is received) in FTSCP is equal to that in BDSCP, 3) Failure
service discovery session is not retried.

Analysis on Number of Composition Preparation Packets. In FTSCP,
composition preparation packets include service request packets and reply pack-
ets. Additionally, only one service discovery session is performed. Hence MFTSCP

(number of composition preparation packets in FTSCP) equals MSDP .
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In BDSCP, besides service request packets and service reply packets, com-
position preparation packets also include broker request packets and broker re-
ply packets. Furthermore, for each atomic service, one service discovery session
is performed. Hence, MBDSDP (number of composition preparation packets in
BDSCP) can be calculated as equation . Here MSDP is the averaged number of
service request packets and service reply packets sent in one service discovery
session, MBAP is averaged number of broker request packets and broker reply
packets, MBQP is averaged number of broker request packets, MBPP is averaged
number of broker reply packets).

MBDSCP = MBAP + MSDP × k = (MBQP + MBPP ) + MSDP × k (1)

In broker arbitration phase in BDSCP, broker request packets flood through
the client’s b-hop neighbor sets. Noticing that last-hop nodes do not rebroad-
cast packets, MBQP (averaged number of broker request packets sent in broker
arbitration phase in BDSCP) can be calculated as follows. Here ρ is averaged
number of nodes in unit area, r is Radio range, b is the hop limit of broker
request packets in BDSCP, and n1 = ρπr2

MBQP =
b−1∑
h=0

n(h) ≈ ρπ(r(b − 1))2 = n1(b − 1)2 (2)

Each node receiving broker request packets will send back a broker reply
packet in unicast mode. In case of b > 1, a broker reply packet will travel several
hops to reach the source node that requires brokers. These relayed packets should
also be calculated in this metric. Hence,

MBPP =
b∑

h=1

hn(h) ≈
b∑

h=1

h(ρπ(rh)2 − ρπ(r(h − 1))2) = n1
4b3 + 3b2 − b

6
(3)

Combining Eqn. 1, 2, and 3, we have:

MBDSCP = (MBQP +MBPP )+kMSDP = n1
4b3 + 9b2 − 13b + 6

6
+kMSDP (4)

Compared with BDSCP, the number of saved composition preparation packets
of FTSCP is:

MBDSCP −MFTSCP = n1
4b3 + 9b2 − 13b + 6

6
+ (k − 1)MSDP > 0 (5)

Analysis on Delay of Composite Service Discovery. TFTSCP (delay of
composite service discovery in FTSCP) and TBDSCP (delay of composite ser-
vice discovery in BDSCP) can be calculated as eqn. 6 and 7, respectively. Here
TBAP stands for the period that a client waits for broker reply packets in BDSCP.
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TSDP is the averaged interval between the time that a service discovery session
is started and the time the first reply packet with matched services is received.

TFTSCP = TSDP (6)

TBDSCP = TBAP + k · TSDP (7)

Combining Eqn. 6, and 7, we have:

TBDSCP − TFTSCP = TBAP + (k − 1) · TSDP > 0 (8)

Analysis on Composition Efficiency. A succeeded composite service request
requires that all atomic services are discovered successfully. Hence, PComSuc(k)
(the probability of a composite service with size k being succeeded) can be calcu-
lated as eqn 9. Here k is composite service size, p is the probability of founding a
requested atomic service in one service discovery session. There is no difference
in this term between FTSCP and BDSCP.

PComSuc(k) = pk (9)

4.4 Simulation Models

In our simulation studies, the Distributed Coordination Function (DCF) of IEEE
802.11 is used as the underlying MAC protocol. Random Waypoint Mode (RWM)
is used as the mobility model. In this model, a node moves towards its destina-
tion with a constant speed v ∈ [VMIN , VMAX ], which means a variable uniform
distributed between VMIN and VMAX . When reached its destination, a node
will keep static for a random period tP ∈ [TMIN , TMAX ]. Then the node will
randomly select a new destination in scenario and move to the new destination
with new speed. The process will repeat permanently. In our simulations, tP is
fixed to 0s.

The advantages of FTSCP over BDSCP that can be easily demonstrated
through simulations rely in the phases before service schedule and execution.
Service schedule and execution cause little impacts on evaluating the relative
qualities of FTSCP and BDSCP. Hence, service schedule and execution are omit-
ted in our simulation for simple.

In all simulations, some basic parameters are set as shown in Table. 2. Simu-
lation scenarios are created with 100 nodes initially distributed according to the
steady state distribution of random waypoint mobility model. At the beginning
of each simulation, predefined number of nodes are randomly selected as servers.
These selected servers provide randomly selected services. During each simula-
tion, 10 service composition requests are started at randomly selected time by
randomly selected nodes. Atomic services consisting of each service composition
request are also selected randomly.

Basic parameters of the underlying service discovery protocols are set as shown
in Table 3.
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Table 2. Basic parameters

Parameters Value Parameters Value

scenario area 1000m × 1000m service composition request number 10
node number 100 composite service size 1∼7
radio range 250m service discovery protocol in FTSCP MDFNSSDP
simulation time 1000s service discovery protocol in BDSCP GSD
bandwidth 2Mbps hop limit of broker packets in BDSCP 1
mobility RWP initial node placement steady state
TBAP 0.1s

Table 3. Basic parameters in GSD and MDFNSSDP

Parameters Value Parameters Value

service number 80 hop limit of advertisement packets 1
service group number 1 service number in each group 10
service number in each group 10 service advertisement packet valid time 30s
service advertisement interval 20s hop limit of service request packets 3

4.5 Simulation Results

In this section, we inspect the impacts of composite service size on performance
metrics through extensive simulations. In all the following figures, error bars
report 95% confidence. In case of results of composition efficiency, the lower
confidence limits of the single side confidence intervals are shown.

To inspect the impacts of composite service size, 2 other simulation sets are
run. In all these simulations, node speed is fixed to 0m/s. Each simulation set

Fig. 2. number of composition preparation packets vs. composite service size
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Fig. 3. delay of composite service discovery vs. composite service size

Fig. 4. composition efficiency vs. composite service size

includes 4 subsets where composite service size is set to 1, 3, 5, and 7, respectively.
Each subset consists of 100 similar simulations.

Fig.2 shows the impact of composite service size on number of composition
preparation packets. In BDSCP, for each atomic service, one service discovery
session has to be performed. Thus, as composite service size increases, the num-
ber of composition preparation packets will increase. In FTSCP, however, no
matter how many atomic services are consisted in the requested composite ser-
vice, only one service discovery session will be performed. Hence, the number of
these packets keeps almost constant.
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Fig.3 shows that FTSCP is much more prompt than BDSCP. Delay of compo-
sition service discovery in BDSCP increases gradually as composite service size
increases. This results from more service discovery sessions. While in FTSCP,
this metric keeps almost constant. These results verify Eqn. 8.

Fig.4 shows the impact of composite service size on composition efficiency. In
both FTSCP and BDSCP, as composition size increases, composition efficiency
decreases quickly. This verifies the analysis result of Eqn.9.

5 Conclusions

In this paper, we have presented a distributed Fault-Tolerant Service Compo-
sition Protocol (FTSCP) for MANETS. In FTSCP, service composition pro-
cess is entirely under the supervision of EC and inaccessible services can be
rediscovered transparently. Hence, FTSCP is fault-tolerant. In service discov-
ery phase, context information is used to perform semantic-rich service match-
ing and select the best service. Hence, FTSCP is context-aware. In FTSCP,
all atomic services consisted in a composite service are discovered in just one
service discovery session. Therefore, it is efficiency. Mathematical analysis and
simulation results confirm the superiority of FTSCP over another broker-based
service composition protocol for MANETs in terms of packet overhead and
promptness.
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Abstract. The purpose of virtual computing environment is to improve resource 
utilization by providing a unified integrated operating platform for users and 
applications based on aggregation of heterogeneous and autonomous resources. 
With the rapid development in recent years, hypervisor technologies have 
become mature and comprehensive with four features, including transparency, 
isolation, encapsulation and manageability. In this paper, a hypervisor based 
virtual computing infrastructure, named CIVIC, is proposed. Compared with 
existing approaches, CIVIC may benefit in several ways. It offers separated and 
isolated computing environment for end users, and realizes hardware and 
software consolidation and centralized management. Beside this, CIVIC 
provides a transparent view to upper layer applications, by hiding the 
dynamicity, distribution and heterogeneity of underlying resources. 
Performance of the infrastructure is evaluated by an initial deployment and 
experiment. The result shows that CIVIC can facilitate installation, 
configuration and deployment of network-oriented applications.  

1   Introduction 

Along with the rapid development of IT infrastructures and Internet, the network has 
brought together large amount of resources, including computers, data, software and 
services. But the utilization of these resources is far from their full potential. Beside 
this, the internet-oriented applications demand for large-scale computing, massive 
data processing and global information services. At this point, how to organize and 
manage distributed, heterogeneous and autonomic resources, to share and coordinate 
resources across the autonomous domains, and finally to improve utilization of 
resource becomes a key issue of designing the software infrastructures for network-
based computing systems. 

One of the possible way to solve this problem is to build a virtual computing 
environment, on the open infrastructure of the Internet, providing harmonic, 
transparent and integrated services for end-users and applications[1]. Many 
interesting computing paradigm has been proposed from both academic and industrial 
communities, such as the Grid, Peer-to-Peer (P2P) systems, ubiquitous computing, 
and desktop computing[2-4]. Grid Computing is mainly focusing on the dynamic and  
across-domain network resource share and coordination; P2P is commonly used for 
end-to-end resource and information services; Ubiquitous computing is aiming at 



810 J. Huai, Q. Li, and C. Hu 

accessing resources at anytime and anywhere; and the desktop computing is trying to 
integrate large numbers of idle resources to provide computing intensive applications 
with high-performance computing power. All of these approaches are trying to 
provide a unified resource virtualization environment to get better utilization of 
resource capacities. 

In recent years, the virtual machine technology has got wider attention. Hypervisor or 
virtual machine[5] is a virtual layer between the hardware and software. It can provide 
applications with independent runtime environment by shielding the dynamic, 
distributed and heterogenic hardware resources. It can assign an independent and 
isolated computing environment to each individual user. And it can help system 
administrators to manage hardware and software resources in a virtual, centralized 
approach. According to these advantages, the virtual computing environment based on 
virtual machine has now become a hot spot, many virtual machine based mechanisms 
and systems has been proposed, such as Virtual Workspaces[6], VIOLIN[7], and 
Virtuoso[8]. However, the research of virtual computing environment based on virtual 
machine is still in its infancy. Existing approaches are usually focusing on single virtual 
machine, and lacked of the crossover of a variety of related technologies. In addition, 
management and monitoring features are not well supported in these systems, the status 
and the characteristics of the virtual computing environment. 

In this paper, a hypervisor based computing infrastructure, named CIVIC, is 
proposed. Compared with existing approaches, CIVIC may benefit in several ways. It 
offers separated and isolated computing environment for end users, realizes hardware 
and software consolidation and centralized management. Beside this, CIVIC provides 
a transparent view to upper layer applications, by hiding the dynamicity, distribution 
and heterogeneity of underlying resources. Performance of the infrastructure is 
evaluated by an initial deployment and experiment. The result shows that CIVIC can 
facilitate installation, configuration and deployment of network-oriented applications. 

This paper is organized as follows. In Section 2, a brief introduction on the 
hypervisor technology is given. In Section 3, several hypervisor based virtual 
computing systems are introduced. A hypervisor based software infrastructure for 
virtual computing, named CIVIC, is proposed in Section 4 with layered architecture 
and modules. Finally, the performance of the infrastructure is evaluated by an initial 
deployment and experiment in Section 5.  

2   Virtual Machine and Hypervisor 

The concept of virtual machine (VM) is still not clearly defined. When people are 
talking about virtual machine, sometimes, they refer to a type of software which can 
emulate a physical machine, like Virtual PC or VMWare. In this case, it is more 
accurate to use the word hypervisor, or Virtual Machine Monitor (VMM). Beside this, 
virtual machine can also refer to an instance of emulated (or virtual) machine with 
software installed inside. In this case, the word virtual machine instance is more 
appropriate. In this paper, we will follow this rule to avoid ambiguity. 

2.1   Background 

Hypervisor has a long history. In 1966, VM/360 (Virtual Machine) system[9] came 
into being in IBM Cambridge research center VM/360, which is used to share 
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hardware resources for different user. In 1997, Connectix provided Virtual PC[10] 
able to run PC applications in a Mac machine, therefore transparent portability for 
legacy software could be archived. In 1998, VMWare Company released VMware 
hypervisor which is the first hypervisor software able to emulate PC on PC 
platform[11]. VMWare is now highly valued and widely deployed in enterprises. 

In order to eliminate the impact of hardware failure and maintenance to enhance 
the stability and reliability of software, VMWare and Xen both proposed on-line 
migration technology in their own hypervisors, named VMotion [12] and Live 
Migration[13] respectfully. It can be used as a dynamic load balancing mechanism for 
hardware resources provision. 

The performance issue is always the main obstacle to prevent the wider use of 
hypervisor. Hypervisor is preferred to be transparent to hardware and software, which 
also made its implementation complex and inefficient. Technologies like Xen[14] and 
Intel VT[15] greatly improved the performance of hypervisor while eliminate part of 
its transparency to software and hardware. 

2.2   Features of Hypervisor 

According to previous analysis of the hypervisor, we conclude there are four main 
features of hypervisor: 

(1) Transparency. Transparency means software can execute in virtual machine 
environment directly, without being revised. Other features of hypervisor, such as 
hardware resource sharing, isolated environment, live migration, portability, etc, can 
be easily applied to any software running in virtual machine without modification.  

(2) Isolation. Hypervisor enables multiple instances of virtual machine to be hosted 
in a physical machine. Not only software can share hardware resources via virtual 
machine, but also be protected and isolated by virtual machine. Each virtual machine 
can install its own version of software, without having to consider compatibility with 
the software installed in other virtual machines. Each virtual machine also maintains a 
separated runtime environment, while preventing software failure caused by software 
running in other virtual machines.  

(3) Encapsulation. Whole system of a virtual machine is enclosed in a virtual hard 
disk, which is an ordinary file of the host machine. Through this form of 
encapsulation, virtual machine installation, backing up and restoring are as easy as 
copying and pasting a file in operating system, which can effectively reduce the 
difficulty of the system configuration and deployment, and increase the flexibility of 
software.  

(4) Manageability. For virtual machine operations, such as boot, shutdown, sleep, 
and even add, modify, or remove virtual hardware, there all have programming 
interface. Via programming interface, virtual machine can be controlled by program 
completely. Therefore administrators have greater flexibility in controlling virtual 
machines, compared to manually controlling physical machines. Based on virtual 
machine, remote and centralized management of hardware resources can be achieved. 
The aforementioned live migration is another example of the manageability of virtual 
machine, software running in virtual machine can be controlled to change runtime 
environment without being interrupted. 
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3   Related Work 

Virtual Workspaces[6] aims to provide a customizable and controllable remote job 
execution environment for Gird. Traditional grid mainly focuses on job exciting, but 
neglects the deployment and maintenance of execution environment. Virtual 
Workspaces implements web service interface that conform to WSRF and GSI 
standard for virtual machine remote management. Client can create and deploy virtual 
machine on-demand via the interface. 

Virtual Workspaces supports unmanned installation of legacy applications, which 
can effectively reduce the deployment time, significantly minimize the artificial 
participation in it. By allocating and enforcing resources required by jobs with 
different priorities, virtual machine can realize fine-grained resource provision, 
including CPU, memory, network bandwidth, etc. However, in some cases, 
applications need to run in a network environment with multiple machines, Virtual 
Workspaces do not suit for the situation because it cannot provide a network 
environment for these applications. 

VIOLIN[7] is another hypervisor-based project proposed by Purdue University, 
which can provides the isolated network environment for applications. In VIOLIN, 
users can design and create virtual network topology on physical machines and 
physical networks. Every virtual network is isolated and independent from each other. 
Each virtual machine and virtual network equipment can be customized. For example, 
VIOLIN can build a virtual mobile IP network using Mobile IP protocol stack to test 
the stability and performance without actual moving of the terminals. 

Similar projects like In-VIGO [16] of University of Florida and Virtuoso[8] of 
Northwestern University, can facilitate configuration and management of virtual 
machine network for network applications, and serve as the basis for emulation and 
evaluation infrastructure of network software. However, these projects mostly focus 
on runtime support, but lack of designing support which can facilitate user’s creating 
and customizing the virtual machine network. 

Internet Suspend and Resume (ISR)[17] is another interesting hypervisor systems. 
It can provide a personal mobile computing environment for users, without having to 
carry any portable device. The personal computing environment is encapsulated in the 
virtual machine which is stored in a distributed file system. Whenever user closes or 
suspends the virtual machine, ISR will copy its state back to the distributed file 
system so that the virtual machine can be restored from anywhere later. 

The demerit of ISR is that virtual machine must be suspended before user moves, 
therefore virtual machine will stop running during the movement. With the use of 
virtual machine live migration, this restriction can be removed somehow. However, 
live migration requires that the source and destination machine reside in the same 
link, which greatly limits the mobility. 

SoftGrid[18] product provided by Softricity uses light-weight hypervisor 
technology to solve software management problem on the Windows platform. The 
light-weight hypervisor only need to intercept a small part of system call from 
application to emulate virtual file system and virtual registry. A similar technology 
under Linux platform is called jail or chroot. Since each application is isolated in a 
separate virtual file system and has separate registry namespace, software 
compatibility problem caused by file version conflicts and registry key conflicts can 
 



 CIVIC: A Hypervisor Based Virtual Computing Environment 813 

 

Fig. 1. CIVIC Perspectives 

be reduced to minimum. Using SoftGrid, the image file only need to contain the 
application and its library dependency, which will be relatively smaller than normal 
virtual machine image which include full operating system. But this light-weight 
hypervisor has very limited isolation other than file system and registry, such that two 
applications running in SoftGrid hypervisor can interfere with each other.  

4   CIVIC Architecture 

In this section, we propose the CROWN-based Infrastructure for VIrtual Computing 
(CIVIC), a hypervisor-based computing environment. CROWN (China R&D 
Environment Over Wide-area Network) is a service-oriented Grid middleware system 
which enables resource sharing and problem solving in dynamic multi-institutional 
virtual organizations in for China e-Science community[19]. CIVIC is a core 
component of CROWN Grid Middleware version 3.0. CIVIC provides better support 
for grid service in CROWN with isolated runtime environment.  

The benefit of CIVIC is listed as follows: Firstly, it can offer separated and isolated 
computing environment for users. Secondly, it can also realize hardware and software 
consolidation and centralized management for computer administrators. Thirdly, it 
can be transparent to upper layer applications, hiding the dynamicity, distribution and 
heterogeneity of underlying resources from applications. 

As shown in figure 1, CIVIC can be viewed in two perspectives. From normal user 
perspective, CIVIC establishes a middleware infrastructure on top of raw hardware 
resources to provide hosting environment for virtual machine instance and virtual 
network instance. User can interact with the instance just like with a physical machine 
or physical network without having to know which specific physical machine hosts 
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the instance. Using technologies like virtual machine live migration, CIVIC can keep 
virtual machine instance running from the infection of underlying hardware failure or 
maintenance. 

From administrator perspective, CIVIC provides three modules. Firstly, CIVIC 
Monitor module can collect and present overall runtime status to administrator.  
Secondly, CIVIC Manage module can provide administrator a centralized 
management console for resources registered in CIVIC environment. Thirdly, CIVIC 
Designer module provides a visual editor which can facilitate the installation and 
configuration of virtual machine instance and virtual network. 

As shown in figure 2, CIVIC can be divided into five layers: resource layer, 
container layer, coordination layer, instance layer, and interaction layer.  

 

Fig. 2. CIVIC Layers 

4.1   Resource Layer 

Resource layer is formed by multiple resource nodes. Each resource node is a 
physical machine. Generally, software is installed directly into these physical 
machines. However, resource nodes are distributed over the Internet, which may be 
incompatible with each other; both hardware and software may encounter unexpected 
failure. All these circumstances make software unreliable and vulnerable to 
environment changes. 

In CIVIC, software will be installed into virtual machines. With the middleware 
infrastructure established on top of raw hardware resources, CIVIC can provide 
isolated and reliable hosting environment for virtual machines over dynamic and 
heterogeneous resource nodes on the Internet.  

4.2   Container Layer 

The layer on top of the resource layer is the container layer, which is composed of 
container nodes. Each container node is a physical machine with CIVIC Container 
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component installed. Each container node has hypervisor software deployed that can 
host multiple virtual machine instances, and these instances can be controlled 
remotely through container interface.  

Container layer can be further divided into two sub-layers: 

(1) Hypervisor Sub-layer. CIVIC supports three type of hypervisor. The first one is 
Xen hypervisor, which can host full functioned virtual machine with operating system 
and application software installed in the virtual machine instance. The second one is 
jail virtual machine, which can provide isolated file system hierarchy for software. 
The third one is Java virtual machine which can host software written in Java. 

(2) Remote Control Sub-layer. This sub-layer provides remote management 
interface, including virtual machine management interface, network configuration 
interface, and information query interface, etc. Each virtual machine instance can be 
controlled by other nodes through virtual machine management interface, including 
operations like booting, halting and hibernating. A tunnel connection can be 
established between two container nodes using network configuration interface, 
which can be used to connect multiple virtual machine instances hosted by different 
container nodes. Administrator can monitor CPU, memory usage in virtual machine 
instances hosted by container node through information query interface. 

4.3   Coordination Layer 

Container node has the ability to host virtual machine instance. However it is not 
efficient to deploy an instance of virtual network containing several virtual machines 
into a single container node. To keep reliability of the virtual machine instance, it is 
also important to deploy multiple replicated instances to several container nodes. 
Therefore, in these cases, it is essential to coordinate several related container nodes 
to serve one purpose. 

CIVIC builds coordination layer over container layer. Coordination layer consists 
of multiple coordination nodes, which are special container nodes with coordinating 
function configured. Coordination nodes are responsible for the management of other 
container nodes. 

As mentioned above, there are different kinds of coordination functions in CIVIC, 
for example, resource management for the resource registration and query, virtual 
network management for maintaining virtual network over a number of container 
nodes, etc.  

4.4   Instance Layer 

There are multiple nodes in instance layer, which are isolated computing environment 
provided for users. CIVIC support three different kinds of instance nodes: virtual 
machine instance, virtual machine network instance, and virtual application instance. 
Virtual machine instance contains a complete operating system, which is isolated by 
hypervisor like Xen. Virtual machine network consists of multiple virtual machines 
with a specific network topology. Virtual application instance contains only a single 
application. 
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4.5   Interaction Layer 

This layer contains two types of interaction modules. First type of interactive modules 
is CIVIC administrative tools, including CIVIC Monitor, CIVIC Manager and CIVIC 
Designer. Monitor module can collect and present overall runtime status to 
administrator. Manager module can provide administrator centralized management for 
resources registered in CIVIC environment. Designer module provides a visual editor 
which supports creation of multiple virtual machines with a specific network 
topology, as shown in Figure 3. 

Second type of interaction module provides access interface to CIVIC instance. 
Users can interact with CIVIC instance nodes through a variety of interactive method, 
such as command line interface, graphical user interface, and Web Service interface to 
submit jobs to execute in virtual machine.  

5   Implementation and Performance Evaluation 

CIVIC is still in its active development. Under the design considerations mentioned 
above, we have finished part of our systems including CIVIC Designer, which is a 
GUI application based on Eclipse RCP framework, and CIVIC Job Engine, which 
implements front-end interface for virtual machine. Performance of our systems is 
evaluated through carefully designed experiments. 

5.1   CIVIC Designer 

CIVIC Designer can provide easy to use user interface for creating, modifying, 
deploying virtual machines and virtual networks. Figure 3 is shows the interface of 
CIVIC Designer. 

There are two ways to create a new virtual machine instance in CIVIC Designer. 
The first one is to create from scratch, which is to install a new operating system into 
a virtual machine. Users can customize the software installation and configuration of 
virtual machine instance via dialogs and wizards in CIVIC Designer. The second one 
is to create from existing physical machine, also known as Physical-to-Virtual (P2V). 
CIVIC Designer supports a remote P2V feature, which can turn a physical machine 
into virtual machine instance remotely with only few requirements from the physical 
machine. This function is very useful for maintaining runtime environment for legacy 
software. 

CIVIC Designer also provides a visual network topology editor which can be used 
to create, configure and deploy virtual network with multiple virtual machines. Each 
instance of virtual machine network created by CIVIC Designer will be treated as an 
atom element, which can be encapsulated as a single image file, and be deployed and 
managed as a single instance.  

An instance of virtual machine network can be hosted on a single physical 
machine, and can also be hosted on several different machines, even on two machines 
that are not attached in the same network link. In case two machines from different 
links host an instance of virtual network, a tunnel will be established between these 
machines connecting virtual machines among them. In current implementation, 
OpenVPN is used to establish such network tunnel. 
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Fig. 3. CIVIC Designer 

Performance regarding to creating, deploying virtual machine or virtual network 
using CIVIC Designer is studied and discussed in section 5.4. 

5.2   CIVIC Job Engine 

As mentioned, there are several ways for users to use virtual machine instance in 
CIVIC. Users can log on to the command line interface or graphic user interface to 
control the virtual machine directly, or use job submission interface to execute a job 
on virtual machine. 

CIVIC Job Engine provides a Web Services interface which support Job 
Submission Description Language (JSDL) standard[20]. After Job Engine received 
submitted the job, it will execute the job in the virtual machine instance specified by 
the JSDL document. Since the runtime environment of job engine and jobs are 
isolated and protected by hypervisor, and each job is guaranteed by hypervisor with 
specific allocated computing resources, such as number of processors, and size of 
memory and disk. Therefore hypervisor can ensure QoS and reliability of job 
scheduling. 

However, since the job engine and job is totally isolated by hypervisor, the 
communication between engine and job can be inconvenient and inefficient. In 
current implementation of CIVIC Job Engine, we used SSH as the communication 
channel between engine and job. In order to improve efficiency, previous SSH session 
will be cached for future communication. 
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5.3   Experiment 

We designed some experiments to evaluate the performance of our initial 
implementation of CIVIC. Our experimental environment includes two Intel P4 
machine, with 3GHz CPU and 1G memory. One machine is used for the designing 
and creating of virtual machine and virtual network, and the other one is used to host 
the virtual machine or virtual network created by the first one. The experimental 
metric includes install time, deploy time, and boot time of different type of instance. 
The experimental results are shown in Table 1. 

Table 1. CIVIC Designer experiments 

Type of instance 
Size 

(MB) 

Create 
Time 
(sec) 

Deploy 
Time (sec) 

Boot Time 
(sec) 

One VM instance (fresh) 136 441 45 79 
One VM instance (template) 136 143 45 79 

VM network 
with 2 VM instances 

273 246 88 94 

VM network 
with 3 VM instances 

409 351 129 113 

 
The virtual machine created in the experiment is a minimized Linux system, 

including the basic network tools like ftp, ssh, etc. This virtual machine occupied 136 
megabytes of disk space. From the experimental results shown in Table 2, Using 
CIVIC to create a fresh Linux virtual machine only takes about 7 minutes, and if we 
use previously created virtual machine template to accelerate the installation 
procedure, we can reduce the install time to 2 minutes. Taking into account that the 
installation of a physical machine usually takes between 30 to 60 minutes, using 
CIVIC can effectively speed up the system installation work and minimize manual 
participation in installation. Furthermore, It only takes about 2 minutes to deploy a 
virtual network consists of three virtual machines. In practice, it usually takes far 
more than 2 minutes to install and configure a physical network including several 
physical machines. This shows that CIVIC can facilitate installation, configuration 
and deployment of network-oriented applications. 

6   Conclusion and Future Work 

This paper introduces the emergence and development of virtual machine technology 
with the conclusion of four characteristics of virtual machine: transparency, isolation, 
encapsulation and manageability. We also analyzed several related implementations. 
Finally, we presented the system function design and experimental results of initial 
implementation of CIVIC, a virtual computing infrastructure based on CROWN. 

Our future work includes investigating security access control mechanisms in 
CIVIC which enforcing resource provision and reservation, as well as improving 
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software availability and resource utilization by supporting virtual machine migration 
over wide-area network. 
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